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Abstract21

Increased flood risks have been projected, but with large uncertainties, in the Kabul River22

Basin (Afghanistan and Pakistan). To place future changes in a long-term perspective,23

we produce a 382-year precipitation reconstruction for the basin using seven tree-ring24

chronologies of old-growth conifers from the Hindu Kush Mountains, a monsoon-shadow25

area. The reconstruction proves robust over rigorous cross-validations (R2 = 0.60, RE26

= 0.60, CE = 0.53). The full reconstruction (1637–2018) reveals a steady decline in the27

low end of the precipitation distribution, implying increasing drought risks. We show that28

droughts are getting more severe, shorter, and more frequent, interspersed with more fre-29

quent pluvials in the past century. Drought risks, compounded with projected flood in-30

tensification, pose significant threats for this transboundary river. Therefore, future wa-31

ter management needs to account for both flood and drought risks and be informed by32

long-term hydroclimatic variability.33

Plain Language Summary34

The Kabul River is a transboundary river spanning eastern Afghanistan and north-35

ern Pakistan. It is an important tributary of the Indus, one of the world’s largest rivers36

with intensive water withdrawals for human use. With climate change, the Kabul River37

is projected to have more frequent and larger floods, but the projections are very uncer-38

tain. To have a better understanding of these future projections, we need to look at how39

the region’s climate has changed in the past. Tree rings are a valuable source of infor-40

mation to serve that need. Using old-growth conifers from the Hindu Kush Mountains,41

western Himalaya, we reconstruct four centuries of precipitation (rainfall) history for the42

Kabul River Basin. From the reconstruction, we observe that dry years are getting drier.43

Thus, the risks of severe droughts are increasing. Prolonged droughts are being replaced44

by shorter but more frequent ones, and periods of sustained high precipitations are also45

becoming more frequent. When seen in combination with earlier reports, our results im-46

ply that the Kabul River Basin is facing both floods and drought risks, and these are47

significant threats to the water security of the basin.48
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1 Introduction49

The Indus River system is one of the largest basins in the world (Best, 2019). Yet,50

owing to the extensive human-made water storage and withdrawal infrastructure along51

its course, the river is nearly depleted (Sharma et al., 2010). Shared by four countries—Pakistan,52

Afghanistan, China, and India—the basin supports a population of about 300 million53

people (Laghari et al., 2012). Among these, the semi-arid countries of Afghanistan and54

Pakistan are particularly reliant on the Indus, and are facing acute water and food short-55

ages as well as threats of transboundary water conflicts (Akhtar & Iqbal, 2017; Atef et56

al., 2019). Located in the Indus headwaters, and originated from the Hindu Kush–Karakoram57

Mountains, the Kabul River is an important tributary of the Indus, accounting for about58

10% of the annual flow and supplying water directly to the Afghan capital, Kabul (Lashkaripour59

& Hussaini, 2008). The Kabul River has experienced intensive human-induced environ-60

mental changes in the last 40-years (Ahmadullah & Dongshik, 2015), and new dams are61

planned to be built (Yousaf, 2017). Development in both the Afghanistan’s and Pakistan’s62

sides of the river, such as dam construction and increase in built-up and cultivated ar-63

eas, may worsen transboundary water conflicts (Akhtar & Iqbal, 2017; Atef et al., 2019;64

Taraky et al., 2021).65

On top of the increasing water stresses due to human activities, the Kabul River66

Basin faces an uncertain future because of climate change. Climate models predict con-67

sistent warming and drying trends in the Indus Basin, but with considerable uncertain-68

ties surrounding the magnitude and spatial pattern of these changes (Shakir et al., 2010;69

Z. Ahmad et al., 2012; Wi et al., 2015). Despite the overall projected drying trend in70

the Indus Basin, little change has been observed in annual precipitation in the Indus head-71

waters over the past decades (Khattak et al., 2011), and most climate models project72

an increase in precipitation in the Kabul River particularly (Iqbal et al., 2018). The com-73

bination of higher precipitation and enhanced snowmelt due to warming is thus projected74

to increase flood frequency and intensity in the Kabul River Basin (Iqbal et al., 2018;75

S. Ahmad et al., 2021).76

A major factor that confounds projections of water resources availability in the re-77

gion is a peculiar phenomenon named the “Karakoram Anomaly”, where glaciers in the78

Karakoram Mountains gain masses and experience higher frequencies of glacial surges,79

contradicting the overall trends in High-Mountain Asia and other glaciated regions world-80

wide (Hewitt, 2005). The cause of this anomaly remains undetermined, although sev-81

eral plausible causes have been put forth (see e.g., Yao et al., 2012; Kapnick et al., 2014;82

Forsythe et al., 2017; Farinotti et al., 2020). Furthermore, while evidence from tree rings83

suggests that the anomaly may have been stable for centuries (Zafar et al., 2016), the84

future stability of the phenomenon is highly uncertain with global warming (Farinotti85

et al., 2020). As the Indus derives a significant amount of runoff from the Karakoram86

Mountains, these uncertainties greatly hamper the assessment of future surface water87

availability in the region.88

Against this back drop of increasing water stress and uncertain hydroclimatic pro-89

jections, we turn our attention to the past hydroclimatic variability of the Kabul River90

Basin. This knowledge could help constraint future projections and put recent and fu-91

ture changes in a long-term perspective. Here, we present a four-century annual precip-92

itation reconstruction for the Kabul River Basin using seven old-growth conifer chronolo-93

gies developed from both the Afghanistan’s and Pakistan’s sides of the basin. Our re-94

construction provides a long-term record of moisture input to the basin—an important95

step towards understanding the long-term changes in the water cycle and their impli-96

cations to regional water management.97
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2 Materials and Methods98

2.1 Study Area and Sampled Species99

We sampled three coniferous species on the Hindu Kush Mountains (Figures 1a-100

1b): Cedrus deodara (commonly known as Himalayan cedar), Picea smithiana (Himalayan101

spruce) and Pinus gerardiana (Chilgoza pine). Additional details of the sites are pro-102

vided in Table S1. Pinus gerardiana is typically found in the inner semi-arid regions of103

the north-western Himalaya, between 1,800 and 3,000 m asl (Singh et al., 2021), with104

low summer monsoon rainfall but high winter snowpack. Cedrus deodara is found through105

the western Himalayas at elevations between 1,500 and 3,300 m asl. This species forms106

mixed stands with Picea smithiana at 2,500 m and above, whereas at lower elevations,107

it usually forms associations with Abies pindrow and Pinus wallichiana. (Champion et108

al., 1965). Cedrus deodara generally prefers sites with low humidity and high winter snow-109

pack (Raizada & Sahni, 1960; Sahni, 1990). In the study area, the three species were found110

growing on steep rocky slopes with thin soil cover in Chitral Gol National Park, Bum-111

burat Kalash valley, and Lowari Top (Pakistan), and Nuristan Province (Afghanistan)112

(Figures 1a-1b). All three species grow in open stands; this might be due to long-term113

anthropogenic interventions, as the local communities depend on these forests (N. Khan114

et al., 2013). As a result, tree-ring patterns of the sampled trees should not be influenced115

much by stand dynamics such as inter-tree competition.116

2.2 Tree Ring Data117

During the sampling phase, care was taken to select healthy trees without visible118

injuries or fire scars. Cores were sampled at breast height (1.3 m), dried, glued, and sanded119

following standard dendrochronological protocols. Samples were cross-dated with the skele-120

ton plot method (Stokes & Smiley, 1996; Speer, 2010) and measured with a LINTAB tree-121

ring measurement station (Rinntech, Heidelberg Germany). Measurements were then sta-122

tistically validated using the software COFECHA (Holmes, 1983).123

We detrended and standardized the chronologies using the program ARSTAN (Cook,124

1985). We found that our samples did not follow the negative exponential or Hugershoff125

growth curves, likely because these forests are logged by the local communities (Section126

2.1). To account for these disturbances, a data-adaptive detrending method is more suit-127

able. By experimenting we found that the Friedman variable span smoother worked well,128

and yielded the highest r̄ values (Table S2). In a few cases where the Friedman smoother129

showed a lack of fit, the cubic smoothing spline (Cook & Peters, 1981) was used.130

For each site, the program ARSTAN produces three chronologies: standard, resid-131

ual, and ARSTAN. The standard chronology is obtained by averaging all tree ring in-132

dices (detrended tree ring time series) at a site. When the tree ring indices have signif-133

icant autocorrelations that violate the weak stationarity assumption, they must be pre-134

whitened before averaging; this yields the residual chronology (Cook et al., 1990). How-135

ever, when the target climate variable has a significant autocorrelation structure, the resid-136

ual chronology, having been pre-whitened, may fail to reproduce such autocorrelations.137

As a result, the ARSTAN chronology is introduced (Cook et al., 1985), where the resid-138

ual chronology is “re-reddened”: a common autocorrelation structure is pooled from all139

tree ring indices and added back to the residual chronology. In our particular case, the140

precipitation data show no significant autocorrelation (Figure S1); therefore, we selected141

the residual chronologies instead of the ARSTAN ones. Upon further verification, we found142

that indeed the reconstruction using the ARSTAN chronologies, holding all else equal,143

has much lower skills than that obtained with the residual chronologies (Table S3).144

The final chronologies and their subsample signal strength (SSS; Wigley et al., 1984)145

are shown in Figure S2, and other statistics are reported in Table S4. Following recom-146

mendations by Buras (2017), we used SSS rather than the expressed population signal147

–4–



manuscript submitted to Geophysical Research Letters

0

100

200

J F M A M J J A S O N D

Pr
ec

ip
ita

tio
n 

[m
m

]

c)

0

10

20

30

J F M A M J J A S O N D

Te
m

pe
ra

tu
re

 [°
C

]

10°N

20°N

30°N

40°N

50°N
Feb−Apr Jun−Aug

10°E 20°E 30°E 40°E 50°E 60°E 70°E 10°E 20°E 30°E 40°E 50°E 60°E 70°E

0 2 4 6 8 10 12 14 16 18 20 22 24

Precipitation rate [mm/day] Wind speed [m/s]

20

d)

Figure 1. a) Location of the study region. b) Map of the study area showing the sampling

sites, Chitral meteorological station (blue dot), as well as the topography. c) Monthly distribu-

tion of precipitation and temperature at Chitral. d) Visualization of moisture transport to our

study site, created by overlaying 850 hPa winds on gridded precipitation, averaged for the period

1979–2021. Pakistan is highlighted in red and the study site in purple. During February–April,

note the westerly winds from the Mediterranean Sea. During June–August, note that the study

site is located away from monsoon winds and receives little rain. Wind data from NCEP-DOE

Reanalysis (Kanamitsu et al., 2002) and precipitation data from GPCP (Adler et al., 2018).
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(EPS) to determine the length of chronology to retain. The SSS was computed using the148

R package dplR (Bunn, 2008). Wigley et al. (1984) recommended a threshold of 0.85 (and149

this is the value commonly used in the literature); however, they noted that it was only150

a guideline. Here, in order to maximize the usable length of tree ring data, we chose a151

threshold of 0.75, at which point the chronologies still appear stable (Figure S2). Sen-152

sitivity analyses (Figure S3, Table S5) show that this choice does not affect the results.153

2.3 Climate Data154

We obtained monthly precipitation and temperature data for the Chitral meteo-155

rological station (Figure 1b). Our record covers the period 1965–2018, among the longest156

records in Pakistan. Precipitation peaks in March, and the wet season spans from De-157

cember to May, contributing more than 70% of the total annual precipitation (Figure158

1c). June to August are usually the driest months. As temperatures are mostly above159

freezing, precipitations are typically in liquid form. Our study region is located in a mon-160

soon shadow area, away from summer monsoon winds, and precipitation is predominantly161

delivered by western disturbances originating from the Mediterranean Sea (Figure 1d;162

cf. Ridley et al. (2013); Iqbal et al. (2018)).163

2.4 Climate–Growth Relationship164

To determine the target reconstruction season, we calculated the correlations be-165

tween each chronology and the precipitation of each month from prior year’s January166

to current year’s December (Figure 2). All sites display a generally consistent correla-167

tion pattern between tree ring widths and precipitation, with stronger correlations ob-168

served between January and May, during the wet season. Highest correlations values are169

above 0.5, observed in March, April, and May at the CDBK, PGBK, CDNA sites, re-170

spectively. Several sites (e.g., CDBK and PGCG) also correlate significantly with pre-171

cipitation in the shoulder months (September to December). Based on these results, we172

chose the full water year (September to August) as the reconstruction target. Reconstruct-173

ing the water year precipitation provides the total annual moisture input to the basin,174

which is potentially useful for hydrological modelling and water management applica-175

tions.176

2.5 Reconstruction Procedure177

We performed principal component analysis (PCA) to account for multicollinear-178

ity. However, PCA could not be implemented directly because the chronologies start and179

end at different times, leaving data gaps. Therefore, we first imputed the data gaps us-180

ing the R package missMDA (Josse & Husson, 2016). The imputation procedure iteratively181

fills the data gaps until the principal components (PCs) obtained from the gap filled data182

converge to those of the observed data. This gap filling strategy has been implemented183

with good results in earlier reconstruction works (e.g., Stagge et al., 2018; Nguyen et al.,184

2021, 2022). The results of the gap filling procedure are shown in Figure S4.185

After gap filling, we conducted the final PCA (details in Figure S5). Only PC1 has186

an eigenvalue greater than one, but PC2 and PC3’s eigenvalues are very close to one (0.98187

and 0.89, respectively). Therefore, PC2 and PC3 were also considered candidate predic-188

tors. We then carried out backward stepwise linear regression, which resulted in PC1 and189

PC2 being retained in the final model.190

The reconstruction was cross-validated with a moving-block cross-validation pro-191

cedure, in which contiguous, rolling blocks of k years were left out for verification while192

the model was calibrated with the remaining data (Nguyen et al., 2020; Higgins et al.,193

2022). Here k was set as 14 years, or 25% of the data length. This choice leaves suffi-194

cient calibration data (40 years) while still being able to assess the model’s predictive195
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Figure 2. Correlations between each tree ring chronology and monthly precipitation at Chi-

tral from prior year’s January to current year’s December. Correlations are bootstrapped 1,000

times using the stationary bootstrap (Politis & Romano, 1994). The dots are the median and

the line ranges are the 5%–95% quantiles of the bootstrap replicates. Correlations that are not

statistically significant (α = 0.05) are faded. The months of the prior year are labelled in red.

skills on a decadal time scale. The commonly used metrics Reduction of Error (RE) and196

Coefficient of Efficiency (CE) (Cook & Kairiukstis, 1990; Nash & Sutcliffe, 1970) were197

used to assess the reconstruction quality.198

Finally, the reconstructed time series was bias-corrected using the quantile map-199

ping method from the R package qmap (Gudmundsson, 2016; Robeson et al., 2020). This200

step is important to ensure that the instrumental period’s portion of the reconstruction201

has a similar distribution to that of the instrumental data. If the distributions were not202

matched, subsequent statistical comparisons between the paleo and instrumental peri-203

ods would not be fair.204
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2.6 Trend and Drought/Pluvial Analyses205

We used quantile regression (Koenker, 2005; Maxwell et al., 2021) to analyze the206

trends in different parts of the precipitation distribution. The 1st, 5th, 50th (median),207

95th, and 99th percentiles are regressed against time to examine how the bulk and ex-208

tremes of the precipitation distribution have changed over a long term.209

For the purpose of drought and pluvial analysis, we define a meteorological drought210

event as one that starts with two consecutive years of negative precipitation anomalies,211

and ends with two consecutive years of positive anomalies (two-start two-end; cf. Her-212

weijer et al., 2007; Coats et al., 2013). The last two years with positive anomalies are213

not counted towards the drought duration. Anomalies are calculated with respect to the214

mean precipitation over the full reconstruction (1637–2018). A drought’s magnitude is215

taken as the largest precipitation anomaly during its duration. The same two-start two-216

end definition is applied for pluvial episodes where the signs of the anomalies are reversed.217

3 Results218

3.1 Model Performance219

The mean performance scores of the reconstruction across 30 cross-validation runs220

are: R2 = 0.60, RE = 0.60, and CE = 0.53. In all cross-validation runs, RE and CE are221

always positive (Figure S6). The reconstruction explains 60% of variance in precipita-222

tion, and the model shows robustly good skills under a rigorous cross-validation scheme.223

This is also reflected by the reconstruction trajectory, which matches observation closely224

(Figure 3a). However, agreement between the reconstruction and observations are not225

as good in the extremes, particularly in the wettest years. This leads to a mismatch be-226

tween the density of the reconstruction and that of the instrumental data (Figure 3b):227

frequencies of extremely dry and extremely wet years are underestimated by the recon-228

struction. This is a common limitation of tree-ring-based reconstructions (see e.g. Robe-229

son et al., 2020). There are two possible causes: first, the climate–growth relationship230

may become nonlinear at the extremes (Torbenson & Stagge, 2021); second, trees may231

not be able to capture moisture inputs beyond the soil saturation level (Meko & Gray-232

bill, 1995; Nguyen et al., 2021). These shortcomings can be mitigated by bias correction.233

We found that the bias-corrected precipitation distribution matches very closely with234

observations, much better than the uncorrected distribution does (Figure 3b).235

3.2 Four Centuries of Precipitation Variability236

In the full reconstruction (Figure 4a), we observed periods of high and low vari-237

ability. Notably, the period 1820–1920 has lower variability than other 100-year periods.238

There are two clusters of extremely wet years (above 95th percentile): 1650–1700 and239

1925–1950, and a cluster of extremely dry years (below 5th percentile) between 1775–240

1825. We observed upward trends in median and high precipitations (50th–95th percentiles),241

but these trends are not statistically significant, likely due to the large fluctuations in242

the upper part of the distribution. There are, however, significant and considerable down-243

ward trends in low precipitations (first percentile: -0.22 mm/year; fifth percentile: -0.12244

mm/year). Overall, the 1st–99th percentile range had widened between 1637–2018, sug-245

gesting that the water cycle had been intensified, with more statistically significant in-246

tensification on the low extreme. It is also important to note that despite this intensi-247

fication, the instrumental period (1964–2018) contains neither the driest nor the wettest248

year on record. The lowest measured precipitation (in 1977) is 226 mm while the low-249

est reconstructed precipitation is 202 mm, in 1815. The highest measured precipitation250

(814 mm, in 2005) was exceeded four times in the pre-instrumental period (1661: 889251

mm; 1804: 878 mm; 1924: 857 mm; and 1930: 817 mm). This suggests that the mini-252

mum and maximum measured precipitations are likely to be exceeded in the future.253
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precipitation time series for the instrumental period (1965–2018). b) Comparison between the
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calculated for the instrumental period only.

From the full reconstruction, we calculated precipitation anomalies and identified254

droughts and pluvials using the two-start two-end definition presented in Section 2.6. Note255

that these definitions allow for interspersing wet years within a drought and interspers-256

ing dry years within a pluvial, but we checked and verified that the average precipita-257

tion during each drought was negative, and the average precipitation during each plu-258

vial was positive. We identified one pluvial and seven droughts that lasted 10 years or259

more (Figure 4b). Only one of these decadal events occurred during the instrumental260

period, prompting us to look more closely at drought and pluvial duration in the past261

(Figures 4c–4d). Droughts typically last longer than pluvials: the mean drought dura-262

tion is 6 years while the mean pluvial duration is four years. Droughts are notably longer263

before 1900 than after this year, and there is a statistically significant downward trend264

in drought duration (Figure 4c). Curiously, this decrease in drought duration is not com-265

pensated by an increase in pluvial duration (Figure 4d). Upon closer examination, we266

found that the shortened droughts are closely linked to how droughts are defined. Our267

definition requires two years of positive precipitation anomalies to end a drought, and268

the occurrence of these wet-year pairs were less frequent before 1900, resulting in longer269

droughts, each of which is punctuated by several single wet years (Figures 4b, 4c). Af-270

ter 1900, wet-year pairs occurred more frequently, resulting in shorter droughts and more271

frequent pluvials, since pluvials are initiated with wet-year pairs (Figures 4b, 4d).272

The more frequent occurrences of wet-year pairs is likely a manifest of the wetting273

trends shown in Figure 4a. While the upward trends in the median and high precipita-274

tions are not statistically significant, they likely result in more frequent wet years (thus275

more frequent wet-year pairs), leading to changes in the duration and frequency of droughts276

and pluvials. It is a feature, rather than a weakness, of the drought and pluvial defini-277

tions that helped detect this shift.278
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4 Discussion and Conclusions279

Using seven tree-ring width chronologies from the Hindu Kush Mountains, we re-280

constructed five centuries of precipitation history for the Kabul River Basin (Pakistan281

and Afghanistan). The reconstruction is skillful and robust under rigorous cross-validation.282

Trend analyses of the reconstruction revealed heterogeneous changes: weak and not sig-283

nificant trends in high and median precipitations, but significant and considerable de-284

cline in low precipitations (the left tail of the precipitation distribution). The wetting285

trends, while not significant, likely led to shifts in the frequency and duration of droughts286

and pluvials. Prolonged droughts are being replaced by shorter, more frequent ones. Plu-287

vials are occurring more frequently. These heterogeneous trends show that when ana-288

lyzing hydrological changes, it is important to look at the full distribution shifts, rather289

than just the mean or median.290

Our reconstruction reveals that dry years are getting drier over the past four cen-291

turies, implying increasing drought risks. This result is disconcerting, amidst projections292

of increased precipitation and floods for the basin as reported in the literature (S. Ah-293

mad et al., 2021). The main moisture source for the basin is western disturbances in the294

Mediterranean Sea, which have been projected to occur more frequently in the Karako-295

ram (Ridley et al., 2013). Modeling studies involving hydrological models forced with296

outputs from global circulation models have projected flood intensification for the Kabul297

River as a whole (Iqbal et al., 2018), but with declining streamflow for some sub-catchments298

(Shakir et al., 2010; Naeem et al., 2013). There are still large uncertainties to be resolved299

in future projections, as discrepancies among climate models have been shown to be greater300

than calibration uncertainties in hydrological models (Wi et al., 2015).301

Even when future uncertainties are resolved and flood intensification turns out to302

be true, our findings do not contradict such projections, because floods and droughts are303

not mutually exclusive—floods act on short time scales (hours to months) while droughts304

manifest on longer time scales (seasons, years, or longer). On the contrary, our results305

corroborate that the water cycle is intensifying (Huntington, 2006; Seager et al., 2010;306

Yu et al., 2020), as evidenced by the increased variability in precipitation and more fre-307

quent swings between drought and pluvial states.308

Our two key findings are inline with those reported by previous studies for the Karako-309

ram region. Beginning with the increase in drought and flood risks, the annual precip-310

itation reconstruction developed by A. Khan et al. (2020), for instance, shows that the311

frequency of extreme climate events has been rising, with the probability of low and high312

rainfall years raising by 5% and 8%, respectively. As for the most plausible explanation—313

the intensification of the water cycle—Treydte et al. (2006) showed that such intensi-314

fication has already occurred in western Central Asia. Importantly, such change appears315

to be a long-term trend spanning across a large spatial domain.316

Our findings are of concerns for the transboundary management of the Kabul River317

Basin and, in fact, the entire Indus River system and the countries sharing it. In just318

a few years, Pakistan has faced drought emergencies (UNCCD, 2022) that have been fol-319

lowed by the 2022 record-breaking floods that displaced 32 million people (Mallapaty,320

2022). Facing both flood and drought risks, water management decisions across the Kabul321

and Indus basins need to consider climate variability at multiple time scales, and tree-322

ring-based reconstructions is a valuable source of information to serve that need.323

5 Open Research324

NCEP/DOE Reanalysis II (Kanamitsu et al., 2002) and the Global Precipitation325

Climatology Project (GPGP; Adler et al., 2018) Monthly Precipitation Climate Data326

Record (CDR) data are provided by the NOAA PSL, Boulder, Colorado, USA, from their327

website at https://psl.noaa.gov. Tree ring and Chitral precipitation data, and the328
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code necessary to reproduce this paper are available on Zenodo (Nguyen, 2022) and can329

also be cloned from GitHub at https://github.com/ntthung/chitral-precip.330
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