References

  1. Parmar R R, Jain K R, Modi C K. Unified approach in food quality evaluation using machine vision[C]//International Conference on Advances in Computing and Communications. Springer, Berlin, Heidelberg, 2011: 239-248.
  2. Du L, Zhang R, Wang X. Overview of two-stage object detection algorithms[C]//Journal of Physics: Conference Series. IOP Publishing, 2020, 1544(1): 012033.
  3. Tian Z, Shen C, Chen H, et al. Fcos: Fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 9627-9636.
  4. Thakur M S, Ragavan K V. Biosensors in food processing[J]. Journal of food science and technology, 2013, 50(4): 625-641.
  5. Lozano M G, García Y P, Gonzalez J A S, et al. Biosensors for food quality and safety monitoring: fundamentals and applications[M]//Enzymes in food biotechnology. Academic Press, 2019: 691-709.
  6. Narsaiah K, Jha S N, Bhardwaj R, et al. Optical biosensors for food quality and safety assurance—a review[J]. Journal of food science and technology, 2012, 49(4): 383-406.
  7. Lv M, Liu Y, Geng J, et al. Engineering nanomaterials-based biosensors for food safety detection[J]. Biosensors and Bioelectronics, 2018, 106: 122-128.
  8. Wang W, Gunasekaran S. Nanozymes-based biosensors for food quality and safety[J]. TrAC trends in analytical chemistry, 2020, 126: 115841.
  9. Chen Z, Ai S, Jia C. Structure-aware deep learning for product image classification[J]. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 2019, 15(1s): 1-20.
  10. Liu J, Li J. Research on target tracking algorithm based on YOLO and KCF[J]. Computer Science and Application, 2020, 10(6): 1113-1121.
  11. Wu B, Iandola F, Jin P H, et al. Squeezedet: Unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving[C]//Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2017: 129-137.
  12. Ding K, Gunasekaran S. Shape feature extraction and classification of food material using computer vision[J]. Transactions of the ASAE, 1994, 37(5): 1537-1545.
  13. Parmar R R, Jain K R, Modi C K. Unified approach in food quality evaluation using machine vision[C]//International Conference on Advances in Computing and Communications. Springer, Berlin, Heidelberg, 2011: 239-248.
  14. Wu D, Sun D W. Colour measurements by computer vision for food quality control–A review[J]. Trends in Food Science & Technology, 2013, 29(1): 5-20.
  15. Ding K, Gunasekaran S. Shape feature extraction and classification of food material using computer vision[J]. Transactions of the ASAE, 1994, 37(5): 1537-1545.
  16. Gadelmawla E S, Elewa I M. On-line measurement of product dimensions using computer vision[C]//Proceedings of 9th IMEKO Symposium metrology for quality control in production “Surface Metrology for Quality Assurance”, Cairo, Egypt. 2001: 24-27.
  17. Pavithra V, Pounroja R, Bama B S. Machine vision based automatic sorting of cherry tomatoes[C]//2015 2nd International Conference on Electronics and Communication Systems (ICECS). IEEE, 2015: 271-275.
  18. Jiang L, Qiu B, Liu X, et al. DeepFood: food image analysis and dietary assessment via deep model[J]. IEEE Access, 2020, 8: 47477-47489.
  19. Parmar R R, Jain K R, Modi C K. Unified approach in food quality evaluation using machine vision[C]//International Conference on Advances in Computing and Communications. Springer, Berlin, Heidelberg, 2011: 239-248.
  20. Thakur M S, Ragavan K V. Biosensors in food processing[J]. Journal of food science and technology, 2013, 50(4): 625-641.
  21. Kurbanoglu S, Erkmen C, Uslu B. Frontiers in electrochemical enzyme based biosensors for food and drug analysis[J]. TrAC Trends in Analytical Chemistry, 2020, 124: 115809.
  22. Kaçar C, Erden P E. An amperometric biosensor based on poly (l-aspartic acid), nanodiamond particles, carbon nanofiber, and ascorbate oxidase–modified glassy carbon electrode for the determination of l-ascorbic acid[J]. Analytical and Bioanalytical Chemistry, 2020, 412(22): 5315-5327.
  23. Da Silva W, Ghica M E, Ajayi R F, et al. Tyrosinase based amperometric biosensor for determination of tyramine in fermented food and beverages with gold nanoparticle doped poly (8-anilino-1-naphthalene sulphonic acid) modified electrode[J]. Food chemistry, 2019, 282: 18-26.
  24. Lopez M S P, Redondo-Gómez E, López-Ruiz B. Electrochemical enzyme biosensors based on calcium phosphate materials for tyramine detection in food samples[J]. Talanta, 2017, 175: 209-216.
  25. Erden P E, Selvi C K, Kılıç E. A novel tyramine biosensor based on carbon nanofibers, 1-butyl-3-methylimidazolium tetrafluoroborate and gold nanoparticles[J]. Microchemical Journal, 2021, 170: 106729.
  26. Wu L, Lu X, Niu K, et al. Tyrosinase nanocapsule based nano-biosensor for ultrasensitive and rapid detection of bisphenol A with excellent stability in different application scenarios[J]. Biosensors and Bioelectronics, 2020, 165: 112407.
  27. FERNANDES P M V, CAMPIÑA J M, SILVA A F. A layered nanocomposite of laccase, chitosan, and Fe3O4 nanoparticles-reduced graphene oxide for the nanomolar electrochemical detection of bisphenol A[J]. Microchimica Acta, 2020,187(5).
  28. Mentana A, Nardiello D, Palermo C, et al. Accurate glutamate monitoring in foodstuffs by a sensitive and interference-free glutamate oxidase based disposable amperometric biosensor[J]. Analytica Chimica Acta, 2020, 1115: 16-22.
  29. Rejeb I B, Arduini F, Arvinte A, et al. Development of a bio-electrochemical assay for AFB1 detection in olive oil[J]. Biosensors and Bioelectronics, 2009, 24(7): 1962-1968.