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Abstract 41 
Redox processes, aqueous and solid-phase chemistry, and pH dynamics are key drivers of 42 
subsurface biogeochemical cycling in terrestrial and wetland ecosystems but are typically not 43 
included in terrestrial carbon cycle models. These omissions may introduce errors when 44 
simulating systems where redox interactions and pH fluctuations are important, such as wetlands 45 
where saturation of soils can produce anoxic conditions and coastal systems where sulfate inputs 46 
from seawater can influence biogeochemistry. Integrating cycling of redox-sensitive elements 47 
could therefore allow models to better represent key elements of carbon cycling and greenhouse 48 
gas production. We describe a model framework that couples the Energy Exascale Earth System 49 
Model (E3SM) Land Model (ELM) with PFLOTRAN biogeochemistry, allowing geochemical 50 
processes and redox interactions to be integrated with land surface model simulations. We 51 
implemented a reaction network including aerobic decomposition, fermentation, sulfate 52 
reduction, sulfide oxidation, and methanogenesis as well as pH dynamics along with iron oxide 53 
and iron sulfide mineral precipitation and dissolution. We simulated biogeochemical cycling in 54 
tidal wetlands subject to either saltwater or freshwater inputs driven by tidal hydrological 55 
dynamics. In simulations with saltwater tidal inputs, sulfate reduction led to accumulation of 56 
sulfide, higher dissolved inorganic carbon concentrations, lower dissolved organic carbon 57 
concentrations, and lower methane emissions than simulations with freshwater tidal inputs. 58 
Model simulations compared well with measured porewater concentrations and surface gas 59 
emissions from coastal wetlands in the Northeastern United States. These results demonstrate 60 
how simulating geochemical reaction networks can improve land surface model simulations of 61 
subsurface biogeochemistry and carbon cycling. 62 
 63 
Plain language summary: 64 
Coastal wetlands can store carbon rapidly but are difficult to represent in current models for 65 
accurate accounting of how much carbon can be trapped. This difficulty is due to the complex 66 
interactions between tides, chemical reactions, and water salinity, which strongly affect the 67 
decay of organic matter and the production of greenhouse gases. We enhanced an existing model 68 
by linking it to a powerful chemical reaction simulator such that organic matter decomposition 69 
was tightly connected to chemical reactions involving key components such as sulfur, iron, 70 
oxygen, and methane. We used this model to compute the effect of salinity on organic matter 71 
decomposition and greenhouse gas production in saline and freshwater wetlands. The model 72 
predicted much lower methane emissions from saltwater-affected wetlands, which compared 73 
well to field measurements from coastal wetland sites in Massachusetts, USA. This model 74 
improves the accounting of carbon in wetland ecosystems and opens a broad range of 75 
possibilities for representing complex chemistry in land models. 76 
 77 

1 Introduction 78 

Coastal wetlands can sequester carbon at exceptionally high rates (McLeod et al., 2011), and 79 
emissions of greenhouse gases such as methane are highly sensitive to salinity, and particularly 80 
to sulfur cycling driven by seawater influence in coastal systems (Poffenbarger et al., 2011). 81 
Changes in sulfur dynamics and seawater influence can also contribute to peat collapse and rapid 82 
carbon loss in coastal wetland systems subject to changing sea levels (Chambers et al., 2019). 83 
Tidal wetlands represent a key challenge for existing carbon cycle modeling frameworks, due to 84 
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their outsized role in the carbon cycling and the complex combination of hydrology, redox 85 
dynamics, and interactions of different chemical cycles that drive subsurface biogeochemistry in 86 
these systems (Ward et al., 2020).  87 

Chemical interactions including pH dynamics, redox cycling, oxygen consumption, and 88 
mineral interactions are recognized as key drivers of soil carbon cycling in both oxic (Hall et al., 89 
2018; Li et al., 2021; Sollins et al., 1996) and anoxic (Kögel-Knabner et al., 2010; Lipson et al., 90 
2010; Sutton-Grier et al., 2011) environments. Redox interactions are particularly important in 91 
determining greenhouse gas emissions in inundated soils subject to redox fluctuations (Ginn et 92 
al., 2017; B. N. Sulman et al., 2022). However, land surface models (LSMs) that are used to 93 
simulate and project carbon and nutrient cycling as part of Earth system model (ESM) 94 
simulations typically use simplified representations of organic matter cycling that include only 95 
carbon, macronutrients (N and P), water, and energy cycling (Todd-Brown et al., 2013). These 96 
omissions could drive uncertainties and predictive errors when simulating biogeochemical 97 
responses to changing hydrological conditions or projecting carbon cycling across different soil 98 
types. 99 
 In saturated soils, the omission of redox cycling and oxygen concentrations could lead to 100 
bias in simulations of organic matter degradation as well as greenhouse gas production. Existing 101 
LSMs typically treat soil saturation as a proxy for redox state, assuming that saturated conditions 102 
translate directly to oxygen depletion (Wania et al., 2013). In reality, both organic matter 103 
decomposition and methane (CH4) production are sensitive to the presence and depletion of 104 
terminal electron acceptors (TEAs) including oxygen, iron, sulfate, nitrate, and manganese 105 
(Estop-Aragonés et al., 2013; Herndon et al., 2015; Poffenbarger et al., 2011). While some 106 
models do include a temporal delay in methane (CH4) production as a proxy for the depletion of 107 
TEAs (Riley et al., 2011), such proxy approaches may not be sufficient to represent variations in 108 
TEA patterns across variations in soil mineral content or in situations where flows of dissolved 109 
oxygen or plant-mediated oxygen transport are important. In frequently flooded coastal or 110 
riparian systems, such approaches may not adequately represent the addition and mixing of 111 
TEAs, and may fail to accurately predict methane fluxes in coastal systems where increasing 112 
sulfate availability suppresses methane production even as water levels rise (Kirwan et al., 2023). 113 
Redox conditions and porewater chemical concentrations can also affect plant growth. For 114 
example, plant tolerance to salinity and inundation varies widely (LaFond-Hudson & Sulman, 115 
2023) and sulfides produced via sulfate reduction under anoxic conditions can be toxic to plants 116 
(Koch et al., 1990; Lamers et al., 2013). Thus, representing dynamics of redox-active chemical 117 
species may allow LSMs to simulate wetland carbon cycling processes and greenhouse gas 118 
emissions more accurately. 119 
 Incorporating representation of chemical interactions directly into LSM codes has been 120 
challenging due to the complexity of introducing processes specific to individual chemicals into 121 
already-complex model structures. Specialized reactive transport simulators do exist that can 122 
simulate complex biogeochemical reaction networks (Frei et al., 2012; G. E. Hammond et al., 123 
2014; Perzan et al., 2021; Steefel et al., 2015; J. Tang et al., 2022), and simulators such as 124 
PFLOTRAN (G. E. Hammond et al., 2014) include flexible configuration systems allowing 125 
alternative reaction network structures to be represented without work-intensive changes to 126 
model code (Glenn E. Hammond, 2022). Previous work to couple reactive transport simulators to 127 
existing LSMs has demonstrated the feasibility of offloading biogeochemical calculations from 128 
fixed representations in LSM code to more flexible reaction network simulators, but these 129 
implementations have not previously moved beyond demonstrating that existing LSM soil C and 130 
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macronutrient representations can be reproduced in the coupled codes (G. Tang et al., 2016; J. 131 
Tang et al., 2022).  132 

Here, we present a method that couples the Energy Exascale Earth System Model 133 
(E3SM) Land Model (ELM; Burrows et al., 2020) to the reaction network simulator 134 
PFLOTRAN (G. E. Hammond et al., 2014) via the application programming interface (API) 135 
Alquimia (Andre et al., 2013) to enable simulations of flexibly defined reaction networks and 136 
robust representation of oxygen and TEA concentrations, mineral precipitation and dissolution, 137 
and chemical interactions with organic matter cycling within an LSM. As a demonstration of the 138 
model framework, we simulate the effect of tidal cycling on subsurface oxygen and salinity 139 
concentrations as well as sulfur cycling in tidal wetland soils, and we compare simulated 140 
production and surface emissions of carbon dioxide and methane across gradients of salinity. 141 

2 Methods 142 

2.1 Biogeochemical reaction network 143 
We implemented a network of reactions including soil organic matter (SOM) decomposition and 144 
aqueous redox chemistry in PFLOTRAN (G. E. Hammond et al., 2014), building on a previous 145 
PFLOTRAN implementation of redox biogeochemistry applied to Arctic soils (B. N. Sulman et 146 
al., 2022). SOM decomposition reactions were implemented in the PFLOTRAN Reaction 147 
Sandbox (Hammond, 2022) using the same decomposition kinetics used in ELM SOM and litter 148 
decomposition calculations (G. Tang et al., 2016). ELM litter and SOM decomposition follows 149 
pseudo-first-order kinetics with nutrient limitation according to a “converging trophic cascade” 150 
(CTC) framework (Burrows et al., 2020; P. E. Thornton et al., 2002) (Fig. 1, upper right). Litter 151 
and coarse woody debris (CWD) pools decompose into SOM pools with fixed decomposition 152 
time scales (modified by temperature and moisture) and fixed C:N ratios. N mineralization or 153 
immobilization is determined by the relative C:N ratio of successive pools and the fraction of the 154 
pool C that is converted to CO2 during a decomposition transition. Organic matter pools 155 
decompose as a solid-state process, transforming from one solid organic matter pool to the next 156 
with associated production of mineralized N and CO2. While ELM can simulate phosphorus (P) 157 
as well as N cycling (Yang et al., 2014), the current PFLOTRAN framework for decomposition 158 
omits P. Inorganic N pools (NO3- and NH4+) are also tracked, accounting for N mineralization 159 
and immobilization as well as plant root N uptake. Root N uptake rates are calculated based on 160 
plant N demand and a Michaelis-Menten function of inorganic N availability. 161 
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 162 
Figure 1: Diagram of the biogeochemical reaction network used in the simulations. Pools are 163 
shown as circles, color coded by type of pool (including coarse woody debris [CWD], soil 164 
organic matter [SOM], and dissolved organic matter [DOM] along with dissolved gases and 165 
ions). Arrows indicate transformations via the reactions shown in white ovals. Note that multiple 166 
methane oxidation pathways involving oxygen, sulfate, and iron are shown as separate 167 
reactions. Nitrogen pools and related reactions are omitted from the diagram for clarity. 168 
 169 
 To incorporate dissolved oxygen consumption and aqueous-phase redox reactions into 170 
the reaction network (Table 1; Fig. 1, lower portion), decomposition of litter and SOM pools was 171 
modified so that the decomposed fraction previously converted directly to CO2 was converted 172 
instead to DOM with a fixed C:N ratio of 20. Multiple aqueous-phase chemical reactions were 173 
added representing alternative pathways of DOM decomposition, with liberated N, Fe, and 174 
sulfate content of organic matter included based on fixed stoichiometry of DOM (C:N:S:Fe = 175 
2000:100:20:1), based on measurements of C, S, and Fe content Spartina alterniflora litter from 176 
Massachusetts sites (Breteler et al., 1981) and a global synthesis showing a median plant litter Fe 177 
concentration of 0.2 g kg-1 (Peng et al., 2023). In addition to aerobic decomposition of DOM, 178 
which consumes oxygen, anaerobic reactions including fermentation, iron reduction, sulfate 179 
reduction, and methanogenesis are included in the reaction network. Methane oxidation by 180 
oxygen, iron, or sulfate is also included. Following previous applications of this framework (B. 181 
N. Sulman et al., 2022), redox reactions are implemented as multi-Monod type reactions that 182 
could include both substrate and inhibition interactions: 183 
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𝑅 = 𝑉௠௔௫(𝑇) ∏ ஼ೄಿ௄ೄಿା஼ೄಿே ∏ ௄಺ಾ௄಺ಾା஼಺ಾெ  (1) 184 

 185 
where R is reaction rate (mol (L H2O)-1 s-1), Vmax is temperature-dependent maximum reaction 186 
rate (mol L-1 s-1), N is the set of reactant species (including substrates and terminal electron 187 
acceptors), M is the set of inhibiting species, 𝐶ௌಿ is the concentration of the Nth substrate, 𝐾ௌಿ is 188 
the half-saturation constant of the Nth substrate, 𝐶ூಾ is the concentration of the Mth inhibiting 189 
species, and 𝐾ூಾ is the inhibition constant of the Mth inhibiting species. Reaction 190 
stoichiometries, rates, half-saturations, and inhibition species are shown in Table 1. Inhibition is 191 
used to prevent anaerobic reactions from occurring in oxic soil layers, and to represent the 192 
dependence of fermentation on pH and buildup of acetate concentrations. The reaction network 193 
does not include direct inhibition of redox reactions by the presence of alternative electron 194 
acceptors (e.g., inhibition of iron reduction by sulfate or inhibition of methanogenesis by Fe+++), 195 
apart from oxygen. Rate constants and half-reaction parameters built on values used for the 196 
earlier implementation of the reaction network (B. N. Sulman et al., 2022) or used literature 197 
values where available, as specified in Table 1. Values for parameters that could not be directly 198 
constrained using literature data were estimated based on rates relative to similar reactions in the 199 
network.  200 

All aqueous reactions have a reaction rate modified by temperature sensitivity via an 201 
Arrhenius relationship: 202 
 203 𝑉௠௔௫(𝑇) = 𝑉଴𝑒ಶೃೌ ( భమవఴ.భఱି భ೅శమళయ.భఱ) (2) 204 
 205 
Where V0 is the maximum reaction rate at reference temperature, Ea is activation energy, R is the 206 
ideal gas constant (8.314 J mol-1), and T is temperature in C. Ea was set to 80 kJ mol-1 207 
(approximately a Q10 of 3.0 at 20ºC) for sulfate reduction and methanogenesis, and 50 kJ mol-1 208 
(approximately a Q10 of 2.0 at 20ºC) for other reactions reflecting the higher temperature 209 
sensitivity of methanogenesis and sulfate reduction relative to aerobic respiration (Inglett et al., 210 
2012). 211 
 PFLOTRAN solves for the mass balance of each component according to the 212 
stoichiometric relationships defined by all reactions, including kinetic (Table 1) and equilibrium 213 
reactions. pH is tracked dynamically from the appropriate proton balance of aqueous-phase 214 
biogeochemical reactions and mineral precipitation/dissolution, incorporating aqueous speciation 215 
as part of the solution, e.g. CO2/HCO3

- and H2S/HS- partitioning. The biogeochemical conceptual 216 
model incorporates key aqueous complexation (e.g., carbonates, sulfides, etc.) and mineral 217 
precipitation-dissolution (pyrite, Fe oxides, etc.) reactions that buffer the system with respect to 218 
pH. Fermentation has a net acidifying effect due to proton release, as do sulfide oxidation and 219 
pyrite dissolution. Fe(III) reduction causes a net increase in pH, because it is coupled to proton-220 
absorbing dissolution of Fe oxide minerals. 221 
 222 
Table 1: Biogeochemical reactions and parameters included in the reaction network.  223 
Reaction name Stoichiometry Rate 

constant 
(mol L 
H2O-1 s-1) 

Monod half 
saturations 
(mol L H2O-

1) 

Inhibition 
half 
saturations 
(mol L 
H2O-1) 

Parameter 
source 

DOM aerobic DOM + 𝑂ଶ → 𝐶𝑂ଶ + 0.05 N𝐻ସା+ 2x10-6 DOM (0.1)  (B. N. 
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decomposition 0.01 SO4
2- + 0.005 Fe3+ O2 (1x10-4) Sulman et 

al., 2022) 
Fermentation DOM + 1/3 H2O  1/3 CH3COO- 

+ 1/3 CO2 + 1/3 H+ + 2/3 H2 + 0.05 
NH4+ + 0.01 SO4

2- + 0.005 Fe3+ 

1.5x10-6 DOM (0.1) O2 (1x10-4) 
CH3COO- 
(0.02) 
H+ (1x10-4) 

Sulman et 
al. 2022 

Acetate aerobic 
respiration 

CH3COO- + 2 O2 + H+  2 CO2 + 
2 H2O 

3x10-6 O2 (1x10-4) 
CH3COO- 
(0.04) 
 

 Sulman et 
al. 2022 

Hydrogen 
oxidation 

2 H2 + O2  2 H2O 2x10-6 H2 (0.1) 
O2 (1x10-4) 

 Assumed 
similar rate 
to other 
oxidation 
reactions 

Sulfate 
reduction 

CH3COO- + SO4
2- + 2 H+  2 CO2 

+ HS- 
1x10-8 CH3COO- 

(0.04) 
SO4

2- (1x10-

4) 
H+ (1x10-6) 

O2 (1x10-4) 
 

(Iversen & 
Jorgensen, 
1985) 

Sulfide 
oxidation 

HS- + 2 O2  SO4
2- + H+ 1x10-7 O2 (1x10-4) 

HS- (1x10-4) 
 

 Assumed 
an order of 
magnitude 
slower than 
H2 and 
acetate 
oxidation 

Fe(III) reduction CH3COO- + 8 Fe3+ + 2 H2O  2 
CO2 + 8 Fe2+ + 7 H+ 

2.25x10-8 CH3COO- 
(0.04) 
Fe3+ (1x10-9) 

O2 (1x10-4) 
 

Sulman et 
al. 2022 

Fe(II) oxidation Fe2+ + 0.25 O2 + H+ → Fe3+ + 0.5 
H2O 

1x10-6 O2 (1x10-4) 
Fe2+ (0.1) 
H+ (1x10-5) 

 Sulman et 
al. 2022 

Acetoclastic 
methanogenesis 

CH3COO- + H+ → CH4 + CO2 1.5x10-8 CH3COO- 
(0.04) 
H+ (1x10-

5.54) 
 

O2 (1x10-5) 
H+ (1x10-

5.54) 
 

Sulman et 
al. 2022 

Hydrogenotroph
ic 
methanogenesis 

4 H2 + CO2  CH4 + 2 H2O 9.6x10-9 H2 (0.1) 
CO2 (0.1) 

O2 (1x10-5) 
 

Sulman et 
al., 2022 

Methane 
oxidation (O2) 

CH4 + 2 O2  CO2 + 2 H2O 4x10-8 O2 (1x10-4) 
CH4 (1x10-3) 

 (King et al., 
1990) 

Methane 
oxidation 
(sulfate) 

CH4 + SO4
2- + H+  CO2 + HS- + 2 

H2O 
3x10-10 SO4

2- (1x10-

4) 
CH4 (1x10-3) 

 (Iversen & 
Jorgensen, 
1985) 

Methane 
oxidation (Fe) 

CH4 + 8 Fe3+ + 2 H2O  CO2 + 8 
Fe2+ + 8 H+ 

3x10-10 Fe3+ (8x10-9) 
CH4 (1x10-

3) 

 Assumed 
similar rate 
to sulfate-
mediated 
oxidation 

Fe(OH)3 Fe(OH)3 + 3 H+ ↔ Fe3+ + 3 H2O 1x10-10    
Goethite FeOOH + 3 H+ ↔ Fe3+ + 2 H2O 1x10-13    
Pyrite FeS2 + H2O ↔ 0.25 H+ + 0.25 

SO4
2- + Fe2+ + 1.75 HS- 

1x10-13    
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Pyrrhotite FeS + H+ ↔ Fe2+ + HS- 1x10-11    
 224 

2.2 Coupling via the Alquimia interface 225 
PFLOTRAN is coupled to ELM via the Alquimia interface (Andre et al., 2013), which is 226 
designed as a standardized application programming interface (API) for incorporating existing 227 
third-party biogeochemistry codes within environmental transport models. Alquimia has 228 
previously been used to connect the Advanced Terrestrial Simulator (ATS) model with 229 
PFLOTRAN for watershed-scale reactive transport simulations (Jan et al., 2021; Molins et al., 230 
2022; Xu et al., 2022). Alquimia organizes key chemical information into mobile and immobile 231 
(sorbed) concentrations of solutes, as well as volumetric fractions of minerals. The API also 232 
includes functions for initialization, equilibration of initial and boundary conditions, and time 233 
stepping the geochemical model. Here, we implemented the Alquimia API within ELM. 234 
Alquimia initialization and initial condition equilibration subroutines were added to the ELM 235 
initialization code, and the Alquimia time stepping subroutine was added to the ELM code as 236 
described below. PFLOTRAN input and database files are read as part of the initialization 237 
process to specify the chemical species, reaction network, and reaction parameters such as rate 238 
constants, inhibition factors and thermodynamic equilibrium constants. 239 
 ELM represents key carbon and nitrogen pools including multiple litter and SOM pools 240 
as well as soil nitrate and ammonium. These pools are all represented in the PFLOTRAN 241 
reaction network used in these simulations, building on previous work to represent ELM 242 
decomposition processes in PFLOTRAN (G. Tang et al., 2016). We modified the Alquimia 243 
interface to treat solid-state SOM pools as immobile chemicals within the Alquimia data 244 
structure, allowing transparent data transfer of SOM pools from ELM to PFLOTRAN and back 245 
via the interface. This structure allows the ELM decomposition processes to be fully replaced by 246 
equivalent or modified calculations on the PFLOTRAN side, updating C and N concentrations 247 
and maintaining C and N mass balance while enabling interactions with reaction networks of 248 
arbitrary complexity as determined by the PFLOTRAN input file, provided that all ELM SOM C 249 
and N pools are included in the PFLOTRAN reaction network. 250 
 Coupling within the ELM-PFLOTRAN framework is modular, with ELM storing the 251 
state variables (e.g., concentrations) while PFLOTRAN calculates chemical transformations. 252 
However, only data that are directly relevant to ELM state (primarily organic matter and nutrient 253 
pools) are translated into ELM data structures that are visible to other model components. This 254 
allows representation of different reaction networks to have minimal effects on other parts of 255 
ELM code, and allows simulation of different reaction network configurations and complexities 256 
without any changes to ELM code specific to a particular reaction network configuration. 257 

2.3 Vertical gas and solute transport 258 
ELM-PFLOTRAN employs operator splitting for reactive transport: ELM simulates the 1D gas 259 
and solute transport within vertical columns and calls PFLOTRAN (through Alquimia) to solve 260 
the 0D biogeochemistry for each layer in the 1D column. Vertical advection-diffusion is 261 
implemented using the finite volume approach of (Patankar, 1980). The current gas diffusion 262 
implementation does not divide soluble gases into dissolved and gas phases, but instead treats 263 
them as solutes with a higher diffusion rate in unsaturated soil layers. Diffusion coefficients are 264 
set separately for gas and non-gas solutes. Gas diffusion coefficient decreases with increasing 265 
water saturation based on (Fan et al., 2014): 266 
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 267 𝐷௚ = 1.3𝑥10ିହ(𝜃௦௔௧ − 𝜃) ቀ1 − ఏఏೞೌ೟ቁଷ
 (3) 268 

 269 
where Dg is gas diffusion coefficient (m2/s), 𝜃 is soil volumetric water content (m3/m3), and 𝜃௦௔௧ 270 
is soil volumetric water content at saturation (i.e., porosity). Diffusion coefficient of aqueous 271 
solutes is based on (Wright, n.d.): 272 
 273 𝐷௔ = 1.25𝑥10ିଵଵ𝑒ଵ଴∗ఏ (4) 274 
 275 
where Da is aqueous diffusion coefficient (m2 s-1). At the beginning of the column calculation, 276 
gas concentrations in the top layer are assumed to be in equilibrium with the upper boundary 277 
layer concentrations if the top layer is unsaturated. Vertical advection of solutes is calculated by 278 
assuming that vertical flow downward from each layer is equal to the subsurface drainage flow 279 
rate of the column as calculated by ELM. Solute concentrations in downward vertical flows into 280 
the top layer are determined by the upper boundary condition. Vertical flow out of the bottom of 281 
the deepest soil layer is assumed to be zero. 282 
 Ebullition is included as a transport pathway for dissolved gases. Pressure in each layer is 283 
calculated using the weight of water in layers above, including atmospheric pressure. Partial 284 
pressure of each dissolved gas is calculated based on a temperature-dependent Henry’s law 285 
relationship with a gas-specific Henry’s Law constant (see Table 2): 286 
 287 𝑃௚ = ஼೒ு೒௘షಹ೅,೒(భ೅ష భమవఴ.భఱ) (5) 288 

 289 
Where Pg is partial pressure of gas g, Cg is concentration of gas g (mol m-3), Hg is the Henry’s 290 
Law constant for gas g (mol m-3 Pa-1), and HT,g is the temperature dependence of solubility for 291 
gas g (K-1). If partial pressure of a dissolved gas exceeded the ambient pressure, the excess 292 
concentration is removed from the layer, reducing the gas concentration in the lower layer to the 293 
saturation value. 90% of the excess is moved upward one layer, thus assuming that bubbles can 294 
be re-dissolved in unsaturated upper layers. The remaining 10% is emitted to the atmosphere, 295 
representing a fraction of bubbles that move more rapidly to the surface. This process is 296 
conducted starting in the bottom layer and moving up the profile. 297 
 298 
Table 2: Henry’s Law constants and temperature dependence coefficients for dissolved gases in 299 
the model. 300 
Dissolved gas Henry’s Law constant (mol m-3 Pa-1) Temperature dependence (K-1) 
CO2 3.3x10-4  2400  
CH4 1.4x10-5 1900 
O2 1.2x10-5 1700 
H2S 1.0x10-3 2100 
H2 7.7x10-6 530 
 301 
 302 
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2.4 Time stepping approach 303 
Vertical transport and chemical reactions are calculated with an operator splitting approach using 304 
Strang splitting (Strang, 1968) to reduce truncation error related to operator splitting (Carrayrou 305 
et al., 2004). A variable time stepping approach is used to account for failure of the chemical 306 
reaction simulator to converge to a valid solution when the simulated time step is too long 307 
compared to the time scale of chemical reactions, or when consumption of gases (e.g., O2) is 308 
high enough that transport calculations at that time step will underestimate gas concentrations. 309 
One half time step of vertical transport is calculated first, and gas concentrations in the surface 310 
soil layer are equilibrated with the upper boundary condition. Next, chemistry is updated via 311 
Alquimia/PFLOTRAN for each soil layer, starting at the top. If any soil layer fails to converge to 312 
a valid solution, then concentrations in all layers are reset and the time step is cut in half. When 313 
the top layer is unsaturated, a reduction of greater than 25% in dissolved oxygen concentration in 314 
the top layer (which is assumed to be near equilibrium with the atmosphere) is also treated as a 315 
nonconvergence condition, because it indicates that the current time step length cannot 316 
accurately capture the rate of oxygen consumption and/or transport in the column. The column 317 
reactive transport calculations, and potential shortening of the time step, are repeated recursively 318 
until chemistry in all layers can be successfully updated. Then, the second half time step of 319 
vertical transport is calculated. The shortened time steps are repeated appropriately to ensure that 320 
the total integration matches the ELM time step (60 minutes in our simulations) because ELM 321 
does not natively support flexible time stepping. 322 

2.5 Tidal forcing 323 
 Lateral flows into and out of the soil column built on previous work focused on boreal 324 
peatland microtopography (Shi et al., 2015) and initial implementation of tides in coastal systems 325 
that used hydrologically coupled soil columns and a sinusoidal tidal pattern (O’Meara et al., 326 
2021). Lateral flows and tidal-driven exchange of water and solutes in this approach use a 327 
hydrological boundary condition determined by the relative height of water in a tidal channel 328 
compared with water table height in the wetland soil column. We extended the previous lateral 329 
flow implementation, which used a single lateral flow time scale, to include rapid horizontal flow 330 
when the water table or tidal water level was above the soil surface to equilibrate the surface 331 
water depth in the wetland to the tide height. 332 
 333 𝑄௦௨௥௙ = (𝑧௧௜ௗ௘ − 𝑧௦௨௥௙) 𝑘௦௨௥௙ (6) 334 
 335 
Where Qsurf is horizontal surface water flow into the wetland column (mm s-1), ztide is height of 336 
water in the tidal channel (mm, relative to wetland soil surface height), zsurf is surface water 337 
height in the wetland (mm, defined as zero when water table is below the surface), and ksurf is a 338 
rate constant representing the time scale of surface water transfer as a function of the difference 339 
in surface water height, set to a rapid flow to so that surface water level is close to equilibrium 340 
with the tidal forcing (7x10-5 s-1). Consistent with the previous lateral flow implementation, a 341 
slower drainage flux allows water to flow into or out of the soil column during low tide 342 
conditions when the water table and tide height are below the surface: 343 
 344 𝑄௦௨௕௦௨௥௙ = (𝑧௧௜ௗ௘ − 𝑧ௐ்) 𝑘௦௨௕௦௨௥௙ (7) 345 
 346 
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Where Qsubsurf is horizontal net subsurface water flow into the wetland column, zWT is water table 347 
depth in the wetland subsurface (defined as < 0), and ksubsurf  is the rate constant for subsurface 348 
net flow, calculated using the mean saturated hydraulic conductivity of the column (Shi et al., 349 
2015). In addition, ELM calculates a subsurface drainage flow rate as a function of water table 350 
depth: 351 
 352 𝑄ௗ௥௔௜௡ = 2𝑥10ିଷ(1 − 𝑓௜௖௘)𝑒଴.ସ ௭ೈ೅  (8) 353 
 354 
Where Qdrain is net subsurface drainage rate and fice is an increasing function of mean column ice 355 
fraction (accounting for decreased drainage through frozen layers). 356 

Horizontal flows in ELM (including Qsurf, Qsubsurf, and Qdrain) are currently calculated 357 
using a “bucket” approach that is not fully integrated with vertical flow. Vertical flows are 358 
calculated first, according to a Richards Equation approach. Next, total horizontal water outflow 359 
during the time step is removed from the column by subtracting water content from each layer 360 
one at a time, moving downward starting from the water table. Conversely, water flowing into 361 
the column is added to the layer above the water table until it reaches saturation, with the process 362 
repeated moving upwards by layer until the appropriate total amount of water has been added to 363 
the column. Because horizontal flows were not fully integrated into the ELM calculations for 364 
vertical flow within the column, the combined hydrology did not yield reasonable results for 365 
solute transport. Therefore, we represented vertical transport of solutes assuming that vertical 366 
flows balanced subsurface drainage: 367 
 368 ൜𝑄௩௘௥௧(𝑧) = 𝑄ௗ௥௔௜௡, 𝑧 < 𝑧௠௔௫𝑄௩௘௥௧(𝑧) = 0, 𝑧 = 𝑧௠௔௫  (9) 369 

 370 
Where Qvert is vertical flow out of the layer, z is layer depth, and zmax is depth of the bottommost 371 
layer. 372 

Lateral inflow as well as infiltration during flooded conditions are assumed to have the 373 
solute concentrations of the tidal boundary condition, which is supplied as salinity concentration 374 
in an external forcing dataset. Sulfate concentration is assumed to equal 14% of the 375 
concentration of chloride (on a per mass basis). pH is calculated using a linear approximation of 376 
pH = 6.0 for fresh water and pH = 8.0 for saltwater with a salinity of 30 ppt. 377 

Because comprehensive concentration data for all compounds in the reaction network 378 
were not available for the tidal boundary condition, salinity and sulfate are exchanged 379 
horizontally via tidal flows while other solutes (including nitrogen) are assumed to stay primarily 380 
in the soil column. Specifically, when calculating vertical and lateral transport 10% of the mass 381 
of solutes without a defined freshwater/saltwater boundary condition (that is, excluding pH, 382 
salinity, and sulfate) was available for transport and leaching while the remaining 90% remained 383 
in the soil layer. This estimated soluble fraction approach was necessary to prevent excessive 384 
leaching of nutrients out of the subsurface. Excessive nitrogen leaking could potentially be 385 
addressed by incorporating sorption of ammonium on soil surfaces into the reaction network. 386 
 387 

2.6 ELM simulations 388 
Simulations used a standard ELM spinup process (Peter E. Thornton & Rosenbloom, 2005) of 50 389 
years of accelerated decomposition spinup followed by 100 years of regular spinup and 150 390 
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years of transient (historical) simulation. Atmospheric forcing, including temperature and 391 
precipitation, used downscaled Global Soil Wetness Project Phase 3 (GSWP3) meteorology for 392 
the Plum Island Ecosystems site, repeated as necessary for spinup. Tidal forcing used sinusoidal 393 
tide constituents available from NOAA Tides and Currents for the Plum Island low marsh site 394 
(Station ID 8441241), with reference height corrected so that tidal height was defined relative to 395 
the marsh surface. 396 
 To test the role of salinity and associated S cycling on biogeochemistry and greenhouse 397 
gas fluxes in the model, we compared three model configurations for simulating the low marsh 398 
ecosystem. All models included the same tidal hydrology patterns. In the Fresh configuration, 399 
salinity in tide water was set to zero. In the Saline configuration, salinity in the tide water use 400 
measured concentrations from the tidal forcing dataset, which ranged from 24 to 35 ppt. In the 401 
Saline + reduced GPP configuration, the same saline tide water concentrations were used, and 402 
gross primary production (GPP) was additionally reduced as a function of tidal salinity level to 403 
represent the impact of saline conditions on plant productivity: 404 
 405 𝑓(𝑠) =  𝑒ష(ೞషഋ)మమʎమ     (10) 406 
 407 
Where f(s) is the salinity effect on root water uptake resistance (varying between 0 and 1), s is 408 
tidewater salinity (ppt), 𝜇 is the optimal salinity (-22 ppt), and ʎ is the salinity tolerance (30 ppt), 409 
based on observed salinity responses of Spartina alterniflora (LaFond-Hudson & Sulman, 2023; 410 
Vasquez et al., 2006). This parameterization yielded a 40-50% reduction in mean daily GPP 411 
when salinity was taken into account. 412 
 413 

2.7 Comparison with measurements 414 
Model simulations of geochemical processes were evaluated by comparing simulated profiles of 415 
salinity, sulfide, and DOC concentrations to measurements from the low marsh sites through the 416 
PIE LTER monitoring program (Giblin et al., 2021). Specifically, salinity and sulfide 417 
measurements from the Law’s Point site are shown in Figures 2d and 4f (squares), and DOC and 418 
sulfide measurements from the Shad Creek site at 4 m from the creek edge are shown in Figures 419 
4f (circles) and 4i, measured monthly in May-October 2017, are shown in Figures 2 and 4 in 420 
comparison to model simulations. In addition, simulated surface fluxes are compared with eddy 421 
covariance flux measurements of carbon dioxide and methane from the PIE LTER low marsh 422 
flux tower site (Giblin & Forbrich, 2022) (Ameriflux site US-PLM). Hydrological patterns were 423 
compared with measured water levels at the site (Giblin, 2021). The site is a low marsh 424 
dominated by Spartina alterniflora within the Shad Creek catchment in Rowley, MA. Simulated 425 
soil organic matter concentration profiles are compared with measured profiles from PIE LTER 426 
marsh sites (Spivak, 2020). Uncertainty ranges in measured SOM profiles were calculated using 427 
the standard error of the mean over three replicate profiles. 428 
 429 
  430 
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simulation. The right column shows mean profiles (solid lines) for the saline (orange) and fresh 467 
(blue) simulation, respectively. Shaded regions show the 10th to 90th percentile range of values. 468 
Black symbols in (f) and (i) show measured values. Squares in (f) show sulfide measurements 469 
from the Shad Creek site (4 m from the creek bank) and circles show measurements from the 470 
Law’s Point (LP) site. 471 
 472 
The reaction network in the model connected carbon, sulfur, and oxygen cycling in the 473 
subsurface (Fig. 1) and responded to seasonal and tidal cycles. Sulfate concentration in water 474 
entering the soil profile through infiltration or lateral flows was assumed to be proportional to 475 
salinity, leading to sulfate profiles that qualitatively resembled salinity profiles, both peaking at 476 
about 30 cm depth (Fig. 4a,c; 2c,d). Sulfate reduction produced sulfide in anoxic layers, driving a 477 
sulfide concentration profile that peaked at a deeper 80-100 cm depth (Fig. 4d,f). Simulated 478 
sulfide concentrations were within the lower range of observed values, with observed profiles 479 
ranging from 0.1 to 4 mM and simulated profiles in the saline configuration ranging up to 0.3 480 
mM. Sulfate concentrations were much lower in the freshwater configuration than in the saline 481 
configuration, driving differences in subsurface biogeochemistry (Fig. 4b,e). Sulfate reduction 482 
consumed DOC, lowering DOC concentrations in layers below 10 cm depth in saline relative to 483 
fresh simulations (Fig. 4i). DOC concentrations increased in spring and peaked at a depth of 484 
about 30 cm. Simulated DOC concentrations in the saline simulation were within the range of 485 
measured concentrations (0.1 – 1 mM), although the peeper measurement technique may 486 
underestimate DOC concentrations (A. Giblin, personal communication). DOC was rapidly 487 
depleted in summer as sulfate reduction and methanogenesis rates increased. DIC concentrations 488 
(including dissolved CO2 and CH4; Fig 4j-l) increased at the same time of year as DIC was 489 
produced by both sulfate reduction and methanogenesis. Subsurface methane concentrations 490 
(Fig. 4m-o) also increased as DOC was depleted. pH was lower in the freshwater simulations 491 
than in the saline simulation, and declined as DIC concentrations increased (Fig. 4p-r). 492 

Methane concentrations were low near the surface and increased in deeper layers, 493 
reflecting the predominance of methane production in more reducing subsurface layers and the 494 
consumption of methane in more oxidizing layers. Along with oxygen and Fe(III), sulfate also 495 
served as a substrate for methane oxidation, which lowered subsurface methane concentrations in 496 
the saline simulation compared to the fresh simulation. Peak methane efflux was 20 times higher 497 
in the fresh simulation than in the saline simulation (Fig. 5a), with a seasonal cycle increasing 498 
rapidly in spring and continuing through the fall. The very low methane fluxes from the saline 499 
simulation were consistent with the magnitude of fluxes measured from the low marsh flux tower 500 
(Fig. 5b). Surface methane flux lagged methane production, as methane produced in deep layers 501 
was initially oxidized in upper layers until more shallow layers of the profile reached saturation 502 
later in the warm season. Saline simulations in which vegetation productivity was also reduced 503 
had 40-50% lower surface methane emissions and were closer in magnitude to observed fluxes 504 
than saline simulations without reduced vegetation productivity. 505 

Soil CO2 fluxes (excluding autotrophic root respiration) were slightly higher for the 506 
saline simulation than for the fresh simulation (Fig. 5c). CO2 fluxes from the reduced GPP 507 
simulation were 25-50% lower than for the saline simulation without reductions in GPP, 508 
indicating the impact of reduced C inputs to the system. Simulated loss of DIC through lateral 509 
tidal flows were about one fourth the magnitude of surface CO2 efflux, and represented a greater 510 
total carbon flux than methane emissions (Fig. 5d).  511 
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found that methane flux increased strongly along a saline to freshwater gradient in coastal 558 
wetlands, although our model simulated about half the magnitude of methane flux in freshwater 559 
end of the gradient compared to that study. The ability to simulate suppression of methane 560 
production under salinization is key to accurately predicting coastal wetland greenhouse gas 561 
balance (Kirwan et al., 2023). 562 
 Simulated SOC concentrations were slightly higher in the saline simulation than in the 563 
fresh simulation, despite the role of sulfate as a terminal electron acceptor. The difference is 564 
likely due to a slightly (2%) higher simulated GPP in the saline simulation compared to the fresh 565 
simulation, possibly driven by biogeochemical interactions with nutrient availability. When the 566 
impact of salinity on GPP was taken into account by reducing GPP, SOC concentrations were 567 
much lower. This result suggests that sulfate reduction alone may not be sufficient to explain 568 
differences in soil carbon patterns between saline and freshwater wetlands, and that plant-soil 569 
feedbacks may be necessary to explain contrasts. Plant feedbacks have been hypothesized to play 570 
a major role in peat collapse associated with salinization (Chambers et al., 2019). However, 571 
evidence that seawater additions can enhance SOC mineralization (Chambers et al., 2011) 572 

4.2 Value of simulating detailed biogeochemical interactions in LSMs 573 
While many existing LSMs, including the E3SM Land Model, do include methane production 574 
and emission calculations (Riley et al., 2011; Wania et al., 2013), our simulations highlight the 575 
potential importance of more complex interactions in determining decomposition and greenhouse 576 
gas production. Previous studies have identified substrate limitation as a driver of seasonal 577 
patterns in methane production (Chang et al., 2020). pH dynamics can also influence methane 578 
production, both by direct impacts on microbial physiology (Wagner et al., 2017) and by 579 
changing the solubility of alternative terminal electron acceptors such as iron (Marquart et al., 580 
2019; B. N. Sulman et al., 2022). Here, we demonstrate the capability of simulating substrate 581 
dynamics, pH changes, oxygen depletion, and their influences on methane emissions within a 582 
full-featured land surface model. While we focus on methane production in this analysis, other 583 
important processes that this model framework can enable include the phytotoxic effect of 584 
sulfide in soils (Koch et al., 1990; Lamers et al., 2013), impacts of drought-driven increases in 585 
soil salinity concentration on vegetation and microbial communities, and interactions of pH 586 
dynamics with subsurface biogeochemistry. pH is widely considered a critical environmental 587 
variable, affecting carbon storage, microbiology, plant growth, and nutrient availability in 588 
environmental systems (Fierer & Jackson, 2006; Neina, 2019). Yet, dynamic pH is not included 589 
in current LSM frameworks. Thus, the ability to simulate dynamic pH in an LSM represents a 590 
significant step forward. 591 

The incorporation of subsurface DIC concentrations and DIC loss in runoff is an 592 
important step forward toward representing the carbon balance of coastal wetland ecosystems, 593 
where lateral export of DIC and total alkalinity can be an important component of the net carbon 594 
balance, with total inorganic alkalinity export representing a long-term carbon sink in the ocean 595 
(Reithmaier et al., 2021; Yau et al., 2022). However, the current biogeochemical 596 
parameterization has not been evaluated in detail for the accuracy of DIC speciation (i.e., what 597 
fraction of DIC is in the form of bicarbonate versus carbonate and aqueous CO2) and will need 598 
attention to other elemental cycles such as calcium to produce accurate estimates of total 599 
inorganic alkalinity production. In any case, the coupling of ELM to a detailed reaction network 600 
simulator provides the technical capability for incorporating total alkalinity production and 601 
balance into a land surface model. 602 
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While this paper focused on simulating redox dynamics, the reactive transport framework 603 
used in the model implementation builds the groundwork for a wide range of applications. 604 
PFLOTRAN includes a broad set of geochemical reaction capabilities, including microbially-605 
mediated as well as abiotic aqueous reactions, dissolution and precipitation of different types of 606 
minerals, and sorption of solutes onto mineral surfaces (Steefel et al., 2015). The direct coupling 607 
of PFLOTRAN chemistry into ELM means that any geochemical reactions implemented in 608 
PFLOTRAN can be directly incorporated into land model simulations with minimal edits to land 609 
model code. Thus, this framework could be easily adapted to facilitate various applications 610 
including testing different decomposition reaction networks, simulating dynamics of inorganic 611 
carbon storage and release from carbonate minerals, and cycling of micronutrients within the 612 
soil. PFLOTRAN’s Reaction Sandbox, which allows for customized geochemical formulations 613 
to be implemented in PFLOTRAN code (Hammond, 2022), opens broad possibilities for testing 614 
geochemistry and biogeochemical interactions within a coupled ELM-PFLOTRAN system. 615 
Furthermore, the implementation of the ELM coupling using the Alquimia API opens the 616 
possibility of coupling ELM other reactive transport codes that are compatible with the API and 617 
may have different reaction simulation capabilities. 618 

4.3 Areas for improvement of model implementation 619 
The current model lacks a full set of boundary conditions for solutes in tidal flows, which 620 

are currently limited to salinity, sulfate, and pH. A major limitation of this approach is lack of 621 
nutrient inputs from surface water, which could lead to underestimated vegetation productivity. 622 
The lack of full solute boundary conditions including major cation and anion concentrations also 623 
makes it difficult to accurately quantify pH, DIC, and DOC dynamics of the simulated wetland. 624 
Future applications of this model framework would benefit from developing a full set of solute 625 
boundary conditions in river and tidal waters. 626 

The one-dimensional representation of subsurface hydrology in ELM posed challenges 627 
for directly integrating reactive transport into ELM. The ELM hydrology model was designed 628 
primarily for simulating grid cell water balance and water limitation of vegetation. Lateral flows, 629 
including subsurface drainage and tide-driven lateral flows, are not fully integrated into the 630 
hydrological solver. Rather, the model calculates vertical redistribution using a Richards 631 
equation approach and afterward adds or removes water associated with lateral flows using a 632 
filling/emptying bucket approach. This causes calculated lateral and vertical flows to be 633 
inconsistent with the full set of water flows, leading to unrealistic salinities due to flow 634 
convergence and high flow velocities within the column when using ELM-simulated water flow 635 
rates directly for reactive transport calculations. In the current study, we ultimately replaced the 636 
internally calculated vertical flow rates with approximate flows that were consistent with 637 
subsurface drainage. The lack of full solute boundary conditions could also have contributed to 638 
unrealistic results when using internally calculated flow rates. Further work in this area could 639 
benefit from fully integrating lateral flows into the ELM hydrological model and simulating 640 
lateral flows using hydraulic head boundary conditions rather than height differentials. As an 641 
intermediate step, 3-dimensional simulations of hydrologic flows in coastal wetland sediments 642 
could be used to inform the parameterization of column-scale hydrological exchanges in ELM. 643 
 The current lateral flow implementation imposes hydrological flows as boundary 644 
conditions on the ELM column and does not fully integrate hydrological exchanges or solute 645 
flows with other components of the E3SM, such as the river model (MOSART) and ocean model 646 
(MPAS-Ocean) (Golaz et al., 2019). Fully integrating coastal wetland processes into the Earth 647 
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system model will require coupling hydrological and solute exchanges across model components 648 
so that water, carbon, and other metrics can be conserved in large-scale simulations. The 649 
boundary condition approach used here builds the groundwork for incorporating these exchanges 650 
into the Earth system model coupler framework. 651 
 The implementation of gas transport in the soil column could also be improved. The 652 
current implementation includes moisture-dependent gas diffusion as well as a simple 653 
implementation of ebullition but does not include plant-mediated gas transport. Plant-mediated 654 
transport can be an important pathway for both methane transport out of the soil and oxygen 655 
transport into the soil, especially for aerenchymous plants (Colmer, 2003; Jeffrey et al., 2019; 656 
Noyce et al., 2023). Planned work on this model framework will include plant-mediated gas 657 
transport, with dependence on plant traits such as aerenchymous tissues and rooting depth 658 
distributions at the plant functional type level (LaFond-Hudson & Sulman, 2023). The 659 
implementation of ebullition also uses a simple approach that calculates partial pressure 660 
separately for each dissolved gas. This approach may underestimate ebullition flux when 661 
multiple dissolved gases are produced in the subsurface (e.g., methane, CO2, and H2S). An 662 
improved approach would incorporate gas mixing in bubbles, and we plan to move toward that 663 
approach in ongoing work. The current gas diffusion implementation does not explicitly divide 664 
soluble gases into dissolved and gas phases, but instead differentiates dissolved gases from non-665 
gas solutes using diffusion coefficients. A two phase (gas and aqueous) transfer scheme that 666 
tracked the dissolved fraction of gases in each layer could lead to improved gas transport 667 
simulations. 668 
 Model parameterization is also a challenge, particularly for increasingly complex 669 
biogeochemical reaction networks. Our model parameterization does incorporate field and 670 
laboratory measurements of reaction rates and solute concentrations where possible (Table 1), 671 
but some parameters are inevitably difficult to constrain. In this initial study, we focused on 672 
demonstrating the feasibility of simulating reaction network interactions within a land surface 673 
model, and therefore did not evaluate modeled rates in detail. Applications of this framework to 674 
predictive modeling of biogeochemical cycling will benefit from additional detailed evaluation 675 
of reaction rates and concentrations in the context of porewater concentration and flux 676 
measurements. Additional parameterization of soil column hydraulic properties could also help 677 
to improve the accuracy of simulated hydrology, such as the overestimate of water table declines 678 
during low tide (Fig. 3a). 679 

5 Conclusions 680 

We coupled a biogeochemical reaction network solver (PFLOTRAN) to a land surface model 681 
(ELM) and implemented vertical solute and gas transport as well as tidal-driven inputs of salinity 682 
and sulfate. We applied the model to simulate biogeochemical cycling in Massachusetts tidal 683 
marshes under either saline or freshwater tidal boundary conditions. The coupled model 684 
framework allowed simulations of multiple redox reactions, pH dynamics, oxygen consumption, 685 
and methane production and oxidation to be fully integrated within a land surface model. Sulfate 686 
supplied in the saline simulation drove high levels of sulfate reduction, which reduced DOC, 687 
increased DIC, and greatly lowered subsurface methane concentrations and surface methane 688 
emissions. This new model framework builds the foundation for simulating multicomponent 689 
biogeochemical interactions in land surface models and demonstrates how directly simulating 690 
redox reactions in inundated soils can improve model simulations of organic matter 691 
decomposition and greenhouse gas production while building the groundwork for explicit 692 
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geochemical representation in larger-scale land surface model and Earth system model 693 
simulations. 694 
 695 
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