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Key Points:

● FlexBRDF corrects BRDF effects in groups of adjacent flightlines to minimize between-
image spectral differences

● Interpolation of NDVI bins prevents between-bin edges

● FlexBRDF is highly customizable and performed well for a variety of sites and sensors
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Abstract

Bidirectional reflectance distribution function (BRDF) effects are a persistent issue for the 
analysis of vegetation in airborne imaging spectroscopy data, especially when mosaicking results
from adjacent flightlines. With the advent of large airborne imaging efforts from NASA and the 
US National Ecological Observatory Network (NEON), there is increasing need for methods that
are both flexible and automatable across numerous images with diverse land cover. FlexBRDF 
corrects for BRDF effects in groups of flightlines, with key user-selectable features including 
kernel selection, land cover stratification (we employ NDVI), and use of a reference solar zenith 
angle (SZA). We demonstrate FlexBRDF using a series of nine long (150-400 km) AVIRIS-
Classic flightlines collected on 22 May 2013 over Southern California, where rough terrain, 
diverse land cover, and a wide range of solar illumination yield significant BRDF effects, and 
then test the approach on additional AVIRIS-Classic data from California, AVIRIS-Next 
Generation data from the Arctic and India, and NEON imagery from Wisconsin. Based on 
comparisons of overlap areas between adjacent flightlines, correction algorithms built from 
multiple flightlines concurrently performed better than corrections built for single images 
(RMSE improved up to 2.3% and mean absolute deviation 2.5%). Standardization to a common 
SZA among a group of flightlines also improved performance. While BRDF corrections tailored 
to individual sites may be preferred for local studies, FlexBRDF is compatible with bulk 
processing of large datasets covering diverse land cover needed for calibration/validation of 
forthcoming spaceborne imaging spectroscopy missions. 

Plain Language Summary

Airborne imaging spectroscopy data are used to map a suite of canopy functional traits, 
their functional diversity, and species composition. However, variation in sun and solar geometry
and land cover type can cause unwanted brightness gradients across an image. In studies where 
multiple images are mosaicked or where reflectances from multiple images will be compared, 
image brightness gradients may significantly confound analyses. Here we present FlexBRDF, a 
flexible correction technique that concurrently removes brightness artifacts in groups of 
flightlines. We tested our method across a diverse set of ecosystems and provide a generalized 
set of model parameters, which can be easily customized to fit the user’s needs. The method is 
suitable for application to large airborne campaigns in which site-specific corrections are 
infeasible, and which provide baseline data for current and future satellite missions.

1 Introduction
Imaging spectroscopy, also known as hyperspectral remote sensing, has become a critical

technology  for  understanding  the  dynamics  of  vegetation,  including  functional  traits  (Asner,
Martin, et al., 2015; Singh et al., 2015; Wang et al., 2019, 2020), vegetation type, composition
and diversity (Colgan et al., 2012; Li et al., 2005; Roberts et al., 1998; Schneider et al., 2017),
senescent vegetation fraction  (Dennison et al., 2019; Guerschman et al., 2009; Roberts et al.,
1993), photosynthetic capacity (Serbin et al., 2015), and disturbance and stress (Asner, Brodrick,
et al., 2016; Veraverbeke et al., 2014). Current and forthcoming spaceborne missions such as
Surface Biology and Geology (NASEM, 2018), CHIME (Nieke & Rast, 2018), HiSUI (Iwasaki
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et  al.,  2011),  PRISMA  (Loizzo  et  al.,  2018),  and  EnMap  (Stuffler  et  al.,  2007) will  offer
unprecedented  capacity  to  characterize  Earth’s  terrestrial  ecosystems,  which  is  critical  given
rapid ongoing losses in biodiversity and climate change (Jetz et al., 2016; Schimel et al., 2020).
Calibration  and  validation  of  global  missions  such  as  SBG  will  require  extensive  airborne
imaging spectroscopy to provide sufficient spatial and temporal coverage of necessary biological
and physical measurements that are not logistically feasible from in-situ sampling. Such airborne
campaigns have increased significantly in recent years, with efforts including the U.S. National
Ecological  Observatory  Network  (NEON)  (Kampe,  2010),  and  NASA  airborne  imaging
spectroscopy campaigns such as the Arctic Boreal Vulnerability Experiment  (Kasischke et al.,
2010), India  (Bhattacharya et  al.,  2019) and Europe  (Hueni et al.,  2018) campaigns,  and the
California Western Biodiversity Time Series (WBTS, citation) (Lee et al., 2015). In addition to
providing critical baseline data for satellite missions, airborne missions currently also provide
important high resolution data to prototype development of algorithms and data sets for those
missions. 

The airborne data sets needed to support satellite campaigns have a number of important
conditions.  First,  these  airborne  campaigns  must  cover  areas  larger  than  a  single  airborne
flightline,  necessitating  datasets  comprised of  multiple  flightlines  covering  a  flight  box over
areas of interest.  As well,  consistent  retrieval  of spectral  surface reflectance is necessary for
producing  reliable  and  comparable  maps  of  derived  data  products,  both  across  multiple
flightlines in a single geographic area and for scenes across sites. Analysis of data from multiple
flightlines  requires  consistent  implementation  of  atmospheric  correction,  but  bidirectional
reflectance distribution function (BRDF) effects also strongly influence brightness across images
as a function of solar and sensor view angles as well as surface anisotropy  (Nicodemus et al.,
1977; Schaepman-Strub et al., 2006). In studies where multiple flightlines must be mosaicked for
analysis  or  where  retrievals  from across  multiple  flightlines  are  to  be compared,  cross-track
brightness gradients due to BRDF may significantly confound analyses. BRDF effects are most
apparent on the seams between adjacent images, and are manifested as increased brightness on
one side of the flightline relative to the other due to sun-sensor-target geometry (Fig. 1). Thus,
BRDF correction is used to approximate a constant brightness level corrected to a nadir view
angle. This work was motivated by the observation that many BRDF correction approaches for
airborne hyperspectral imagery sufficiently address within-flightline brightness gradients without
addressing between-flightline  variations,  which may yield  undesirable  artifacts  in subsequent
mosaics  or  derived  products.  As  such,  it  is  important  to  ensure  that  the  corrections  further
account for differences associated with images collected with differing solar geometries. 
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Figure 1. BRDF effects manifest as exceptional brightness and darkness on either end of an 
image. The middle shows an uncorrected, true-color mosaic. For illustration, the right panel 
shows BRDF correction coefficients derived in this paper for a sample band (660 nm). 
Flightlines are labeled by their local acquisition time. The full flight box is shown on the left.

Here  we  present  a  flexible,  automated  approach  to  BRDF  correction  optimized  for
vegetation called FlexBRDF that is suitable for correcting multiple adjacent flightlines based on
the combined sun-sensor-target reflectance characteristics across all lines in a flight box acquired
on the same day. To minimize shadowing effects from steep terrain, all testing was conducted on
topographically-corrected  reflectance  data  using  the  sun-canopy-sensor  +  C  (SCS+C)
topographic correction method outlined in  Soenen et  al.  (2005). FlexBRDF is built  upon the
Ross-Li  kernel-driven  semi-empirical  BRDF  correction  method,  which  implements  a  set  of
kernels approximated from physical models to describe different BRDF shapes  (Wanner et al.,
1995). The BRDF model is a linear combination of geometric, volumetric, and isotropic terms.
Collectively, these terms incorporate the geometric structure of reflectors and shadowing effects,
the volumetric scattering across randomly distributed facets (such as leaves), and the isotropic
scattering contribution (i.e., uniform scattering in all directions) (Roujean et al., 1992). 

Within-image  BRDF  effects  are  caused  by  sun  and  sensor  geometries  and  their
interaction with land cover type (Nicodemus et al., 1977; Schaepman-Strub et al., 2006), which
influences  the  geometric  and volumetric  terms in  the BRDF model.  To address  this,  BRDF
correction methods commonly use a pre-classification scheme to stratify the BRDF correction by
cover type with assumed similarities in crown structure (Colgan et al., 2012; Jensen et al., 2018;
Jia et al., 2020; Schläpfer et al., 2015; Weyermann et al., 2015), but this is not practical across
large aerial campaigns covering a wide range of vegetation types that may be imaged at different
spatial resolutions. FlexBRDF avoids use of an ancillary land cover dataset by stratifying images
using the  normalized  difference  vegetation  index (NDVI),  a  common measure  of  vegetation
greenness.  The  benefit  to  a  widely-used  index  such  as  NDVI  over  a  pre-classification  for
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stratification is that it is continuous (i.e., pixels with similar NDVI values are more likely to be
alike  than  not)  and,  as  a  ratio,  reduces  influence  of  BRDF  (Buchhorn  et  al.,  2016) for
stratification compared to pre-classification, which would be performed on uncorrected imagery.
Significantly,  NDVI  enables  interpolation  of  BRDF  coefficients  between  stratification  bins,
which  is  not  possible  using  a  discrete  pre-classification  approach.  Here  we  test  a  range  of
approaches to NDVI binning, including a dynamic binning strategy that provides flexibility for
flightlines of varying land cover heterogeneity. 

Flightlines collected within a flight box can cover a range of illumination conditions and
vegetation types across the solar window of acquisitions, such that long acquisition flights in
areas with high landscape variation may not exhibit consistent BRDF corrections for individually
corrected lines in a flight box. FlexBRDF addresses multiple flightline issues in two ways. First,
FlexBRDF corrects an entire flight box as a group rather than on a flightline-by-flightline basis,
as in  Colgan et al.  (2012). Second, FlexBRDF accounts for the variation in solar and sensor
geometries as data within a flight box are collected over several hours by providing a range of
options  to  select  a  reference  solar  zenith  angle  for  the  BRDF correction,  which  is  likewise
necessary when integrating analyses from flightlines collected under widely varying illumination
conditions (Chen et al., 1999; Colgan et al., 2012; Weyermann et al., 2015). 

We  demonstrate  the  generality  of  FlexBRDF  across  complex  landscapes  including
Mediterranean,  temperate  and Arctic  biomes  using airborne imaging spectroscopy data  from
NASA’s  224-band  whiskbroom AVIRIS-Classic  (Green  et  al.,  1998) and  data  from several
nearly identical 480-band pushbroom sensors including AVIRIS-Next Generation (NG) (Hamlin
et  al.,  2011) and  the  U.S.  National  Ecological  Observatory  Network  (NEON)  Airborne
Observation Platform (AOP) (Kampe, 2010). These instruments image the visible to shortwave
infrared spectrum (~380 - 2500 nm) with ±17-18° field of view. These sensors typically collect
several long, narrow image strips (subsequently referred to as flightlines) for a given target area
(subsequently referred to as a flight box).  FlexBRDF was initially  developed for a Southern
California  flight  box  and  applied  to  subsequent  boxes  in  India,  Wisconsin,  Alaska,  and
Yosemite, CA with favorable results. FlexBRDF is open-source and available from GitHub as
part of our HyTools toolkit, and has numerous options for topographic correction method, BRDF
kernel  combinations,  vegetation index,  binning strategy, and choice of reference solar zenith
angle. 

2 Study Area and Data
We initially developed FlexBRDF using imagery collected on 22 May 2013 by AVIRIS-

Classic for a Southern California flight box that has been routinely flown -- sometimes multiple
times per year -- since 2013 (Lee et al., 2015). Images from this flight box exhibit significant
brightness differences across flightlines (Fig. 1). In addition, this flight box presents multiple
challenges requiring a robust BRDF correction approach: very long flightlines collected across
five  hours  spanning  a  range  of  illumination  angles,  as  well  as  diverse  vegetation  and
considerable topography. The box stretches from the Pacific Ocean to the Salton Sea, with a
range of elevation spanning -70 - 3068 m a.s.l., and contains prominent geological features such
as the Santa Monica and San Gabriel Mountains, as well as the densely populated city of Los
Angeles. Atmospherically-corrected surface reflectance data were accessed through the AVIRIS
Data Portal  (https://aviris.jpl.nasa.gov/dataportal/).  We used nine overlapping flightlines,  with
spatial resolutions ranging from 14.4 m to 15.8 m, and a spectral resolution of 10 nm at 224
wavebands from 400 to 2500 nm (Green et al., 1998). For AVIRIS-Classic, FlexBRDF used L1B
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observation geometry data (specifically, files labelled obs_ort) and L2 surface reflectance images
that had been atmospherically corrected using ATREM (Thompson et al., 2015).

We tested FlexBRDF and refined our code using data acquired from several different
sensors  over  different  land  cover  types  (Table  1).  The  testing  was  designed  to  assess  the
generality  of  the  approach,  using  sites  with  significant  heterogeneity  (Southern  California,
Yosemite,  Fairbanks),  moderate  variation (Mudumalai)  and comparatively homogeneous land
cover (Wisconsin). Application of an automated approach to correcting NEON data in particular
is  necessary,  as  NEON  flies  dozens  of  sites  annually  using  multiple  imaging  spectrometer
payloads, generating over 1000 flightlines per year. Likewise, data from California, India and
Alaska were all collected by NASA in support of large airborne campaigns for which single-line
corrections are both impractical and likely to generate highly variable results. For all analyses,
we used atmospherically corrected reflectance imagery as provided by the data distributor. 

Flight box Date of 
acquisition

Sensor Spatial
res (m)

Spectral 
res (nm)

# Bands Land cover

Southern 
California 
2013

5/22/2013 AVIRIS
-C

14.4 - 
15.8

10 224 urban, chaparral, oak 
woodland, conifer 
forest

Southern 
California 
2016

6/16/2016 AVIRIS
-C

14.4 - 
15.6

10 224 urban, chaparral, oak 
woodland, conifer 
forest

Yosemite, CA 6/7/2017 AVIRIS
-C

13.7 - 
14.9

10 224 conifer forest, 
woodland, snow

Fairbanks, AK 7/23/2018 AVIRIS
-NG

5.2 5 425 boreal forest

Mudumalai, 
India

1/5/2016 AVIRIS
-NG

4 5 425 subtropical and 
tropical forest

Chequamegon,
WI

9/11/2017 NEON 1 5 425 hardwood and conifer
forest

Table 1. Sensor and environmental properties of all test sites. See Table S1 for list of specific 
flightlines used.

3 Methods

3.1 Topographic Correction

In areas with complex terrain, a topographic correction should be implemented prior to or
in conjunction with the BRDF correction (Jia et al., 2020; Schläpfer et al., 2015; Weyermann et
al., 2015), since terrain orientation in relation to sun and sensor angles affects image reflectance
values  (Justice et  al.,  1981).  We corrected  for topography on a flightline-by-flightline  basis,
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following the sun-canopy-sensor with C-correction (SCS+C) described by Soenen et al. (2005).
The SCS+C correction combines the C-correction, which assumes consistent geometry of terrain
and  trees,  with  normalized  SCS  geometry.  Each  pixel  is  corrected  according  to  its  slope,
incidence angle, and solar zenith angle:

Rt=R
cosα cosθ s+C

cos i+C
 (1)

where Rt is topographically-corrected reflectance,  R is uncorrected reflectance,  ⍺ is the terrain
slope,  θs is the solar zenith angle,  and  i is  the solar incidence angle.  C is a function of the
parameters of the linear relationship observed between R and cosi, shown in Equation 2.

R=a+bcos i    and    C=
a
b

 (2)

3.2 Kernels

FlexBRDF  uses  the  Ross  and  Li  kernels  (Wanner  et  al.,  1995),  which
approximate BRDF shapes at varying solar and sensor view and azimuth angles. The Li
geometric  kernels  describe  the  arrangement  of  objects;  Li  sparse  refers  to  sparse
vegetation with characteristically prominent shadowing and Li dense refers to dense
vegetation. The Ross volumetric kernels describe the distribution of facets (i.e. leaves);
Ross thick  assumes LAI  ≥  1,  while  Ross thin  assumes LAI  < 1.  The kernel-based
method is a semi-empirical approach, chosen for its computational feasibility, ability to
scale spatially, and because it accounts for subpixel heterogeneity in land cover.

We tested four kernel combinations (sparse-thick, sparse-thin, dense-thick, dense-thin) to
identify the set of kernels to apply. Our objective was not to thoroughly test the kernels but rather
to  identify  the  kernel  combinations  that  produced  consistent  corrections  across  our  diverse
landscapes, namely reduction of the across-track brightness effect.  Illustrated graphically,  Li-
Dense  kernels  resulted  in  overcorrection  of  pixels  in  the  forward  scattering  direction  in
comparison to  the  sparse kernel  (Fig.  S1),  while  the  difference  between thick  and thin  was
negligible. Subsequent implementation exclusively used the Ross-Thick and Li-Sparse kernels,
which are widely used in other relevant studies (Schläpfer et al., 2015; Weyermann et al., 2015),
and seem to perform most consistently across a wide range of surface conditions.  The open
source  code  for  our  method  allows  users  to  select  a  range  of  kernels  appropriate  to  their
application. Full mathematical formulation for the derivation of kernels (denoted by K) and the
weighting coefficients for the kernel (denoted by f) is provided in Wanner et al. (1995).
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Figure 2. The BRDF is a function of solar view angle (𝜃v), solar zenith angle (𝜃s), and relative 
azimuth angle (𝜙 = 𝜙s - 𝜙v). 

3.3 BRDF Correction Model

BRDF is calculated as follows per wavelength and per pixel:

ρ(θv ,θs , ϕ)=f iso+ f geoK geo(θv , θs , ϕ)+ f volK vol(θv , θs , ϕ)     (3)

where θv is the view zenith angle, θ s is the solar zenith angle, and ϕ is the relative azimuth angle
(Fig.  2).  The  K  parameters  are  the  kernel  values,  which  are  fixed  values  derived  for  each
wavelength and are a function of each pixel’s combination of view and solar angles. The f  values
are the least squares regression coefficients (referred to here as BRDF coefficients) that account
for varying vegetation structure in the sampled pixels. The set of geometric,  volumetric,  and
isotropic weighting coefficients - fiso, fgeo, fvol - describe a characteristic land cover type. For this
reason, BRDF corrections generally  use a pre-classification scheme or alternatively an index
(e.g. Schläpfer et al., 2015) or, in our case, NDVI binning.  

The BRDF correction approximates nadir (θv=0) reflectance for each pixel based on the
calculated kernel values and derived BRDF coefficients. When θv=0,  ϕ vbecomes arbitrary. As
such, we use a relative azimuth angle that is normalized to an arbitrary number (ϕn). Equation 4
describes the application of the correction factors, which compare the observed reflectance of a
pixel (or, in this case, the topographically-corrected reflectance Rt) to the modeled reflectance at
nadir.  These  factors  are  calculated  and  applied  on  a  per-wavelength  and  per-pixel  basis,
outputting topographic- and BRDF-corrected reflectance Rtb.

Rtb=Rt (0 , θs , ϕn)=Rt (θv , θs , ϕ)
ρ(0 , θs , ϕn)
ρ(θv , θs , ϕ)

(4)
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3.4 NDVI Stratification

Pre-correction stratification of imagery is often used in BRDF correction to ensure that 
correction coefficients capture differences in vegetation canopy characteristics (e.g., structure, 
leaf shape, leaf area, etc.) (Colgan et al., 2012; Jensen et al., 2018; Jia et al., 2020; Schläpfer et 
al., 2015; Weyermann et al., 2015). Rather than a discrete classification scheme, we use a 
vegetation index, which can facilitate a continuous stratification of vegetation. Reflectance 
image pixels were binned based on NDVI calculated as (R850-R665)/(R850+R665). To assess the 
effect of NDVI bin size on the corrected results, we ran BRDF corrections with 3, 8, and 18 bins 
for values of NDVI > 0.05 (Table 2). Once binned, BRDF coefficients were calculated using 
Equation 4 for each NDVI bin separately.

Initial tests used static predefined bins (Table 2) in which we masked out pixels with very
low NDVI values  (<  0.05)  to  account  for  water,  non-vegetation  and anomalous  values.  For
output maps, original reflectance values were retained in the BRDF-corrected product in masked
areas. After testing, we also implemented a dynamic binning approach that utilized 18 bins with
divisions of equal sample size within the range of 0.05 < NDVI < 0.9. This approach aimed to
accommodate  images  in  which NDVI variability  was within a  narrow range,  such as in  the
NEON Wisconsin box used in our study (Fig. S2).  

Like a cover type classification, there is the risk of abrupt boundaries in BRDF-corrected
reflectance at transitions between NDVI bins. To prevent edge effects between NDVI classes in
the corrected imagery, we tested smoothing techniques between bins for the weighting factors
using the most numerous bin approach (18-bin). We tested: unweighted linear regression (where
coefficients are modeled as a function of NDVI), weighted linear regression (based on the size of
the bin), and linear interpolation using the Python SciPy library (Virtanen et al., 2020). To avoid
overcorrection in very low (0.05-0.25) and very high (0.85-1) NDVI, smoothing methods were
applied only on bins between 0.25 and 0.85. 

# bins Bin boundaries

3 0.3, 0.7

8 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

18 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9

Table 2. NDVI value divisions for the static NDVI bin approach

Although we only compared corrections using NDVI bins, our open-source code can 
accommodate a user-supplied classification or use an alternate vegetation index to NDVI.

3.5 Reference Solar Zenith Angle

In general, correcting BRDF for a single flightline models nadir-viewing reflectance (
θv=0) for each pixel based on the solar zenith angle (θs) at the time of flight. For flight boxes in
which lines are acquired over multiple hours within a day, this correction approach introduces
systematic line-to-line brightness differences. FlexBRDF thus corrects all lines within a flight
box to a reference solar zenith angle (θsr) (Chen et al., 1999; Colgan et al., 2012; Weyermann et
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al., 2015). As such, θs can be substituted for θ sr in Equation 4 to output topographic- and BRDF-
corrected reflectance with solar zenith reference Rtbz (Equation 5). 

Rtbz=Rt (0 , θsr , ϕn)=Rt (θv ,θ s , ϕ)
ρ(0 , θsr , ϕn)
ρ(θv , θs , ϕ)

(5)

The  selection  of  θ sr for  a  flight  box is  not  straightforward,  especially  if  analyses  of
images from one date are to be integrated with data from images collected on another date. To
assess the ramifications,  we compared four values of  θ sr (Table 3) in our implementation of
FlexBRDF for the initial 22 May 2013 Southern California flight box using the 18-bin group
with linear interpolation.  For all  tests, we used the latitude (33.7°) averaged from the center
points of all images to determine θsr. Approach θ s1 uses the solar zenith angle at solar noon on
the  date  of  acquisition,  which  could  reasonably  be  considered  a  default  approach  for  some
applications.  θ s2 uses the average of all solar zenith angles at solar noon across the date range
encompassing  the  growing  season,  which  can  be  seen  as  a  generalized  value  suitable  for
integrating data from multiple dates but risks overcorrecting images with solar view angles that
differ substantially from the seasonal average (Zhang et al., 2016). θ s3 uses the average observed
θ s from the flight box, which could be considered a relatively cautious default, but could have
implications for integrating images across dates. θ s4 uses the solar zenith angle at solar noon on
the summer solstice, which might also be considered a reasonable baseline for integrating data
from across the growing season, but will also always be a value that is at the extreme of observed
values for any given flight box. Of note, any approach that uses  θsr tied to solar noon can be
problematic if all flightlines are collected before or after noon.

Name Calculation Solar zenith angle

θ s1 Solar noon on day of acquisition 13.78

θ s2 Solar noon averaged for growing season 22.22 (April-October)
14.59 (June-August)

θ s3 Observed average  θ s for all  lines  in   flight
box

23.87

θ s4 Solar noon on summer solstice 10.37
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Table 3. Solar zenith angles in degrees from nadir tested for BRDF correction. Values are 
provided for the 22 May 2013 image used for initial development of the method. Two periods 
were tested for θs2: a broad estimate for growing season (April-October) and a more restricted 
period (June-August). The April-October period was closer to the flightbox average, and is 
shown in subsequent results.

3.6 Assessment

First, we qualitatively evaluated spectral continuity across flightlines by inspecting for
clear  boundaries  between images  within  a flight  box or  between NDVI stratification  classes
within an image, both of which would indicate a poor correction. We further assessed spectral
consistency and continuity  across  the flight  box through visual  inspection of  transects.  Four
transects were drawn across the flight box, oriented perpendicular to the rotation angle of the
images (-67° for the California test images). Points were distributed every 500m across each
transect.  For each point, we calculated the mean reflectance value from a 5 pixel by 5 pixel
window to account for possible errors in image registration. We plotted transects for eight bands
covering the portion of the VSWIR range that most prominently exhibits BRDF effects (480,
560, 660, 850, 975, 1050, 1150, and 1240 nm). Discontinuities in reflectance values at image
boundaries across the transect indicate the presence of residual BRDF effects. 

Quantitatively, we performed a direct comparison of pixel values between overlapping
areas of adjacent flightlines. Accounting for imperfect spatial registration between overlapping
images,  we used a moving window to perform spectral  matching on adjacent  subsets of the
image pixels. For the May 2013 Southern California box, we extracted the overlapping pixels for
each wavelength of the entire image spectrum, ran a simple linear regression, and calculated the
root mean square error (RMSE) and mean absolute deviation (MAD) following  Jensen et al.
(2018) and  Collings et  al.  (2010).  Lower RMSE and MAD indicate  a closer match between
overlapping areas, and are thus interpreted as a better correction. These metrics were averaged
across all overlap areas in a flight box by wavelength. We repeated the method for subsequent
test flight boxes using a 10-band spectral subset (480, 560, 660, 850, 975, 1050, 1150, 1240,
1650, and 2215 nm) instead of the full spectrum.  

4 Results

4.1 Southern California 2013

Compared to single line processing,  grouping of images  improved consistency of the
shape and pattern of BRDF coefficients by NDVI bin and across wavelengths (Fig. S3). The
isotropic coefficient in particular is a good indicator of BRDF model performance because it
represents  the bidirectional  reflectance  at  θv=0 and  θv=0 for  a  given pixel  (Roujean et  al.,
1992). For high NDVI pixels, the reflectance should resemble a vegetation spectrum while for
low NDVI pixels, it should appear like a soil spectrum. The group method is able to produce
physically sound isotropic coefficients while the single line method yields inconsistent, and in
some cases, unreasonable results. 

All  group  processing  iterations  yielded  lower  RMSE  (up  to  2.7%  less,  varying  by
wavelength)  and  MAD  (up  to  2.4% less)  in  overlap  areas  than  single  line  processing  and
uncorrected reflectance (Fig. 4, 5; Table S2). In contrast, all three single processing iterations (3-
bin, 8-bin, and 18-bin) yielded higher RMSE (up to 1.1% higher) and MAD (up to 0.7% higher)
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than the original reflectance in the red edge/NIR range. The various grouping methods performed
similarly  across  most  of the spectrum, but  the 3-bin approach yielded the lowest  values  for
RMSE and MAD in the 700 - 1400 nm range. Of the different smoothing methods (Fig. S4),
which were only tested on the 18-bin group iteration, the weighted linear regression is the only
method that performed noticeably worse across the entire spectrum, especially in the 2000 - 2500
nm range (Fig. S5). 

Figure 4. Scatterplots show overlapping reflectance for two lines from the 2013 Southern 
California flight box. Points are from the corrected images. Perfect spectral consistency would 
show points falling along the 1:1 line (grey). 

Figure 5. RMSE and MAD from the simple linear regression fit are averaged for all overlapping 
areas in the flight box and shown for the entire spectrum.
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Upon visual inspection,  group processing yielded a mosaic with minimized seamlines
between adjacent flightlines (Fig. 6). While the number of NDVI bins did not affect the overall
appearance  of  boundaries  between flightlines,  use  of  fewer  bins  resulted  in  more prominent
edges between NDVI classes in the corrected image (Fig. S6). In the use of static bins, we found
that smaller and more numerous NDVI bins produced corrections with less evidence of edges
among  classes  or  between  flightlines.  The  inclusion  of  a  smoothing  method  for  BRDF
coefficients  between  bins  resulted  in  comparable  RMSE  and  MAD  values  to  unsmoothed
coefficients,  but  also  reduced  discontinuities  across  NDVI  class  boundaries.  Spectral  data
extracted from transects across the flightlines generally exhibited more continuous reflectance
values  in  overlap  areas  within  the  corrected  images,  or,  at  worse  minimal  difference  from
uncorrected data (Fig. 7). 

Figure 6. Mosaicked true color reflectance images over Southern California, showing (a) no 
BRDF correction, (b) 18-bin single correction, and (c) 18-bin group correction.
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Figure 7. (a) A successfully corrected image should show a continuous transect line. Transects 
are shown for the Southern California 2013 box. (b) Average reflectance before (black) and after 
correction (color) is shown along Transect 1, where dotted lines denote overlap regions. 
Additional transect plots are shown in Fig. S7.

Finally, the inclusion of θ sr improved consistency across the flight box, both visually and
in the quantitative assessment. While all four test angles yielded visually smooth mosaics,  θs2
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and θ s3 resulted in comparably low RMSE and MAD values (up to 0.7% lower than correction
with no θ sr) (Fig. 8).

Figure 8. Reference solar zenith angle tests compared to uncorrected reflectance and corrected 
reflectance with no reference.

4.2 Other Sites

For secondary test sites, we compared 3-bin group, 18-bin group with interpolation (no
θsr), and 18-bin group with interpolation (with θ s3) based on results from 22 May 2013 Southern
California imagery. In all sites, all three BRDF correction methods yielded lower RMSE and
MAD than uncorrected reflectance (Fig. S8), as well as a visually more continuous mosaic (Fig.
9, S9). The inclusion of θ s3 had the largest effect on California boxes, lowering RMSE and MAD
for the two Southern California boxes. For the Yosemite box, the inclusion of  θs3 performed
worse than the 3-bin or 18-bin without θsr, though it still yielded lower RMSE and MAD than the
uncorrected data. The 3-bin and 18-bin group processing yielded similar results for the remaining
flightlines regardless of solar zenith reference (Fig. S8). The dynamic binning approach, which
aimed to address the small range of NDVI values observed in the NEON Wisconsin box, had
virtually no effect on RMSE and MAD (Fig. S10), but is recommended for most applications
because it lessens the chance for anomalous results if a fixed bin has a small sample size for
computing BRDF coefficients. 
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Figure 9. Before (left) and after (right) BRDF correction for the NEON-Wisconsin site. Other 
sites are shown in Fig. S9.

5 Discussion
Grouping images for BRDF correction ensures a consistent correction across the flight

box regardless of variation in land cover within and between flightlines. Due to the flightline size
and  land  cover  complexity,  we  suspect  that  some  single  image  corrections  are  too  heavily
influenced by the proportion and geographic location within a flightline of certain land cover
types, such as agriculture. Figure S3 shows evidence of grouped correction producing a more
consistent  and  stable  correction  than  single  flightline  corrections,  while  Figure  5  provides
quantitative evidence of improved correspondence of image spectra in overlap areas and Figure 6
demonstrates the impacts on mosaic appearance. 

Of the correction models we tested on the 22 May 2013 Southern California box, all
grouping methods outperformed the single line methods. While the different grouping methods
all yielded similar results, the 3-bin and 18-bin grouping methods represented a trade-off: by a
small amount, the 3-bin grouping exhibited the lowest RMSE and MAD values in overlap areas,
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while the 18-bin grouping produced the most continuous output image, with less evidence of
borders  and  only  slightly  higher  MAD  and  RMSE.  These  two  grouping  methods  were
comparable  for  all  subsequent  test  sites.  Of  the  smoothing  methods  we  tested  for  BRDF
coefficients between NDVI bins, linear interpolation resulted in images with minimal seamlines
between adjacent flightlines compared to regression approaches and an absence of boundaries
between NDVI bins.

We expected that the NEON box would be a unique case because of its constricted range
of NDVI values, in which 90% of the NDVI values range between 0.7 and 0.9 (Fig. S2). To
avoid numerous NDVI bins with minimal samples for computing BRDF coefficients, we revised
our static bin approach to create a dynamic binning approach, where the bins are defined by
equal area of an NDVI bin rather than a fixed NDVI bin breadth.  However, the test of an 18-bin
dynamic group correction yielded RMSE and MAD values that were virtually identical to the
static binning (Fig. S10). This suggests that either the static binning or dynamic binning work
well in homogeneous landscapes, but we expect that dynamic binning may have advantages in
homogeneous landscapes. This could be the basis for further testing; further development could
test optimization approaches to dynamically vary the range of factors used in BRDF correction
(e.g., including kernel selection). 

Establishing a reference solar zenith angle is critical for highly diverse scenes and/or very
long flightlines. Of the four angles we tested for the 22 May 2013 Southern California box, we
achieved the best results for θ s2 and θs3. The default selection we recommend is θ s3, since this is
the most accurate representation of the average solar zenith angle observed on the day of data
collection. However, if the user aims to compare flight boxes from the same location acquired on
different dates, it may be useful to standardize these boxes to the same angle. In that case, we
recommend θs2. The inclusion of a solar reference angle was beneficial in the second Southern
California flight box, but appeared detrimental for the Yosemite box and had negligible impact
on  the  remaining  sites  (Fig.  S8).  It  is  likely  that  Southern  California  saw  the  biggest
improvement  from  the  inclusion  of  a  reference  solar  zenith  angle  because  these  lines  are
exceptionally long, and acquired over a span of many hours (and thus across a large range of
solar zenith angles) in one day.

All of our examples used images that overlapped and were acquired on the same day.
Future work should test the extent to which these criteria can be extended or should be restricted.
First, although it is reasonable to expect that this method would work on flightlines that are in
close proximity but not overlapping, it would be difficult to assess model performance without
overlapping areas.  As well,  it  would be hard to specify a cutoff time beyond which images
should not be processed together,  but a separation of several hours affects  reflectance in the
image due to change in sun angle and even atmospheric  conditions.  Using a reference solar
zenith angle partially rectifies these considerations.
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Figure 10. For illustration, a trait map of carotenoids is shown for uncorrected and BRDF-
corrected data from two overlapping Southern California flightlines. A clear boundary line runs 
through the center of the map derived from uncorrected imagery.

Our  overall  objective  for  BRDF corrections  is  to  reduce  the  influence  of  BRDF on
derived  maps,  such  as  vegetation  composition,  fractional  cover,  disturbance,  stress  and
functional  traits.  After  an  appropriate  BRDF  correction,  algorithms  that  address  ecological
questions can be applied to generate maps that can be mosaicked with minimal seams. Such
applications depend on consistent spectral reflectance across flightlines, and a method such as
FlexBRDF can greatly reduce discontinuities between flightlines, as illustrated with a vegetation
trait map derived for carotenoids following Singh et al. (2015) (Fig. 10). Some methods are more
sensitive  to  BRDF than others,  e.g.  trait  mapping  (Singh et  al.,  2015) and quantification  of
biodiversity metrics  (Féret & Asner, 2014), while methods that leverage unmixing or spectral
angles  are  less  sensitive  to  per  pixel  brightness  effects.  Our  code  for  FlexBRDF  has  been
designed to be adaptable to a range of environments. Although we demonstrate FlexBRDF using
a parameterization that we found worked well across many environments, users of FlexBRDF
can tune the approach to different kernel combinations, vegetation index, binning approach (the
code also enables using a classification layer rather than NDVI bins), and reference solar zenith
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angle.  It  is  part  of  a  larger  suite  of  open-source  Python  tools  for  processing  hyperspectral
imagery available at https://github.com/EnSpec/hytools. 

6 Conclusion
Current and forthcoming spaceborne imaging spectroscopy missions such as SBG will

require extensive airborne data sets for calibration and validation. Data sets of derived products
that exhibit artifacts of BRDF and other effects (e.g., Fig. 10) may be problematic for integration
with  these  new spaceborne  data.  FlexBRDF will  allow users  to  mosaic  maps  of  vegetation
properties derived from imaging spectroscopy on groups of adjacent airborne flightlines without
stark  image boundaries  created  by BRDF effects.  We demonstrate  that  FlexBRDF is  highly
applicable  for  airborne  hyperspectral  imagery  covering  diverse  environments.  However,  our
open source code is  written  such that  users can implement  and test  a  wide range of  BRDF
approaches. Our final recommendation is to group the images, stratify the data with 18 NDVI
bins, use the solar zenith angle from the flight box center point as a reference, and smooth the
coefficients  with  linear  interpolation.  While  these  parameters  worked  well  on  most  sites
(although Yosemite may benefit from a different solar zenith reference), the method is flexible
and the user may adjust the parameters to fit their needs.
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