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Abstract  25 

Terrestrial biosphere models (TBMs) play a key role in the detection and attribution of carbon 26 

cycle processes at local to global scales and in projections of the coupled carbon-climate system. 27 

TBM evaluation commonly involves direct comparison to eddy-covariance flux measurements. 28 

This study uses atmospheric CO2 mole fraction ([CO2]) measured in situ from aircraft and tower, 29 

in addition to flux-measurements from summer 2016 to evaluate the CASA TBM. WRF-Chem is 30 

used to simulate [CO2] using biogenic CO2 fluxes from a CASA parameter-based ensemble and 31 

CarbonTracker version 2017 (CT2017) in addition to transport and CO2 boundary condition 32 

ensembles. The resulting “super ensemble” of modeled [CO2] demonstrates that the biosphere 33 

introduces the majority of uncertainty to the simulations. Both aircraft and tower [CO2] data 34 

show that the CASA ensemble net ecosystem exchange (NEE) of CO2 is biased high (NEE too 35 

positive) and identify the maximum light use efficiency Emax a key parameter that drives the 36 

spread of the CASA ensemble. These findings are verified with flux-measurements. The direct 37 

comparison of the CASA flux ensemble with flux-measurements indicates that modeled [CO2] 38 

biases are mainly due to missing sink processes in CASA. Separating the daytime and nighttime 39 

flux, we discover that the underestimated net uptake results from missing sink processes that 40 

result in overestimation of respiration. NEE biases are smaller in the CT2017 posterior biogenic 41 

fluxes, which assimilates observed [CO2]. Flux tower analyses, however, reveal an unrealistic 42 

overestimation of nighttime respiration in CT2017.  43 

 44 

  45 
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1 Introduction 46 

The Paris agreement calls for "a balance between anthropogenic emissions by sources 47 

and removals by sinks of greenhouse gases in the second half of this century" to limit the 48 

increase in global average temperature below 2C above preindustrial levels (UNFCCC, 2015). 49 

Monitoring and tracking this commitment require accurate quantification of terrestrial carbon 50 

exchange with the atmosphere. The rapid increase of carbon dioxide (CO2) has been partially 51 

offset by natural biogeochemical processes, including uptake by terrestrial and oceanic 52 

ecosystems (Friedlingstein et al., 2019). Understanding terrestrial carbon exchange is crucial for 53 

assessing biosphere-atmosphere interactions, for diagnosing terrestrial ecosystem contributions 54 

to the global coupled carbon-climate system and, ultimately, for reducing the uncertainty in 55 

climate projections (Friedlingstein et al., 2014).  56 

Though the net global flux of CO2 to the atmosphere is well constrained (Tans and 57 

Conway, 2005; Tans et al., 1990), regional-to-continental biogenic CO2 fluxes are not well 58 

characterized in current carbon estimation approaches (Crowell et al., 2019).Two approaches are 59 

commonly taken to quantify biogenic CO2 fluxes at the continental scale. "Top-down" 60 

approaches use an optimization process by which atmospheric CO2 mole fraction ([CO2]) 61 

measurements combined with an atmospheric transport model are used to constrain the a priori 62 

estimation of the spatial and temporal distribution of biologic CO2 fluxes (Enting et al., 1995). 63 

Here we use “[]” to represent atmospheric mole fractions and distinguish it from flux space, and 64 

this convention is used hereafter. Determining and reducing the uncertainty associated with 65 

transport and with flux priors have been the focus of the atmospheric inversion community 66 

(Baker et al., 2006; Gurney et al., 2002).   67 

By contrast, “bottom-up” approaches involve direct simulation of biogenic CO2 fluxes 68 

using inventories (Houghton et al., 1996), upscaled flux measurements (e.g., Baldocchi et al., 69 

2001; Jung et al., 2020), or terrestrial biosphere models (TBMs), without any constraint from 70 

atmospheric mole fraction observations. TBMs simulate surface CO2 fluxes from site level to 71 

global scale as they integrate ecological and meteorological drivers (Fung et al., 1987). They 72 

simulate the land carbon component in Earth system models used for climate projections and 73 

commonly used as the a priori estimations for "top-down" approaches. To benefit from both 74 

ecosystem measurements and atmospheric mole fractions, joint assimilation systems have also 75 

been developed (Kaminski et al., 2002). The optimization procedure relies on an adjoint model 76 

of the biogeochemical processes such as the Biosphere Energy‐Transfer Hydrology (BETHY) 77 

model included in the Carbon Cycle Data Assimilation System (CCDAS) at large scales (Knorr, 78 

2000). Such a system was enhanced to assimilate satellite ecosystem products available over the 79 

globe (Kaminski et al., 2012) or eddy-flux and mole fraction measurements over continents 80 

(Koffi et al., 2013). These approaches optimize a number of model parameters in part of the 81 

underlying TBMs, and have been applied using remote [CO2] from towers or satellites (e.g., 82 

Scholze et al., 2019). On sub-continental scales, atmospheric [CO2] require fine-resolution 83 

models to simulate the complex atmospheric dynamics (e.g., Feng et al., 2019a) and dense tower 84 

networks (Andrews et al., 2014) combined with eddy-flux tower networks (e.g. AmeriFlux) 85 

covering a wide array of ecosystems and climatic zones. 86 

TBMs have been shown to vary widely in their projections of terrestrial CO2 sink 87 

strengths, not only in magnitude but even in sign (Baker et al., 2006; Gurney et al., 2002).  88 

Huntzinger et al. (2011) evaluated flux variability from four TBMs over North America and the 89 

potential impact on the inversion results. They found that the diurnal variability in surface fluxes 90 
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within the near field of tower [CO2] observations appear to have a significant impact on the high‐91 

frequency variations in the atmospheric data, and, thus, the inversion needs to adjust the 92 

temporal (and spatial) variability of the prior fluxes. Feng et al. (2019a) compared the modeled 93 

[CO2] errors attributed to biogenic CO2 fluxes, fossil fuel emissions, atmospheric transport, and 94 

large-scale boundary inflow from daily to annual timescales and discovered that the biogenic 95 

CO2 fluxes dominate the model errors across timescales, implying that [CO2] observations hold 96 

promise for evaluating and improving TBMs. Improving TBMs to generate accurate and 97 

spatially explicit surface biogenic CO2 fluxes at high resolution in time and space remains an 98 

urgent need for diagnosis, attribution, and projection of terrestrial carbon dynamics, as well as 99 

for “top-down” analysis systems that rely on TBMs for a priori surface flux estimation.  100 

Several multiple model intercomparison projects have been conducted to characterize or 101 

synthesize current understanding of land–atmosphere carbon exchange and inform the 102 

uncertainty or confidence surrounding projections of future exchange and feedbacks with the 103 

climate system, such the Multi-Scale Synthesis and Terrestrial Model Intercomparison Project 104 

(MsTMIP; Huntzinger et al., 2013) Trends in Net Land-Atmosphere Carbon 105 

Exchange(TRENDY1; Sitch et al., 2008), the regionally focused Large Scale Biosphere 106 

Atmosphere-Data Model Intercomparison Project (LBAMIP2; Gonçalves et al., 2013), and the 107 

International Land-Atmosphere Benchmarking Project (ILAMB; Luo et al., 2012). These model 108 

intercomparison projects were built upon the protocols that specify standard model inputs, 109 

simulations and simulation setup procedures.  These model intercomparison exercises have been 110 

used to explore the uncertainty in model simulations that arises from internal variability, 111 

boundary conditions, and parameter values for structural uncertainty from different model 112 

fluctuations (Schwalm et al., 2015). However, due to the complexity of TBMs, it is challenging 113 

to trace errors in individual models to misrepresentation of specific ecological processes or 114 

inappropriate model parameters through these model intercomparison projects. This merits deep 115 

exploration of just one modeling framework but with a perturbed parameter ensemble. 116 

Recently, Zhou et al. (2020) introduced an ensemble of biogenic CO2 fluxes simulated by 117 

the Carnegie‐Ames‐Stanford‐Approach (CASA) biosphere model for North America at the 118 

resolutions of 5 km for North America and ~500 m for the U.S. CONUS region from 2003 to 119 

2019 by perturbing three model parameters – maximum light use efficiency Emax, optimal 120 

temperature of photosynthesis Topt, and temperature response of respiration Q10 – on the basis of 121 

the CASA biome types. Those parameters were chosen as a result of a sensitivity test of 122 

simulated biogenic CO2 fluxes to a series of CASA parameters. Furthermore, the range of Emax 123 

values was determined at the ecosystem level by comparison with eddy covariance 124 

measurements of net CO2 flux. Zhou et al. (2020a) illustrated that the pruned L2 ensemble has 125 

good agreement with the flux data and outperforms many other TBMs at diurnal and annual 126 

scales, even while having too wide a spread in comparison with flux measurements.  127 

Atmospheric [CO2] measurements provide another opportunity for evaluating modeled 128 

biogenic CO2 fluxes, as evidenced by the fact that continental [CO2] gradients are mainly 129 

attributed to the biosphere (e.g., Feng, et al., 2019a; Feng, et al., 2019b). The major differences 130 

between mole fraction and flux measurements fall in the size of the surface influence area, or 131 

footprint, that influences a given measurement, and also the upwind memory of the samples. The 132 

size of a flux tower footprint is only about 1-km (e.g., McCaughey et al., 2006), and the 133 

measurements carry nearly instantaneous information of surface fluxes. Owing to these two 134 

factors, the flux measurements do not directly represent regional to continental fluxes, as the 135 

local fluxes captured may not be representative of broader scale patterns.  One objective of this 136 
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study is to explore the coherence between CO2 flux and mole fractions with respect to modeled 137 

biogenic CO2 flux evaluations. The CO2 flux measurements selected for this study are from the 138 

AmeriFlux network (https://ameriflux.lbl.gov/), which has more than 150 active flux sites 139 

sampling a wide range of sites from the Amazonian rainforests to the North Slope of Alaska.   140 

An in situ [CO2] tower typically has a footprint of hundreds of kilometers (e.g., Gloor et 141 

al., 2001; Sweeney et al., 2015) and carries the integrated atmospheric [CO2]  signals from day 142 

and night. Aircraft measurements have even larger footprints with broad spatial sampling. TBM-143 

modeled CO2 fluxes can be evaluated against [CO2] measurements by means of Lagrangian and 144 

forward Eulerian transport modeling. Both are subject to transport model errors (e.g., Pillai et al., 145 

2012). In Lagrangian modeling, the modeled biogenic CO2 mole fractions ([CO2bio] hereafter) 146 

can be directly calculated by convolving biogenic CO2 fluxes with the influencing areas of the 147 

[CO2] measurements that are simulated by a Eulerian transport model (Uliasz et al., 1994). The 148 

difficulty of this approach is to define the observed [CO2bio] due to mixed signals in the [CO2] 149 

measurements (e.g., Ogle et al., 2015). In Eulerian transport modeling, the CO2 transport is 150 

treated as a passive tracer (Sarrat et al., 2007). The modeled total [CO2] is the sum of biogenic, 151 

fossil fuel, oceanic, fire CO2 components in conjunction with boundary conditions as described 152 

in Feng, et al. (2019a; 2019b). The modeled error therefore can be from any or multiple 153 

components in addition to model transport (Feng, et al. (2019a; 2019b). Note that these model 154 

error sources are also of concern in the "top-down" estimation. Another objective of this work is 155 

to explore to what degree the atmospheric [CO2] data can be used to evaluate TBMs. Here we 156 

use CASA  (Potter et al., 1993) for demonstration and adopt the Eulerian transport model WRF-157 

Chem (Grell et al., 2005; Skamarock et al., 2008) to serve this objective.  158 

In this study, we employ both ground-based and aircraft in situ [CO2] data for the model 159 

evaluations. The NASA-funded Atmospheric Carbon and Transport (ACT)-America project was 160 

designed to improve the CO2 and methane (CH4) flux estimates by reducing transport and flux 161 

uncertainties. Two aircraft measured atmospheric CO2, CH4, and other gas species over Mid-162 

Atlantic, Mid-West, and Southern Gulf regions in fair and frontal weather regimes. Typical 163 

flights encompassed 4-6 hours of midday conditions, encompassing 400-800 km in the 164 

horizontal and altitudes ranging from 300 m to 9000 m above ground level. Two aircraft flew 165 

together, collecting two to four vertical levels (level legs), often stacked one above the other, and 166 

typically about 8-12 vertical profiles per flight day. Pal et al. (2020) found that large horizontal 167 

and vertical gradients of [CO2] exist across frontal boundaries based on the data collected from 168 

the summer 2016 campaign. The cross-frontal [CO2] contrasts are greatest in the atmospheric 169 

boundary layer (ABL), ranging from 5 to 30 ppm, while the contrasts are about 3-5 ppm in the 170 

free troposphere (FT). In the vertical dimension, higher [CO2] appears in the FT than in the ABL 171 

in the cold sector while the opposite pattern appears in the warm sector. Averaged ABL‐to‐FT 172 

[CO2] differences can be about 12 and -6 ppm in the warm and cold sectors, respectively. These 173 

unique flights were designed to be highly sensitive to the seasonal magnitudes of regional-scale 174 

carbon fluxes and to provide broad spatial coverage that cannot be obtained with the current 175 

long-term observing network. The third objective is to explore to what degree the aircraft [CO2] 176 

measurements and tower measurements yield consistent evaluations of the modeled fluxes.  177 

Merging these two [CO2] observing systems lends more confidence to our conclusions regarding 178 

the modeled fluxes and provides a test of the two observing systems.   179 

The three objectives of this study are addressed through comparing the WRF-Chem 180 

[CO2] simulated using the CASA L2 flux ensemble members to the airborne and tower-based 181 
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[CO2] data. The WRF-Chem model setup and methods are described in Section 2. All the data 182 

used in this work are described in Section 3. The modeled and observed [CO2], CASA parameter 183 

constraints, and causes of the model errors are illustrated in Section 4. Sections 5 and 6 are 184 

discussion and conclusions, respectively. 185 

2 Materials and Methods 186 

2.1 Transport model setup 187 

All transport model simulations use WRF-Chem version 3.6.1 (Grell et al., 2005; 188 

Skamarock et al., 2008). The modification made to transport greenhouse gases as passive tracers 189 

(Lauvaux et al., 2012) allows us to carry ensemble tracers for biogenic CO2 fluxes (Section 2.2) 190 

and [CO2] boundary conditions (Section 2.4) in one transport run (Section 2.3). In each transport 191 

run, WRF-Chem carries 39 CO2 tracers for the ensembles of boundary conditions and biogenic 192 

fluxes, ocean, fossil fuel, and biomass burning fluxes. The modeled total [CO2] is the sum of a 193 

boundary condition, a biogenic flux, and the oceanic flux, fossil fuel emission, and biomass 194 

burning CO2 tracers as described in Feng et al. (2019b, 2019a). The [CO2]  boundary condition 195 

tracers are propagated into WRF-Chem hourly with the consideration of the conservation of 196 

mass (Butler et al., 2020). Five global CO2 inversion/reanalysis systems are used for [CO2] 197 

boundary conditions (Section 2.4) and 29 biogenic CO2 fluxes are used for the biogenic CO2 198 

tracers (Section 2.2). The CO2 oceanic flux, fossil fuel emission, and biomass burning are taken 199 

from CarbonTracker version 2017 (CT2017; Peters et al., 2007). 200 

The same model configurations in Feng, et al. (2019a, 2019b) are used except for the 201 

meteorological initial and boundary conditions. In this study, we used the ERA5 reanalysis 202 

(Hersbach et al., 2020)and benchmark the model transport by nudging the WRF-Chem 203 

simulation to ERA5. The wind evaluations show that nudging clearly improves model transport 204 

(see Text S1 in Supporting Information). A suite of transport runs is created for uncertainty 205 

quantification (Section 2.3). Choices of the model physics schemes are summarized in  206 

Table 1. All WRF-Chem simulations have a horizontal resolution of 27 km ×27 km for 207 

the period from July 18 to August 28, 2016 covering the ACT-America summer 2016 aircraft 208 

campaign hourly.  209 

2.2 Biogenic CO2 flux ensemble: CASA and CT2017 210 

We include 29 biogenic CO2 fluxes in each transport run as separate tracers: the 27-211 

member CASA L2 net ecosystem exchange (NEE) ensemble, the mean of the CASA NEE 212 

ensemble, and the CT2017 posterior biogenic CO2 flux. 213 

The CASA ensemble members (Zhou, et al., 2020b) were generated by perturbing the 214 

maximum light use efficiency (Emax), optimal temperature of photosynthesis (Topt), and 215 

temperature response of respiration (Q10) with the consideration of the biome types in CASA, as 216 

described in Zhou et al.( 2020a) . These three perturbed parameters were determined to dominate 217 

the sensitivity of modeled CO2 fluxes to the model parameters according to an Extended Fourier 218 

Amplitude Sensitivity Testing analysis. The initial range for each parameter was broadly 219 

sampled for the L1 ensemble. Parameter ranges were subsequently narrowed to those consistent 220 

with AmeriFlux data, resulting in a L2 ensemble. CASA simulates gross primary productivity 221 

(GPP), total ecosystem respiration (Re), and NEE at monthly resolution. The monthly GPP and 222 

Re fluxes were then downscaled to 3-hourly resolution using the Olsen and Randerson (2004) 223 

method. Two sets of flux products are included in the official release of the CASA flux 224 
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ensemble, one at 500-m resolution covering the U.S. CONUS region and the other at 5-km 225 

covering a broader swath of North America. We used the L2 5-km CASA ensemble for this 226 

study. Details about the CASA ensemble products can be found in Zhou, et al. (2020a, 2020b)  227 

 Unlike CASA that directly simulates biogenic CO2 fluxes ("bottom-up"), CT2017, a 228 

“top-down” flux estimate, optimizes the a priori fluxes (CASA; Potter et al., 1993) by 229 

assimilating observed [CO2]  (Peters et al., 2007). CT2017 global 3-hourly posterior biogenic 230 

fluxes at 1° ×1° are used in this study. Note that, unlike the CASA ensemble used spun up to 231 

equilibrium, the CT2017 biogenic flux prior from CASA include an assumed global terrestrial 232 

biospheric sink of 2 PgC/yr.  233 

Both CASA and CT2017 biogenic CO2 fluxes used have a 3-hourly temporal resolution. 234 

To downscale to hourly fluxes for the transport model simulations, values in each 3-hourly flux 235 

file are repeated hourly over the period they represent 236 

2.3 Transport ensemble 237 

The transport ensemble runs are generated using the combination of multiple physical 238 

parameterizations and the stochastic kinetic energy backscattering scheme (SKEBS; Berner et 239 

al., 2009; Shutts, 2005). Through this combination, model meteorological initial conditions and 240 

physics were perturbed at the same time, introducing transport uncertainty due to the model 241 

dynamics and physics. Previous studies demonstrated that model errors can best captured by a 242 

combination of by the combination of multi-physics and SKEBS (Berner et al., 2011, 2015) as 243 

opposed to a single perturbation scheme. Feng, et al. (2019b, 2019a) for the first time applied 244 

this combination to simulations of [CO2] and demonstrated that a relatively small transport 245 

ensemble can represent model [CO2] transport uncertainty. We use the root-mean-square 246 

deviation (RMSD) of the simulated [CO2] transport ensemble from the ensemble mean to 247 

represent transport uncertainty. Similar calculations are used to estimate biogenic flux and 248 

boundary condition uncertainty.  249 

Here we varied the land surface models (LSMs) and planetary boundary layer (PBL) 250 

schemes in WRF-Chem based on the sensitivity study conducted by Díaz-Isaac et al. (2018). The 251 

ensemble members are (1) Mellor‐Yamada Nakanishi and Niino Level 2.5 (MYNN 2.5) PBL 252 

scheme with Noah LSM, (2) Mellor‐Yamada‐Janjic PBL scheme with RUC LSM, (3) Yonsei 253 

University PBL scheme with five‐layer thermal diffusion LSM. The associated surface layer 254 

parameterizations are MYNN, Eta, and MM5, respectively. A summary of transport ensemble 255 

members can be found in Table 2. Note that these transport ensemble runs are free runs, not 256 

nudged to ERA5.  257 

2.4 Boundary condition ensemble 258 

A suite of optimized [CO2] from five global inversion systems are collected for this study. 259 

They are CT2017 (Peters et al., 2007, with updates documented at 260 

http://carbontracker.noaa.gov), TM5 as described in Basu et al. (2016), GEOS-Chem developed 261 

in the Carbon Monitoring System (CMS; Liu et al., 2014), GEOS-Chem as described in Schuh et 262 

al. (2019), and PCTM as described in Barker et al. (2004). These global modeled [CO2] fields are 263 

propagated into WRF-Chem hourly as separate tracers following Butler et al. (2020).  264 



manuscript submitted to Global Biogeochemical Cycles

 8 

2.5 Footprint analysis 265 

To understand the fluxes influencing the observations used in this study, the Lagrangian 266 

Particle Dispersion Model (LPDM; Uliasz et al., 1994) is used to create surface influence 267 

functions (footprints) for each flight in the Summer 2016 ACT aircraft campaign (see description 268 

in Section 3.1). Particles are released along the time of each aircraft transect within the boundary 269 

layer, and are traced backwards in time over a two-week period using meteorology provided by 270 

the WRF nudged-transport simulation. The influence by the surface is represented by the number 271 

of particles interacting with the surface grid, i.e., below 50m above ground, are summed up, 272 

providing a temporal and spatial function that relates the signal observed by the aircraft to the 273 

surface fluxes responsible for that signal (Seibert & Frank, 2004).  274 

In addition to aircraft [CO2] measurements, we also use a subset of the ground-based 275 

[CO2] tower measurements from the NOAA ObsPack GlobalViewPlus package (Cooperative 276 

Global Atmospheric Data Integration Project, 2019; see Section 3.2). We create footprints for the 277 

towers by releasing particles at 21 UTC backward in time over two-week period using the 278 

nudged transport from July 18 to August 28, 2016 across 23 different tower sites in the US. The 279 

selection of 21 UTC limits the tower observations to well-mixed ABL conditions, minimizing 280 

model transport uncertainty.   281 

2.6 Model evaluation metrics 282 

To demonstrate the importance of the uncertainty in the biosphere, we first compare the 283 

contribution of biosphere, transport, and boundary conditions to the modeled [CO2] uncertainty.   284 

We use the RMSD of a given component to illustrate the ensemble spread and associated 285 

uncertainty.  286 

We focus on the performance of the individual biogenic CO2 flux members through the 287 

biome-based model biases, which is determined by the CASA biome map and the footprint of the 288 

measurements. The uncertainties in modeled [CO2] associated with the individual biogenic flux 289 

members are determined by the spread of the transport and boundary conditions ensembles. 290 

3 Data 291 

3.1 ACT-America aircraft data 292 

Two aircraft, the NASA Langley Beech-craft B200 King Air and NASA Goddard Space 293 

Flight Center's C-130H Hercules aircraft, were used to collect high quality in situ measurements 294 

of greenhouse gases, other gas species, and meteorological fields over Mid-Atlantic (MA), Mid-295 

West (MW), and South Gulf (South) regions of the United States. The flight dates and patterns 296 

can be found Table S1. In this study, we used ACT-America L3 Merged in situ Atmospheric 297 

Trace Gases and Flask Data  (Davis et al., 2018). This product provides integrated measurements 298 

and metadata flag information, including flight pattern, airmass type, and boundary layer 299 

information at five-second intervals. More information about the ACT-America campaign and 300 

measurements can be found at https://actamerica.ornl.gov/. The nearest point interpolation is 301 

applied to extract modeled [CO2] along the flight tracks. 302 

https://actamerica.ornl.gov/
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3.2 NOAA ObsPack GlobalViewPlus [CO2] product 303 

We also use tower-based in situ [CO2] data from the NOAA ObsPack GlobalViewPlus 304 

product (Cooperative Global Atmospheric Data Integration Project, 2019; see locations in 305 

Figure 1). Twenty-three tower locations (Table 3) from this data package were selected for 306 

investigations. The ObsPack product collects greenhouse gas data from providers around the 307 

globe and reformats the data into the ObsPack framework in support of carbon cycle modeling 308 

studies (Masarie et al., 2014). The [CO2] data are first organized into hourly data, then nearest 309 

point interpolation is applied to extract modeled [CO2] at the tower locations.  310 

3.3 AmeriFlux CO2 flux measurements 311 

We also include CO2 flux measurements to evaluate our findings regarding biogenic CO2 312 

flux members. The CO2 flux data are obtained from the eddy covariance measurements from the 313 

AmeriFlux network (https://ameriflux.lbl.gov). Seventy-one flux tower sites from the domain of 314 

interest were used. The locations and information of the sites can be found in Figure 1 and Table 315 

S2. We obtained a single estimate of NEE for each flux tower location from the non-gap-filled 316 

NEE values reported by AmeriFlux, with a preference for eddy-covariance measurements with a 317 

storage correction. Tower-measured NEE was averaged to three-hour intervals to match the time 318 

resolution of CASA and CT2017.  No intervals were excluded if they had any reported data. 319 

4 Results 320 

4.1 Spatiotemporal variability of [CO2] 321 

We select five of the 25 research flights (Figure 2) to illustrate the typical flight patterns 322 

for fair and frontal weather regimes.  As expected, both models and observations show large 323 

[CO2] gradients in the ABL, leading to large variations in [CO2bio].  Pal et al. (2020) reported 324 

that an elevated [CO2] band was repeatedly observed along the cold frontal boundary, a feature 325 

also captured by the simulations. The 8/4/2016 frontal case shows a narrow, elevated [CO2] band 326 

at the frontal boundary (~25 ppm difference in [CO2] across the front). We examined this frontal 327 

case with a 3-km × 3-km cloud-resolving resolution model and showed that this elevated [CO2] 328 

band has a maximum width of ~200 km and a length of over 800 km extending from 329 

northeastern Kansas to northeastern Iowa.  Figure 2 shows that the frontal boundaries are 330 

associated not only with elevated [CO2] but also with highly variable [CO2bio]. More than 5 ppm 331 

RMSD of [CO2bio], caused by variability among the CASA ensemble fluxes, appears in the 332 

ABL along the frontal boundaries. Enhanced by the baroclinic instability, the cold airmass on the 333 

west lifted the warm airmass aloft. ABL [CO2] penetrates into the free troposphere along the 334 

frontal lifting. RMSD in [CO2bio] greater than 3 ppm, an indicator of strong surface influence, 335 

reaches up to 3.5 km above sea level on 7/18 and 1.7 km on 8/4 (Figure 2). On the contrary, both 336 

[CO2] and [CO2bio] have less variability for the fair-weather cases. 337 

We use the ABL [CO2] observations to evaluate biogenic CO2 fluxes since, as Figure 2 338 

illustrates, these data are the most sensitive to variations in the biological CO2 fluxes. We limit 339 

our work to ABL [CO2] for the rest of this analysis.  Figure 3 shows the averaged [CO2] 340 

sampled by aircraft and simulations. Note that the modeled [CO2] are from the transport-nudged 341 

simulation (described in Section 2.1), while the uncertainties are determined by spreads of the 342 

ensemble runs associated with different components described in Sections 2.2, 2.3, and 0.  All 343 

ACT-America aircraft collected afternoon samples aiming at well-mixed ABL conditions. The 344 
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most outstanding feature overall is that the biosphere is the most uncertain component in the 345 

simulation for the fair and frontal weather regimes except for three cases in the South and one in 346 

the Midwest. The footprint analysis (Figure S4) shows that the Southern flights are mainly 347 

influenced by Gulf onshore flow and, thus had a limited flux footprint over land.  The one 348 

Midwestern flight was an OCO-2 underflight in the western Dakotas where biological fluxes are 349 

small.   350 

Observations tend to be encompassed by the ensemble model spread except on four flight 351 

days: 7/22, 7/25, 7/26, and 8/12, on which the model shows large discrepancy with observations. 352 

Our preliminary investigation indicates that the disagreements on 7/25 and 7/26 are mainly 353 

caused by unrealistically strong uptake to the west of the Appalachia area in the CT2017 354 

biogenic fluxes; 8/12 is due to errors in the long-range transport. 355 

In the following sections, we focus on investigating the coherence between aircraft and 356 

tower [CO2] data and evaluating the model biases across the CASA ensemble members. CT2017 357 

serves as the reference for this exercise. As an inversion product that is constrained by 358 

atmospheric data, we expect that CT2017 should agree well with observed [CO2] even though 359 

the ACT-America aircraft data were not assimilated in CT2017. Figure 4 shows the model skill 360 

in the [CO2] simulations driven with different biogenic CO2 fluxes. Note that both aircraft and 361 

tower [CO2] data are kept at native temporal resolutions in the comparisons, reflecting the model 362 

performance in capturing the spatiotemporal variability of [CO2] at the synoptic scale (no diel 363 

cycle due to only afternoon samples used). In general, both aircraft and tower [CO2] comparisons 364 

show that skill of the CASA members is similar to CT2017 in capturing the variability in ABL 365 

[CO2] as indicated by the similar correlations with observations, but better in capturing the 366 

magnitude of this variability.  CT2017 overestimates the magnitude of variability in ABL [CO2].  367 

Tower and aircraft yield similar results. 368 

Aligning the aircraft and tower comparisons together, the CASA-simulated [CO2] tend to 369 

somewhat underestimate the variability of aircraft [CO2] but overestimate that of tower [CO2].  370 

Given the different sampling strategies between aircraft and tower measurements, we 371 

hypothesize that the models have a tendency to underestimate the spatial variability of 372 

atmospheric [CO2] but overestimate temporal variability at the synoptic scale. 373 

Another feature worth noting is that the CASA-simulated [CO2] are clustered into two 374 

groups, evident in both aircraft and tower [CO2] comparisons. Given the same transport and 375 

boundary conditions were used, the clustering is likely driven by the difference in biogenic 376 

fluxes associated with the values of the three parameters used for generating the CASA flux 377 

ensemble.  378 

4.2 Identification of the CASA key parameters 379 

The modeled [CO2] biases associated with individual CASA flux members and CT2017 380 

with the uncertainty bounds that are determined by the transport and boundary condition 381 

ensembles are shown in Figure S6 and S7 for each observation from aircraft and tower 382 

comparison, respectively. Applying the footprint analysis to aircraft and tower measurements 383 

and the CASA-defined biome map, we obtain the model biases for each biome. We list the top 2 384 

biomes with the most influence on each aircraft and tower measurements in Table 3 and Table 4, 385 

respectively. Croplands (CR), deciduous broadleaf forest (DB), and grasslands (GL) are the 386 

major biome types sampled by aircraft; CR, DB, GL, and evergreen needleleaf forest (EN) are 387 
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mainly sampled by towers (Figure 5). The samples primarily influenced by water bodies are 388 

removed from the results. Two aspects stand out in the comparisons, modeled [CO2] from all the 389 

flux members are positively biased across all biome types, and one group of the CASA flux 390 

members has better agreement with the observations than others. These two aspects are 391 

illustrated consistently in the comparisons of both aircraft and tower measurements. 392 

For the first aspect, we find that all flux estimates, including CT2017 and CASA 393 

ensemble, overestimate [CO2]. This is also reflected in Figure 3. The model biases seem scaled 394 

with the degree of plant productivity, given that we find larger biases associated with CR and DB 395 

and smaller biases associated with EN and GL.  Zhou et al. (2020) also reported that the 396 

monthly-averaged NEE of the CASA ensemble averaged over 13 years had a larger positive bias 397 

in CR and DB than EN and GL in summer. When comparing aircraft-based biases to tower-398 

based biases, the WRF-Chem simulated [CO2] is more positively biased. Assuming that spatial 399 

variability in [CO2] is related to temporal variability, as towers and aircraft basically observe the 400 

same weather systems, the larger aircraft-based biases might be caused by different geographic 401 

sampling or by the enhanced variability in aircraft data (designed to sample frontal systems) 402 

leading to larger biases. As expected, CT2017  has better agreement with the observations 403 

overall since its fluxes have been optimized using atmospheric [CO2] data. However, the fact that 404 

WRF-Chem performs better when coupled to optimized CT2017 biogenic CO2 fluxes confirms 405 

that transport model differences remain much smaller than flux differences. 406 

For the second aspect, we discover that distinct groups of CASA members reflect the 407 

three parameter values for maximum light use efficiency, Emax. The flux members that show the 408 

best agreement with the observations mostly have medium Emax values while the groups with low 409 

and high Emax values correspond to larger model biases.  Both aircraft and tower measurements 410 

identify that Emax is the dominant parameter in the CASA ensemble, which is consistent with the 411 

sensitivity results of Zhou et al. (2020a).  412 

The performance of the individual flux members are summarized  by ranking them as a 413 

function of bias (Figure 6). Medium Emax (E2) leads to better modeled [CO2] across different 414 

biome types and observation platforms. The groups with low (E1) and high (E3) Emax tend to have 415 

similar biases. A few members with high Emax are ranked high (in the top one third), such as P27 416 

and P25 for CR, P27 for DB, P27 for GL, and P27 for EN. For DB and EN, both E2 and E3 are 417 

assigned the same value (medium Emax) in CASA perturbation, explaining why some model 418 

members with high Emax value are ranked high. However, due to the impact of the long-range 419 

transport over upwind biomes (where E2 not equal E3), the model [CO2] bias ranking is different 420 

for the DB's and EN's Emax groups. 421 

Further investigating the top-performing 11 ensemble members according to Q10 values, 422 

(Figure 7).  We find that in general, the flux members with low Q10 value (Q10=1.2) are ranked 423 

high, followed with medium Q10 (Q10=1.4), and then high Q10 value (Q10=1.6). In contrast, no 424 

Topt -driven grouping is visible (not shown). We conclude that Q10 plays a secondary role in 425 

CASA-simulated summer NEE. 426 

In summary, the aircraft and tower data deliver consistent results. Given the multiple 427 

level-leg sampling and profiling strategies available in the aircraft data in addition to the large 428 

vertical gradients in [CO2bio] that appear in dataset (Figure 2), there is potential to impose 429 

additional constraints on biogenic fluxes and mixing heights using the vertical gradients of 430 
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[CO2]. Though outside the scope of this study, these vertical gradients will be examined in future 431 

work.  432 

4.3 The causes of modeled [CO2] biases 433 

We unfold the model-tower comparisons and show the modeled [CO2] biases for each 434 

[CO2] tower we included in the previous analysis in Figure 8a. All of the CASA members lead 435 

to an overestimate of [CO2] except at three towers: BAO, ETL, and OSI. The CASA flux 436 

members result in modeled [CO2] that is similar to CT2017 for GL and EN sites with the 437 

exception of three sites in the South Gulf region (GCI01, GCI03, and GCI04). Variability in the 438 

TBM parameters have more impact on CR and DB where they have the larger sink strength and 439 

plant productivity. A similar pattern of biases across biome types can be seen in CT2017, though 440 

CT2017 shows slightly better agreement with the observations.  441 

Model transport, boundary condition, and other CO2 flux components also contribute to 442 

modeled [CO2] errors. Although we illustrated that the contribution is less than that from the 443 

biosphere, it can potentially shift the biases uniformly up or down. Therefore, to root out the 444 

potential interference, we directly compare the CASA flux members and CT2017 flux member 445 

with AmeriFlux eddy-covariance flux measurements. This comparison can confirm if the results 446 

from the [CO2] analysis are consistent with eddy-flux data analysis and lend more insight into 447 

the diel cycle of CO2 fluxes. We group these analyses according to the dominant biomes 448 

surrounding each [CO2] tower.  449 

Due to the uneven distribution of flux and [CO2] towers, flux towers cannot be always 450 

found in the footprint of a given [CO2] tower. We therefore propagate the flux biases at each 451 

[CO2] tower location using Eq. (1) below. By assuming that a given biome type in the CASA 452 

model and CT2017 have a similar behavior (bias) everywhere, we group the flux towers 453 

influenced by the same dominant biome together and calculate the overall bias for the given 454 

biome 𝐹𝑇. The flux biases at a given [CO2] tower location, 𝐵𝑖, can be expressed in the following 455 

equation. 456 

𝐵𝑖 =
1

24
∑ (∑ 𝐹𝑇𝑊𝑇

14
𝑇=0 )𝑊𝑡

24
𝑡=1   (1) 457 

where 𝑊𝑇 and 𝑊𝑡 are the spatial and temporal weighting functions that propagate the flux 458 

biases from the biome level to the [CO2] site level, respectively. The subscript T denotes the 459 

biome: Indexes 1 to 14 are the biome in CASA following Zhou et al. (2020a); index 0 460 

represents water bodies. 𝑊𝑇 are the fractional areas of individual biomes relative to the 461 

entire influence area of a [CO2] tower (Figure S2). In the analysis, we find that some towers 462 

can be influenced by up to six biome types according to the tower footprint. The temporal 463 

weighting function, 𝑊𝑡, is essentially equal across the 24 hours of a day due to the 464 

indistinguishable diel cycle after averaging the footprint over the period of interest (Figure 465 

S3b and Text S2 in SI). 466 

Figure 8b shows the derived flux biases associated with each [CO2] tower over the same 467 

time period following Eq. 1. Consistent with the [CO2] analysis, all of the flux members show 468 

positive biases across the [CO2] towers, indicating the positive biases in modeled [CO2] are 469 

mainly due to the fact that CASA and CT2017 underestimate net uptake.  For CASA, this can be 470 

attributed to weak plant productivity and/or strong respiration. Zhou et al. (2020) pointed out that 471 

there is missing net sink due to the lack of crop harvest and forest recovery in the CASA model, 472 



manuscript submitted to Global Biogeochemical Cycles

 13 

yielding a net overestimate in annual respiration. Additionally, the relative performance among 473 

the CASA Emax groups and CT2017 with respect to flux tower data is consistent with the 474 

comparison to [CO2]. The high Emax values lead to the largest biases in both [CO2] and flux 475 

space, and CT2017 shows smaller biases for CR and DB. Such coherence across measurement 476 

space (mole fraction and flux) and platforms (aircraft, [CO2] towers, and flux towers) lends a 477 

high degree of confidence to these results. 478 

We break the daytime and nighttime flux biases apart to explore what causes the overall 479 

weak NEE uptake in CASA. In summer, the daytime fluxes are a combination of GPP and 480 

ecosystem respiration; the nighttime fluxes are driven completely by respiration. In the flux 481 

observations, the daily, daytime, and nighttime averaged fluxes range from -2 to -1 482 

𝜇 𝑚𝑜𝑙 𝑚−2𝑠−1, from -8 to -3 𝜇 𝑚𝑜𝑙 𝑚−2𝑠−1, and from 0.5 to 2.5 𝜇 𝑚𝑜𝑙 𝑚−2𝑠−1, respectively 483 

(Figure S5 in SI). CASA always underestimates the daytime net sink (Figure 8c): decreasing 484 

Emax values leads to larger biases across biomes (sites), and increasing Emax values do not offset 485 

the weak net uptake in CASA, indicating that tuning the parameters cannot fully counteract the 486 

lack of the harvest sink in CASA for summer 2016. CASA appears less biased in simulating the 487 

nighttime fluxes but in fact still highly biased compared to the averaged nighttime flux 488 

magnitude. On average, CASA underestimates the daily-averaged sink by 1 to 2 𝜇 𝑚𝑜𝑙 𝑚−2𝑠−1 489 

for EN, CR, and DB and by 1 𝜇 𝑚𝑜𝑙 𝑚−2𝑠−1 or less for GL. The different magnitudes of flux 490 

biases across the biomes suggests that the flux bias is scaled with the strength of the seasonal 491 

uptake and/or the strength of the annual net carbon exchange (i.e., missing sink). 492 

CR and DB have more distinct Emax ranking patterns for the daytime and nighttime flux 493 

biases. For CR, low Emax leads to larger biases in both daytime and nighttime fluxes due to low 494 

daytime net uptake and nighttime respiration. Since Emax in CASA directly impacts GPP and 495 

indirectly impacts respiration, increasing both GPP and respiration is favorable for capturing CR 496 

fluxes in CASA. This is also reflected by the combination of high Emax and high Q10 values (P25 497 

and P27) being ranked in the top group in Figure 6. For DB, however, low Emax leads to large, 498 

positive flux biases in daytime but the smallest positive bias at night, suggesting that the bigger 499 

issue for DB is that the CASA model tends to respire carbon faster than in the actual ecosystem.   500 

In both mole fraction and flux space, CT2017 agrees more closely overall with the 501 

observations than the CASA members after averaging (Figure 8). However, once we break 502 

nighttime and daytime flux apart, CT2017 overestimates the nighttime fluxes for these four 503 

biome types and daytime net uptake for DB.   504 

5 Discussion  505 

Multiple CO2 observation platforms (i.e., aircraft and tower [CO2] and flux tower data) 506 

across measurement space (i.e., concentration vs. flux) identify that Emax is the most important 507 

parameter driving the spread of the CASA flux ensemble. In concentration space, the modeled 508 

[CO2] biases can be contributed by biogenic flux, transport, boundary conditions and other CO2 509 

flux components. Although Figure 3 demonstrates that, in the sampled cases, the biosphere 510 

dominates the model errors, the transport errors are not negligible. The model transport errors 511 

can increase or decrease modeled [CO2] biases in Figure 5 as a whole. We choose to focus on 512 

the relative performance among these flux members to minimize the impact of the potential 513 

transport errors on interpreting the results. However, we acknowledge that the complexity the 514 

model transport introduces in the results are not eliminated.  515 



manuscript submitted to Global Biogeochemical Cycles

 14 

We argue that the transport error is unlikely to change our major conclusion that the 516 

biogenic fluxes are biased or change the relative performance across the biogenic CO2 flux 517 

members. This argument is supported in the consistent results from the flux comparison in 518 

Section 4.3. This is also reflected by the results that CT2017 has a better agreement with 519 

measured [CO2] (Figure 5 and Figure 6). While the CT2017 fluxes were optimized with the 520 

TM5 transport model (Krol et al., 2005), we consistently found that the associated WRF-521 

simulated  [CO2] bias was the lowest compared to the CASA members. We also note that a 522 

slightly different version of CASA (Potter et al., 1993) is used as a prior in CT2017. In our 523 

transport model setup, we nudged the WRF-Chem model to the state-of-the-art reanalysis 524 

product ERA5 in order to improve the large-scale dynamics. The comparison between the 525 

nudged and free run modeled wind fields illustrate the effectiveness and efficiency of this 526 

meteorological constraint. Finally, the ensemble of perturbed transport simulations confirms the 527 

secondary role of transport errors in [CO2] model-data residuals. Hence, it seems highly unlikely 528 

that transport errors could be the cause of our findings regarding the CASA ensemble.  529 

The CarbonTracker (CT) inversion system works by estimating scaling factors that 530 

multiply the prior model (CASA)'s NEE. During the growing season, an increase in the 531 

terrestrial sink is equivalent to amplifying the prior model's diel cycle, to perhaps unrealistic 532 

levels. These scaling factors are constant for each week and are independent from one week to 533 

the next. Thus, the CT fluxes may yield periods of unrealistically large diel cycles, possibly 534 

followed by periods with abnormally small daily cycles of NEE. The shape of the day-night flux 535 

differences and day-to-day changes cannot be adjusted by CT. To overcome this problem, Schuh 536 

et al. (2013) optimized for GPP and respiration separately. Additionally, since CT relies heavily 537 

on simulated transport, it is also possible to retrieve exaggerated diurnal cycles in fluxes if that 538 

model ventilates the PBL too strongly. While this process could affect fluxes throughout the day, 539 

thin and stable nighttime boundary layers are particularly difficult to represent in models of this 540 

class.  541 

Section 4.3 provides more insight into the causes of the modeled [CO2] biases. The 542 

biggest assumption we made in Eq. (1) is homogeneity across the entire biome. The optimal 543 

method for calculating the flux biases at a [CO2] tower should be based on the flux towers in a 544 

[CO2] tower’s footprint (shown in Figure S2). However, due to the uneven distribution of the 545 

flux towers in the domain of interest, this direct calculation is not possible. The method we used 546 

to derive the flux biases at each [CO2] tower takes the influence from multiple biomes into 547 

account and results in a bias ranking among the flux members that is consistent with the ranking 548 

in mole fraction space, indicating the reliability of this method.   549 

The CASA simulations were spun up equilibrium, and the parameters were adjusted to 550 

match the observations. CASA’s overestimation of summer NEE likely derives from missing 551 

carbon sink processes because of the balanced-biosphere equilibrium starting condition resulting 552 

in carbon pools that are too large rather than a problem in the model’s parameters (Pietsch & 553 

Hasenauer, 2006; Wutzler & Reichstein, 2007; Zhou, Williams, Lauvaux, Davis, et al., 2020). 554 

The range of the three perturbed parameters, Emax, Topt, and Q10, were determined by comparison 555 

to flux measurements over 13 year simulation period.  Tuning these parameters cannot solve the 556 

fact that carbon stocks are actually dynamic and out of equilibrium. Our results may erroneously 557 

indicate that a particular parameter set has the smallest bias when the core problem may be that 558 

the carbon pool is out of equilibrium. This is consistent with the finding that CT2017, with its 559 

imposed net global land sink, is less biased than the balanced biosphere CASA L2 ensemble.  560 
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We therefore do not intend to stress which parameter set is the best. Instead, the highlight of this 561 

work is to demonstrate that atmospheric [CO2] data can be used, with flux tower measurements, 562 

to diagnose the performance of TBMs. This study demonstrates the utility of multiple 563 

observation platforms for terrestrial biosphere model evaluation.  564 

The rankings in Section 4.2 show that increasing Emax does not necessarily lead to better 565 

agreement with the measurements. Increasing Emax increases GPP, but the carbon seems to 566 

respire away quickly in CASA and does not reside long enough, perhaps because harvest is not 567 

represented in this simulation. Key missing processes include the effects of management and 568 

land use such as (a) agricultural sinks from management that removes crops and crop residues 569 

thus decreasing the size of the carbon pool that might be respired, (b) pastureland sinks from 570 

cattle and other grazers that consume plant biomass and store it in their body mass, (c) forest 571 

carbon storage as trees and stands mature with sequestration in wood. Additional candidates 572 

include stimulation of ecosystem carbon sinks by growth enhancement factors such as rising 573 

CO2 concentration, nitrogen deposition, fertilizer additions, and the like.  Including these 574 

missing processes in the model framework would require a re-evaluation of all model 575 

parameters, and we might find that a different Emax parameter set was best relative to what was 576 

identified in this study and might lead to a better match with this suite of observation. In 577 

addition, the daytime and nighttime flux biases of CASA suggest that the day-night cycling of 578 

respiration is not being done properly. The modeled respiration is primarily related to 579 

temperature. However, previous studies showed that the correlation plots of respiration and 580 

temperature are scattered. The high-biased points tend to occur in daytime, and the low-biased 581 

points tend to occur at nighttime because the carbon fixation processes are more active during 582 

daytime when more labile carbon is ready to be respired. There are different day-night biases in 583 

the model structure. 584 

Simplistic temporal downscaling of CASA’s monthly carbon fluxes likely contributes to 585 

biases in the diel cycle. The 3-hourly CASA ensemble flux products were downscaled from the 586 

native monthly resolution using the Olsen and Randerson (2004) method, in which GPP is 587 

downscaled with downward shortwave radiation, Re is downscaled with air temperature and Q10, 588 

and NEE is the sum of GPP and Re. This makes it difficult to use the diel cycle analyses in 589 

section 4.3 to make conclusions about GPP and Re in CASA. The biases in the diel cycle are 590 

nonetheless informative, since this temporal downscaling is widely used.  591 

The ability to diagnose errors in GPP and respiration will require models that resolve the 592 

diel cycle and possibly additional data dedicated to the photosynthetic process. Carbonyl sulfide 593 

(COS) has been proposed as an independent proxy for GPP as it diffuses into leaves in a fashion 594 

very similar to CO2, but in contrast to the latter, is generally not emitted by respiration. Campbell 595 

et al. (2017) presented a global, measurement-based estimate of GPP growth during the twentieth 596 

century that is based on long-term atmospheric COS records, derived from ice-core, firn and 597 

ambient air samples and found that the observation-based COS record is most consistent with 598 

simulations of climate and the carbon cycle. Recently, Spielmann et al. (2019) used concurrent 599 

ecosystem‐scale flux measurements of CO2 and COS at four European biomes for a joint 600 

constraint on CO2 flux partitioning. Their results demonstrated the importance of using multiple 601 

approaches for constraining present‐day GPP due to a systematic underestimation under low 602 

light conditions with the classical approaches relying merely on CO2 fluxes. Other studies have 603 

used the 𝛿13C of nocturnal whole‐ecosystem respiration as a proxy from which to derive carbon 604 

isotope discrimination associated with photosynthesis (Alstad et al., 2007; Bowling et al., 2002; 605 
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Flanagan et al., 1996). Joint atmospheric gas constraints may improve our diagnoses of the 606 

causes of biases in TBM flux estimates. Studies using ACT-America airborne biogenic tracers, 607 

including CO2, COS, and CO, are submitted to this collection. 608 

6 Conclusions 609 

We evaluate the modeled [CO2] biases associated with CASA TMB biogenic CO2 flux 610 

ensemble members and the CT2017 posterior biogenic flux using aircraft and tower in situ [CO2] 611 

jointly with eddy covariance flux data in summer 2016. Aircraft and tower in situ [CO2] were 612 

influenced by grasslands (GL), evergreen needleleaf forest (EN), deciduous broadleaf forest 613 

(DB) and croplands (CR). While the mole fraction-based analyses revealed a systematic 614 

underestimation of carbon uptake by the balanced-biosphere CASA runs, the flux-based analyses 615 

identified a combined effect from an overestimated respiration at night and an under-estimated 616 

uptake during the day. The joint observational analysis yields strong confidence that these results 617 

span large spatial domains and multiple ecosystems due to the availability of long aircraft 618 

transects and a wide network of ground-based measurements. The results from analyzing both 619 

mole fraction and flux model-data residuals were consistent. The systematic errors in CASA that 620 

span all parameter values suggest that missing processes cannot be properly simulated by 621 

adjusting the existing parameters. Analyses indicate that modeled [CO2] biases are related to 622 

biome productivity; the models tend to be biased more for high productivity biomes (DB and 623 

CR) and biased less for GL and EN. In particular, the summer harvest sink absent from CASA 624 

seems to be responsible for large biases in the Midwest. Lastly, CT2017, an inversion product 625 

that is constrained by atmospheric [CO2] data and has an imposed net biogenic carbon sink, 626 

shows better agreement with [CO2] mole fraction data compared to CASA flux ensemble 627 

members. However, the flux-based analyses revealed that the diurnal variations of CT were 628 

unrealistically large. We suggest that the scaling of the net daily fluxes in large-scale inversions 629 

must be further decomposed into day and night sub-components to reproduce the diel cycle of 630 

photosynthetic and ecosystem respiration processes.  631 
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Figure and Table captions 922 

Figure 1. CASA biome type, and the locations of the [CO2] towers (red circled crosses) and 923 

AmeriFlux flux towers (black triangles). The colored area is the model domain. 924 

Figure 2. Simulated [CO2] (left column) and the RMSD of the biogenic [CO2] ([CO2bio]) from 925 

the mean of modeled [CO2bio] (right column) for five flights in the ACT Summer 2016 aircraft 926 

campaign: (a) 7/18 19 UTC (front in MA); (b) 7/21 19 UTC (fair Wx in MA): (c) 8/4 18 UTC 927 

(front in MW); (d) 8/9 19 UTC (fair Wx in MW); (e) 8/22 22 UTC (fair Wx in South). The 928 

aircraft sampled [CO2] are overlaid with the simulations (left column). The black dots on the 929 

RMSD panels are the flight paths. Potential temperature contours are overlaid to indicate the 930 

frontal locations. 931 

Figure 3. Daily afternoon averaged [CO2] from the ACT aircraft and simulations. The error bars 932 

of the simulated [CO2] are the spread of the full, biogenic flux, transport, and boundary condition 933 

ensembles. Note that the spread of boundary condition is very small and not visible in the figure. 934 

Only the ABL samples are included in the analysis. The point-down arrows denote the frontal 935 

cases during the campaign. Gray dashed lines denote the transit. 936 

Figure 4. Taylor diagrams of simulated [CO2] compared with the observations. The standard 937 

deviations of models are normalized by the standard deviations of observations (“REF”). The 938 

model [CO2] are associated with the (29) biogenic flux members from CASA and CT2017. The 939 

color scheme indicates CT2017, CASA ensemble mean, CASA low Emax (E1), CASA medium 940 

Emax (E2), and CASA high Emax (E3) groups. "P#" in the legend denotes the index of CASA 941 

ensemble member in the original product. The observations used in (a) are from the ABL legs of 942 

the ACT-America aircraft measurements. The flight dates and other information are listed in 943 

Table S1. The observations used in (b) are from the [CO2] tower measurements at afternoon 944 

hours (19-22 UTC). The locations and information can be found in Figure 1 and Table 3. Both 945 

aircraft and tower [CO2] data are kept at native temporal resolutions. Modeled [CO2] are 946 

determined by the value of the nearest grid cell to sample locations. The period of interest is 947 

from July 18 to August 28, 2016 covering the ACT-America summer 2016 aircraft campaign. 948 

Figure 5. The model [CO2] are associated with the (29) biogenic flux members from CASA and 949 

CT2017. The color scheme indicates CT2017, CASA ensemble mean, CASA low Emax (E1), 950 

CASA medium Emax (E2), and CASA high Emax (E3) groups. "P#" on the x-axis are the indexes of 951 

CASA ensemble members in the original product. 952 

Figure 6. The final ranking of the modeled [CO2] bias among the biogenic flux members shown 953 

in Figure 5. The model skills are ranked decreasingly, meaning the model biases increase from 954 

top to bottom. The name convention of the CASA ensemble members follows P# /ToptEmaxQ10. # 955 

is the index of the CASA members in the original product.  At the position of Topt, "0" means the 956 

default value; "2" means the default value plus 2 degrees C; "-2" means the default value minus 2 957 

degrees C. For Emax, "1", “2”, and “3” denotes the low, medium, and high Emax in Table 4 of 958 

Zhou et al. (2020). "2","4","6" at the Q10 position indicate that Q10 = "1.2", "1.4", and "1.6", 959 

respectively. 960 

Figure 7. Top 11 biogenic flux members in Figure 6 applied different color schemes in order to 961 

reveal the secondary parameter, Q10. Note that the flux members associated in the medium Emax 962 

are with color background; others are with white background. 963 



manuscript submitted to Global Biogeochemical Cycles

 25 

Figure 8. CO2 mole fraction and flux biases at the [CO2] towers. (a) Afternoon averaged (19-22 964 

UTC) [CO2] biases.  (b) daily, (c) daytime (15-2 UTC), and (c) nighttime (3-14 UTC) averages 965 

of the flux biases derived from Eq. (1). The shaded areas are the minimum and maximum biases 966 

among different Emax groups in the CASA ensemble. The associated solid lines are the mean of 967 

the given Emax group. Additionally, CT2017 and the CASA ensemble mean are denoted in green 968 

and purple dotted lines. The horizontal gray line is unbiased. The vertical gray lines divide the 969 

towers into various biomes determined by the footprint analysis. The dominate biomes, GL - 970 

grassland, EN - evergreen needleleaf forest, Wa - water, CR - croplands, DB - deciduous 971 

broadleaf forest, MF - mixed forest for [CO2] towers are listed in Table 3. A mixed type is listed 972 

if the difference between the fractions of the top 2 biome types is within 10 %. 973 

 974 
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 980 
 981 

Figure 1. CASA biome type, and the locations of the [CO2] towers (red circled crosses) and 982 

AmeriFlux flux towers (black triangles). The colored area is the model domain. 983 
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 985 
Figure 2. (to be continued) 986 
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 987 
Figure 2. Simulated [CO2] (left column) and the RMSD of the biogenic [CO2] ([CO2bio]) from 988 

the mean of modeled [CO2bio] (right column) for five flights in the ACT Summer 2016 aircraft 989 

campaign: (a) 7/18 19 UTC (front in MA); (b) 7/21 19 UTC (fair Wx in MA): (c) 8/4 18 UTC 990 

(front in MW); (d) 8/9 19 UTC (fair Wx in MW); (e) 8/22 22 UTC (fair Wx in South). The 991 

aircraft sampled [CO2] are overlaid with the simulations (left column). The black dots on the 992 

RMSD panels are the flight paths. Potential temperature contours are overlaid to indicate the 993 

frontal locations. 994 
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 995 
Figure 3. Daily afternoon averaged [CO2] from the ACT aircraft and simulations. The error bars 996 

of the simulated [CO2] are the spread of the full, biogenic flux, transport, and boundary condition 997 

ensembles. Note that the spread of boundary condition is very small and not visible in the figure. 998 

Only the ABL samples are included in the analysis. The point-down arrows denote the frontal 999 

cases during the campaign. Gray dashed lines denote the transit. 1000 
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 1003 
 1004 

Figure 4. Taylor diagrams of simulated [CO2] compared with the observations. The standard 1005 

deviations of models are normalized by the standard deviations of observations (“REF”). The 1006 

model [CO2] are associated with the (29) biogenic flux members from CASA and CT2017. The 1007 

color scheme indicates CT2017, CASA ensemble mean, CASA low Emax (E1), CASA medium 1008 

Emax (E2), and CASA high Emax (E3) groups. "P#" in the legend denotes the index of CASA 1009 

ensemble member in the original product. The observations used in (a) are from the ABL legs of 1010 

the ACT-America aircraft measurements. The flight dates and other information are listed in 1011 

Table S1. The observations used in (b) are from the [CO2] tower measurements at afternoon 1012 

hours (19-22 UTC). The locations and information can be found in Figure 1 and Table 3. Both 1013 

aircraft and tower [CO2] data are kept at native temporal resolutions. Modeled [CO2] are 1014 

determined by the value of the nearest grid cell to sample locations. The period of interest is 1015 

from July 18 to August 28, 2016 covering the ACT-America summer 2016 aircraft campaign. 1016 
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 1018 
Figure 5. (to be continued) 1019 
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 1022 
Figure 5. The model [CO2] are associated with the (29) biogenic flux members from CASA and 1023 

CT2017. The color scheme indicates CT2017, CASA ensemble mean, CASA low Emax (E1), 1024 

CASA medium Emax (E2), and CASA high Emax (E3) groups. "P#" on the x-axis are the indexes of 1025 

CASA ensemble members in the original product. 1026 
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 1028 
 1029 

Figure 6. The final ranking of the modeled [CO2] bias among the biogenic flux members shown 1030 

in Figure 5. The model skills are ranked decreasingly, meaning the model biases increase from 1031 

top to bottom. The name convention of the CASA ensemble members follows P# /ToptEmaxQ10. # 1032 

is the index of the CASA members in the original product.  At the position of Topt, "0" means the 1033 

default value; "2" means the default value plus 2 degrees C; "-2" means the default value minus 2 1034 

degrees C. For Emax, "1", “2”, and “3” denotes the low, medium, and high Emax in Table 4 of 1035 

Zhou et al. (2020). "2","4","6" at the Q10 position indicate that Q10 = "1.2", "1.4", and "1.6", 1036 

respectively. 1037 
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 1038 
 1039 

Figure 7. Top 11 biogenic flux members in Figure 6 applied different color schemes in order to 1040 

reveal the secondary parameter, Q10. Note that the flux members associated in the medium Emax 1041 

are with color background; others are with white background. 1042 
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 1044 

 1045 
Figure 8. CO2 mole fraction and flux biases at the [CO2] towers. (a) Afternoon averaged (19-22 1046 

UTC) [CO2] biases.  (b) daily, (c) daytime (15-2 UTC), and (c) nighttime (3-14 UTC) averages 1047 

of the flux biases derived from Eq. (1). The shaded areas are the minimum and maximum biases 1048 

among different Emax groups in the CASA ensemble. The associated solid lines are the mean of 1049 

the given Emax group. Additionally, CT2017 and the CASA ensemble mean are denoted in green 1050 

and purple dotted lines. The horizontal gray line is unbiased. The vertical gray lines divide the 1051 

towers into various biomes determined by the footprint analysis. The dominate biomes, GL - 1052 

grassland, EN - evergreen needleleaf forest, Wa - water, CR - croplands, DB - deciduous 1053 

broadleaf forest, MF - mixed forest for [CO2] towers are listed in Table 3. A mixed type is listed 1054 

if the difference between the fractions of the top 2 biome types is within 10 %. 1055 

 1056 
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 1059 

Table 1. WRF-Chem model physics parameterization choices 1060 

Parameterization Option used Reference 

Microphysics Thompson Thompson et al. (2004) 

Longwave Radiation RRTMG longwave scheme Iacono et al. (2008) 

Shortwave Radiation RRTMG shortwave scheme Iacono et al. (2008) 

PBL Scheme MYNN2 Nakanishi & Niino  (2006) 

Land Surface Unified Noah land-surface 

model 

Chen & Dudhia (2001) 

Cumulus Kain-Fritsch (new Eta) 

scheme 

Kain (2004) 

 1061 

 1062 

 1063 

Table 2. Perturbations of the transport ensemble 1064 

Transport run PBL scheme Surface layer LSM SKEBS 

1 MYNN MYNN Noah N 

2 MYNN MYNN Noah Y 

3 MYNN MYNN Noah Y 

4 MYNN MYNN Noah Y 

5 MYJ Eta RUC N 

6 MYJ Eta RUC Y 

7 MYJ Eta RUC Y 

8 YSU MM5 Thermal N 

9 YSU MM5 Thermal Y 

10 YSU MM5 Thermal Y 

 1065 

 1066 
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 1068 

Table 3. Selected [CO2] towers and top 2 biome types 1069 

Site    Lat       Lon       

 Intake elevation 

(m ASL)   

 1st Biome type 

(Fraction %)  

   2nd Biome type 

(Fraction %)    

AMT    45.03 -68.68 160  DB (42.1)   EN (32.2)   

BAO    40.05 -105 1884  GL (62.8)   EN (36.4)   

CPS    49.82 -74.98 389  EN (46.3)   MF (32.2) 

ESP    49.38 -126.54 47  EN (49.6)   Wa (47.1)  

ETL    54.35 -104.99 597  EN (67.8)   CR (14.0)  

GCI01  32.47 -92.28 165  EN (61.2)   DB (22.3)   

GCI02  33.75 -89.85 205  DB (56.2)   CR (27.3)   

GCI03  31.89 -89.73 232  EN (57.9)   DB (33.9)  

GCI04  33.18 -85.89 428  EN (58.7)   DB (40.5)  

GCI05  30.2 -85.83 105  Wa (41.3)   EN (41.3)  

HFM    42.54 -72.17 369  DB (87.6)   Wa (10.0) 

HNP    43.61 -79.39 97  CM (43.8)   DB (17.4) 

LEF    45.95 -90.27 868  DB (81.8)   Wa (7.4)  

MBO    43.98 -121.69 2742  EN (73.6)   GL (20.6)   

MRC    41.47 -76.42 652  DB (98.3)   CM (1.7)   

OSI    45 -122.7 620  EN (74.4)   Wa (12.4)  

SCT    33.41 -81.83 420  EN (78.5)   DB (17.4)  

SGP    36.61 -97.49 374  GL (77.7)   DB (12.4)   

SNP    38.62 -78.35 1025  DB (93.4)   EN (3.3)   

TPD    42.64 -80.56 266  DB (32.2)   CR (27.3)   

WBI    41.72 -91.35 621  CR (76.9)   DB (17.4)  

WGC    38.27 -121.49 483  DB (26.4)   CR (24.0)  

WKT    31.31 -97.33 708  GL (67.8)   DB (22.3)   

CM - Cropland natural vegetation mosaic; CR – Croplands; DB - Deciduous 

broadleaf forest; EN - Evergreen needleleaf forest; GL – Grasslands; MF - Mixed 

forest; Wa - Water. 
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 1073 

Table 4. Top 2 biome types in the ACT-America summer 2016 flight samples 1074 

    Date 

 1st Biome type 

(Fraction %)  

   2nd Biome type 

(Fraction %)    

    2016-07-18*   DB (60.1)   CR (17.4)   

    2016-07-19    DB (40.7)   EN (20.7)  

    2016-07-21*    DB (54.6)   Wa (15.7)  

    2016-07-22    DB (60.7)   EN (16.8) 

    2016-07-25    DB (69.0)   EN (16.4)  

    2016-07-26     DB (61.0)   CR (17.6)  

    2016-07-27     DB (30.1)   EN (19.1) 

    2016-08-03    GL (38.0)   OS (24.5)  

    2016-08-04*    GL (40.3)   Wa (25.5)  

    2016-08-05    GL (40.9)   Wa (17.5) 

    2016-08-08    DB (34.6)   CR (24.1)  

    2016-08-09*    DB (44.0)   GL (21.6)  

    2016-08-10    DB (35.7)   CR (20.1)  

    2016-08-12    Wa (25.1)   CR (20.1) 

    2016-08-13    CR (72.6)   GL (12.0)  

    2016-08-14    CR (62.7)   EN (9.0)  

    2016-08-16    Wa (71.3)   DB (9.4)  

    2016-08-19    Wa (93.3)   DB (3.3)  

    2016-08-20    Wa (66.2)   CR (14.1)  

    2016-08-21    CR (42.4)   Wa (22.0)  

    2016-08-22*    CR (41.3)   DB (28.4) 

    2016-08-24    Wa (83.9)   EN (5.2)  

CR – Croplands; DB - Deciduous broadleaf forest; EN 

- Evergreen needleleaf forest; GL – Grasslands; OS - 

Open Shrublands; Wa - Water. 
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