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Abstract

Different ionospheric climatological models such as NeQuick2 and NTCM have
been developed to mitigate the ionosphere impact on the trans-ionosphere prop-
agating radio wave. Moreover, the Neural Network (NN) is used to model and
characterize the ionosphere. However, no one has compared the performances of
NeQuick2, NTCM, and NN after adapting to GPS TEC. This study evaluates
their performances in the East-African region in 2013 and 2015. It has been done
by computing their drivers (effective ionization level, Az for NeQuick2 and ion-
ization driving index, Id for NTCM) through least-square fitting to TEC obser-
vation sense. NN-algorithm has also been trained and tested with observed TEC
used for NeQuick2 and NTCM adaptation. The annual performance test has
shown that the correlation coefficient (R) values between observed and NTCM
modeled TEC, after an adaption, are better than the corresponding values ob-
tained from NeQuick2 and NN. It also shows that the standard deviations (STD)
and root-mean-square errors (RMSE) obtained for NTCM are smaller than the
STD and RMSE computed for NeQuick2 and NN. On the other hand, the daily
performance test of now-casting and predicting showed that the NN performs
the best, followed by NTCM. However, the 1-hour prediction test showed that
NTCM performs the best among the models considered in this study.

Key Words: NTCM, NeQuick2, NN, TEC, Data ingestion, and Model Perfor-
mance.

Key points: When NTCM is assisted by extended data, it performs better than
assisted NeQuick2 and NN models.

1. Introduction

The ionosphere is part of the upper atmosphere of Earth where EUV, X-ray
radiations, and energetic particles from the sun ionize the atoms and molecules.
It is a region where free electrons occur in a high enough density to influence
the propagation of radio waves with measurable effects. It is one of the highly
variable regions of the Earth-upper atmosphere. Nowadays, society has become
reliant on systems that work with communication of the satellites whose per-
formance is dependent on the state of the ionosphere. The ionosphere causes a
significant error in single-frequency GPS navigation (Tiwari et al., 2013, Davies,
1990). The temporal and spatial variation of electron density ( total electron
content, TEC ) of the ionosphere affects the GPS signal propagation by intro-
ducing delay (slowing down and bending propagation) and scintillation ( Kouris
et al., 2004; Tulunay et al., 2004, 2006; Jakowski et al., 2012; Opperman et al.,



2007). Understanding the ionosphere dynamics and developing a model for now-
casting and forecasting its TEC might mitigate the ionosphere effect. In this
regard, the interest in specifying the ionosphere TEC is not only for climatic-like
situations but also for weather-like behavior.

Global empirical models such as IRI (Bilitza et al., 2018), NeQuick2 (Nava et
al., 2008), and NTCM (Jakowski et al., 2011) are good in capturing the median
behavior of the ionosphere. These models have been designed for scientific study
and radio communication applications. For example, NeQUick2 is adopted for
TEC prediction to improve communication quality for International Telecom-
munication Union Radiocommunication Sector (ITU-R). It is also approved to
be used for single frequency ionospheric error correction in the framework of
GALILEO (Nigussie et al., 2012 and references therein). These models have
shown different performance in their standard application in describing the ob-
served TEC; for example, Nigussie et al. (2013) have compared the performance
of NeQuick2 and IRI-2007 models in describing the East-African ionospheric
TEC and found, for both models, the modeled and experimental VTEC has
shown significant discrepancy. The performance of NTCM in its standard ap-
plications has shown also a significant discrepancy to the experimental VTEC
(Getahun and Nigussie, 2021). The weak performances of these models in their
standard applications indicate limitations in reproducing and forecasting the
local and instantaneous conditions, especially in regions of unique irregularities
are common (Scherliess et al., 2004; Sojka et al., 2007).

We have adapted Empirical models to GPS TEC in different longitudinal sectors
to upgrade their weak performances. Studies showed that TEC ingestion into
the NeQuick2 model improves its performance in reproducing spatial and tem-
poral variations of the ionosphere TEC and electron density (Nava et al., 2006,
2011; Brunini et al., 2011; Nigussie et al., 2012; Ercha et al., 2018). Similarly,
Getahun and Nigussie (2021) showed that adapting the NTCM model to quiet
days TEC in the East-Africa ionosphere improved its performance substantially.
Also, to enhance ionosphere characterization for scientific research, and mitigate
its effect on positioning and communication, the Neural Network (NN) model
has been suggested by various studies (Habarulema et al., 2007, 2009; Tebabal
et al., 2018, 2019).

For instance, Habarulema et al. (2007, 2009) and Tebabal et al. (2018) de-
veloped a regional model by training the NN algorithm to GPS TEC obtained
in South and East African sectors and compared the output of their model
with the TRI-2001 and NeQuick2 standard applications, respectively and found
that the regional NN model performed better than the IRI-2001 and NeQuick?2.
Searching model that can compute TEC faster with better performance is still
the demand for the scientific community in the discipline. Therefore, it is sub-
stenial to assess the performances of NN, NeQuick2, and NTCM models after
adapting them to ionospheric TEC observations. To our best knowledge, no
body has yet compared NN model, NeQuick2, and NTCM after and even before
adapting them to ionospheric measurements.



The main objective of this study is to compare the performance of data-assisted
NTCM with that of adapted NeQuick2 models and NN in estimating GPS -
VTEC in the East African sector. In addition, this work provides background for
the quest of developing a forecasting VTEC model in the East African equatorial
ionosphere. We used hourly VTEC from 19 GPS stations in East Africa and then
analyzed the performance of adapted NeQuick2, adapted NTCM, and trained
NN in reconstructing the VITEC.

2) Tonospheric Models used
2.1 NTCM Model

NTCM model developed at Neustrelitz, Germany institution of Communication
and Navigation, DLR provides a simple and easily accessible representation of
VTEC varying with time and location under the varying condition of solar ac-
tivity. It combines functions defined on the geographic location (latitude and
longitude), time (hour of a day and day of a year), and solar activity repre-
sented by F10.7, and it estimates VTEC (Jakowski et al., 2011). It describes
diurnal variations, seasonal variations, equatorial latitude anomaly, and solar
flux dependency using harmonic functions with 12 linear coefficients. Detail
mathematical formulations are available in Jakowski et al. (2011).

2.2 NeQuick2 Model

NeQuick2 is a three-dimensional time-dependent empirical model derived from
the profile proposed by Di Giovanni and Radicella (1990). The development of
the NeQuick2 model was at the Aeronomy and Radiopropagation Laboratory of
the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste,
Italy, and the Institute for Geophysics, Astrophysics, and Meteorology of the
University of Graz, Austria (Brunini et al., 2011; Nava et al., 2008). It is complex
compared to the NTCM model. Six semi-Epstein functions, which are defined
by maximum electron density (Nm) and height of maximum electron density
(hm) of E, F1, and F2 layers of the ionosphere as anchor points (Nava et al.,
2008), frame the model. Five of them with thickness parameters of the model
describe the lower and upper parts of E & F1 and the lower part of the F2 region.
The sixth function with the height-dependent thickness parameter formulates
the topside ionosphere. Positions of receiver and satellite, time, and solar flux
(sunspot number) are inputs of the NeQuick2 model, while the electron density
profile is the output. TEC is also estimated numerical integration of the electron
density along a path joining the receiver and satellite.

2.3 Neural Network (NN)

The neuron cells of the biological nervous system take inputs, process them,
and produce a response. Similarly, a neural network (NN) is an information
processing mathematical structure designed for non-linear data-driven estima-
tion (Haykin, 1999; Habarulema et al., 2007; Tebabal et al.,2018). NN consists
of parallel computing basic units (nodes). These nodes are organized as input
layer, the hidden layers, and the output layer (see Figure 1).The data fed to



the nodes of the input layer pass to the nodes of hidden layer/s and then to
the output layer by computing output at each node using transformation and
activation functions. The transformation function is a simple weighted linear
combination of the values of nodes of the previous layer. The activation function
determines the output of a node using the transformation function results as
input. Consecutive operations of these functions continue from the first hidden
layer to the output layer to compute the model output. Weights, that connected
nodes of adjacent layers, and biases of a node are updated through backprop-
agation of error (the difference between model output and target data) during
training. The input layer has nodes equal to the number of the independent
variables of the problem. The output layer nodes are the same as the dependent
variables of the problem. The network might have one or more hidden layers
with some nodes determined from the model performance for a particular data.
For example, this study includes the sine of hours of the day, cosine of hours of
the day, the sine of days of the year, cosine of days of the year, geographic lati-
tude, longitude, and solar index represented by F10.7 for independent variables.
The dependent variable is VTEC. Thus, the nodes of the input layer are seven,
and in the output layer, is only one. In this study, we used NN consisting of
two hidden layers of 8 and 6 nodes for the training. We determine the number
of hidden layers and nodes by trials for the best performance.

Input Hidden Output
layer layer layer

g ¥

T3

Figure 1: Schematic of neurons in a sample of single hidden layer feed forward
neural network.

The feeding forward and backpropagation process minimizes the error (the dif-
ference between the observed and modeled values) to a tolerable level. The
training is to reduce the mean square error defined in equation 1.

, o2
Ep= %X, (VTECg, — VIECyy) , (1)

where, N is the number of observations; VTECibS and VTEC;IN are observation
and model VTECs, respectively.



This study adopted the feed-forward neural network with Bayesian backprop-
agation (MacKay, 1992). The method offers a significant advantage over the
standard backpropagation algorithm by reducing the lengthy cross-validation
( Burden and Winker, 2009). In the Bayesian regularization algorithm, the
objective function includes two terms as expressed by equation 2.

J(W) = aE, + BEp . (2)

Here, o and (8 are parameters used for regularization that will be determined
from Bayesian computation (MacKay, 1992). E,, = %Zjv w,? is weight decay.

w

The Bayesian approach considers the weights as random variables. So the den-
sity function is defined by Baye’s rule as:

_ p(D/W,0,8,M)p(W/c,3,M)
P(W/D,a,ﬂ,M)— p(D/a,B3,M) » (3)
where, W is a vector of weight; D is data used and M is the network. Moreover,
P(D/W,a, B, M) is likelihood function of the data given such as W and M.
P(D/a, 8, M) is the normalization function and P(W /«, 8, M) is the priority
density function that represents our prior believes.

By assuming Gaussian distribution errors in the training, the probability density
function becomes

PW/D,a,p, M) = meiL](W) - (4)

In this framework, the optimal weight is equivalent to minimizing the objective
function.

For details of Bayesian regularization, interested readers can see different stud-
ies (Foresee and Hagan, 1997; MacKay, 1992; Duhoux et al., 2001; Khan and
Coulibaly, 2006; Burden and Winkler, 2009; Soudry and Meir, 2013; Hernandez-
Lobato and Adams, 2015; Ghosh and Doshi-Velez,2017; Tebabal et al.2019 ).

3 Method and data
3.1 Method
3.1.1 Data Ingestion

Both NTCM and NeQuick2 model VTECs are a monotonic function of the
10.7 cm radio flux (F10.7). Local and instantaneous values of F10.7 defined
for NeQuick2 effective ionization (symbol Az) and NTCM ionization driving
index (symbol Az) are F10.7 values that minimize the difference between an
experimental and the corresponding modeled VTEC. Many works of literature
(Nigussie et al., 2012, Ercha et al., 2018, Nava et al., 2006, Getahun and Nigussie,
2021) reviewed that Id or Az is estimated by minimizing the root mean square
error (RMSE) defined in equation 5.

N 2
RMSE (Id or Az )= \/ ! (VTECmZ.(IdJ\;)r Az)—VTECo,) . (5)




where, VTECm, (Id or Az) is the model VTEC computed as function of Id for
NTCM or Az for NeQuick2, VITECo, is measured VITEC, and N is the number
of satellites visible in an epoch of time. One of the values of F10.7 in a range
used to run NTCM or NeQuick2, which minimizes equation (5) for each hour
of measurements, is taken to be the Id or Az of the hour of the day. Then the
model VTEC after data ingestion is calculated using the Id or Az.

3.1.2 Neural Network Training

The training of the NN is a process of calculating errors (the difference between
the NN modeled and observed VTECs) by backpropagating them to calculate
the gradient with the weights, then adjusting and updating them in an itera-
tive approach. The data ( inputs and the targets) are used for training and
testing the model. With the training data, the network runs to determine the
error. This error then propagates from the output layer through hidden layers
to the input layer for updating weights and biases. Fausett (1994) discussed
the technical details of the backpropagation algorithm well. We use different
statistical parameters for the analysis of the error: the root means squared er-
ror (RMSE), the mean absolute error (MAE), standard deviation (STD), and
correlation coefficient (R) (Pooleand McKinnell, 2000; Habarulema et al., 2009;
Lamming and Cander,1999; Razin et al., 2016).

We used the inputs and targets data for training (100%) and simulating (100%).
The input data day of the year (DOY) and hour (HR) are converted into sine
and cosine to make sure that the data is cyclic continuous (Habarulema et al.,
2009; Tebabal et al.2019).

DNS = sin (229Y) (6) DNC = cos (229Y) (7)

HRS = sin (288) (8) HRC = cos (222E) (9)
where DOY is the number of day in the year and HR is the hour in the day.

We considered days of the year (DOYs) in 2013 and 2015 with an Ap index of
less than 15. So the work is limited to non-magnetic storm conditions.

3.1.3 Vertical TEC mapping Techniques

We used NTCM, NeQuick2, NN and direct VT'EC interpolation to develop maps
of VTEC for the East African region. We included Nineteen GPS stations’ data
(see Table 1 for their coordinates) for data ingestion (NTCM &NeQuick2 mod-
els), for training the NN and interpolation. The Id and Az values estimated at
each IPP for every hour using equation (5) in the IPP plane are represented by
a function that varies in latitude and longitude. The polynomial used is formu-
lated from linear variation in longitude () and quadratic variation in latitude
(), and it is expressed by

Id (9,A) = ag + a9 4 agA + a3+ a,9* (10)

where, the a;s are coeflicients of the polynomial and they are estimated from
the Id values applying the least-square fitting technique. Once these coefficients



are estimated, equation (10) has been employed to estimate the map of Id to
drive NTCM to compute the map of VTEC after data ingestion. And then,
the VTEC has been estimated at any latitude and longitude to produce the
VTEC map. The corresponding VIEC for NeQuick2 models has been mapped
by running it in the same region using Az values derived using equation 10.
Similarly we ran NN-model trained by data used in equation (10) for mapping
VTEC using NN. The models performances in estimating the VTEC map has
been compared with observed VIEC map.

3.2 Data

The GPS receivers in East Africa create a platform to check the performance
of global models, develop local models, and study the ionosphere in the East
African sector. In this particular study, we used 19 receivers in the region.
Tablel shows their geographic locations. We calibrated the GPS RINEX data
using the technique discussed in Ciraolo et al. (2007). We computed the VTEC
from the STEC mapping function described in Mannucci et al. (1998).

Table 1: Geographic and geomagnetic location of the GPS stations used for the

study.

Stations Code

Geographic

Geomagnetic

Dip —latitude

Bahir Dar BDMT

Latitude (°N)
11.60

Longitude (°E)
37.36

Latitude (°N)
8.07

Longitude (°E)
111.48

Ambo ABOO 8.99 37.81 5.44 111.50
Assosa ASOS  10.05 34.55 7.00 108.48
Addis Ababa ADIS 9.05 38.77 5.39 112.44
Arba Minch  ARMI  6.06 37.56 2.63 110.78
Asab ASAB  13.06 42.65 8.75 116.86
Asum ASUM  -0.62 34.62 -3.49 106.82
Debark DEBK 13.15 37.89 9.58 112.24
Ginir GINR 7.15 40.71 3.21 114.05
Malindi MAL2 -3.00 40.19 -6.74 111.96
Mbarara MBRA -0.60 30.74 -2.83 102.99
Eldoret MOIU  0.29 35.29 -2.70 107.63
Nazret NAZR  8.57 39.29 5.01 112.9

Negele NEGE 5.33 39.59 1.59 12.66

Nirobi RCMN -1.22 36.89 -4.45 108.97
Robe ROBE 7.11 40.03 3.7 113.37
Seraba SERB  12.51 37.02 9.08 111.28
Shimsheha SHIS 11.99 38.99 8.26 113.12
Sheb SHEB  15.85 39.05 12.06 113.81

3.63
0.78
1.50
0.98
-2.53
5.93
-10.34
5.44
-0.88
-12.16
-10.89
-9.24
-0.51
-3.06
-10.67
-1.02
4.61
4.29
8.60

For the multipath effect screening, we avoided data of elevation angle below 20°.
The VTEC data are taken for relatively quiet days of the years 2013 and 2015.
For both data ingestion and NN training, we used VI'EC at each hour of the day.



However, for the training NN, we prepared the data as inputs and targets. The
input consists of the factors that determine the variation of VTEC. The cosines
and sines formulated by equations (6-9) refer to seasonal and diurnal variations
of VTEC. In addition, the input included the latitude and longitude of IPP, and
the daily F10.7, which represents the solar activity. Since we limited our study
to relatively quiet days, we did not consider the geomagnetic index. The target
is the VTEC at each hour. For annual performance, we used 2015 data at some
sample stations (tablel) for training and simulating. But for mapping, we used
DOY 110 in 2013 data at stations mentioned in table 1. For diurnal variation,
we chose only four days of the year 2015. For predication , the DOY 90 VTEC
data is used.

4 Results and Discussion
4.1 Annual Performance of NTCM, NeQuick2 and NN models

We computed the NeQiuck2 and the NTCM VTEC using Ids and Azs and
simulated NN after trained for the data used. The left panels of Figure 2 show
the scattered plots of modeled VTEC versus observed VTEC for the Addis
Ababa station in the year 2015. Plots in the panles are for NN, NeQuick2, and
NTCM from top to bottom in order. The correlation coefficients determined for
NTCM, NeQuick2, and NN models are 0.980, 0.953, and 0.956 in their order.
The right panels present the corresponding histograms of error distributions
with the standard deviation and root mean squared error (RMSE). As shown
in the figure, the RMSE of NTCM (2.948 TECU) is much smaller than that of
both the NeQuick2 (4.494 TECU) and NN models (4.372 TECU), which implies
that NTCM performs better than the other models.

The NeQuick2 model shows relatively poor performance. The histograms of
residuals approximately present symmetrical distribution on both sides of zero
that demonstrates the characteristics of a normal distribution. In general, the
scatter plots and the histograms depict that the models VTEC agrees with
GPS_VTEC. However, their degrees of agreement are different. The NTCM
model agrees the most. The NN model agrees better than that of the NeQuick2
model.
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Figure 2: Scatter plot of modeled VITEC values versus observed GPS-VTEC
(marked black dot) with the linear fit (red line) (left panels) and histogram
of difference between model -VTEC and GPS-VTEC (right panels) for Addis
Ababa station in 2015.



Figure 3 is the same as Figure 2 but for Arbaminch station. The results are
similar to the Addis Ababa station, except for the numerical difference in the
values of R, STD, and RMSE. Nevertheless, the NeQuick2 model performed
a little bit better than the NN model in this station. R (STD & RMSE) for
NTCM, NeQuick2 and NN models are 0.977 (2.107 & 2.107), 0.962 (3.561 &
3.564) and 0.954 (3.776 & 3.776), respectively.
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Fgure 3: Scatter plot of modeled VTEC values versus observed GPS-VTEC
(marked black dot) with the linear fit (red line) (left panels) and histogram of
difference between model -VTEC and GPS-VTEC (right panels) for Arbaminch
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station in 2015.

Table 2: Statistical analysis summary over different stations in 2015:estimated
R-values, STDs and RMSEs between GPS-VTEC and NTCM, NeQuick2 and
NN -VTEC.

Stations Models R-values STDs RMSEs

ABOO NTCM 0.979 2.654 2.654
NeQuick 0.942 3.742 3.764
NN 0.949 4.063 3.958
MIOU NTCM 0.937 4.206  4.206
NeQuick 0.930 4.432  4.432
NN 0.924 4.854  4.667
DEBK NTCM 0.965 3.579  3.579
NeQuick 0.938 4.789  4.790
NN 0.944 4.485  4.449
ASOSA NTCM 0.979 2.682 2.682
NeQuick 0.955 3.981 3.997
NN 0.954 4.067 3.972
SHIS NTCM 0.972 3.354 3.354
NeQuick 0.952 4.467  4.470
NN 0.959 4.066 3.981
ASAB NTCM 0.964 3.607 3.607
NeQuick 0.901 6.209 6.246
NN 0.942 4.558  4.423
GINR NTCM 0.984 2.250  2.250
NeQuick 0.967 3.298 3.303
NN 0.958 3.679  3.602
NEGE NTCM 0.981 2.459  2.459
NeQuick 0.962 3.498 3.505
NN 0.955 3.810 3.723
RCMN NTCM 0.935 4.135 4.135
NeQuick 0.936 4.126 4.132
NN 0.917 4.905 4.696

For further verification of the performance of the models, we used nine more
stations. Table2 summarizes the statistics of each station and each model. The
correlation coefficients (shown in column 3 of Table 2) show that the models
captured most of the experimental values. It ranges from 0.901-to 0.984.

However, the correlation coefficients for NTCM are better than the other two
models. In addition to R, we used STD and RMSE to measure the performance
of the models. In general, the performance of the models measured by STD and
RMSE of the errors ranges to reasonable values. RMSEs range from 2.25-to
6.246. STDs are in the range from 2.25-6.209 TECU. These imply that the
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models work well relative to the GPS observed VITEC. However, these values
are much smaller for NTCM than for the other two models (NeQick2 and NN).
The minimum (the maximum) STD for NTCM, NeQuick2, and NN are 2.25
(4.206) TECU, 3.988 (6.209) TECU, and 3.602 (4.696) TECU in their order.
These results are comparable with the previous studies (Nigussie et al., 2012;
Getahun and Nigussie, 2021; Tebabal et al.,2018) for these models, except for
differences resulting from the data used.

4.2 VTEC Maps using Interpolation, NTCM, NeQuick2 and NN Models

Figures 4-6 display sample scatter plots (first column) of GPS observed VTEC
and corresponding VTEC maps simulated by the models: Polynomial interpo-
lation (second column), NTCM after adaptation (third column), NN (fourth
column), and NeQuick2 after adaptation (fifth column) for DOY 110 in the year
2013 at 2hrs gap from 2-18 UTCs. In general, the models reproduced VTEC
maps that capture the behavior of the scatter plots (experimental VTEC).
However, they showed a difference in their performances. Since the scatter plot
(experimental VTEC) for 2 UTC does not show much variation, the models’
performances are unequivocal for these time. A littel variation for 4, 6, 8 &
18 UTCs experimental TEC have been reflected in the models (interpolation,
NTCM, NN, and NeQuick2) maps with little difference among the performance
of the models. However, for 10-16 UTCs, their performance differences are
significant for the big experimental VTEC variation with geographic location.
If we closely look at the plots, the polynomial interpolation and NTCM model
results are much better in fitting to the scatter plots than the results of the
NN and the NeQuick2 models. All approaches captured the EIA observed
at 10, 12, 14, and 16 UTCs. However, there is some difference in clarity of
ETA among models. The interpolation and NTCM model show clearer ETA
observed in the experiment for these time intervals but the NN and NeQuick2
models have a little bit exaggerated the crests of EIA in the North and South
hemisphere, which are depicted in the scatter maps (experimental). At 18
UTC the interpolation and NTCM magnified the observed EIA in the scattered
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Figure 4: Scatter plot of experimental VTEC versus latitude and longitude ,
from top to bottom at 2, 4 & 6 UT ( left ) , and the corresponding VITEC map
from polynomial function (2°¢ column from left ), NTCM derived by Id map
(3*4 column from left ), NN ( 4F column from left ) and NeQuick2 derived by
Az ( 5" column from left ) on DOY 110 of 2013.
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Figure 5: Scatter plot of experimental VITEC versus latitude and longitude ,
from top to bottom at 8,10 & 12 UT ( left ) , and the corresponding VTEC
map from polynomial function (2°¢ column from left ), NTCM derived by Id
map (3' column from left ),NN ( 48 column from left ) and NeQuick2 ( 5"
column from left ) on DOY 110 of 2013.
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Figure 6: Scatter plot of experimental VTEC versus latitude and longitude ,
from top to bottom at 14,16 & 18 UT ( left ) , and the corresponding VTEC
map from polynomial function (2°¢ column from left ), NTCM derived by Id
map (3" column from left ),NN ( 4*® column from left ) and NeQuick2 derived
by Az ( 5" column from left ) on DOY 110 of 2013

4.3 NTCM, NeQuick2 and NN diurnal performances

Panels (a-d) of Figure 7 show the diurnal variations of observed (*red), NTCM
modeled (blue), NeQuick2 modeled (*green), and NN modeled (-.black) VTEC
at Asab station for the DOYs 80, 170, 266, and 350 in 2015 respectively. The
number of observed VTEC at a particular UT might be more than one since it is
at IPPs of lines that join the receiver with different possibly observing satellites
at the UT. As we can see from the graphs, the models generally reconstruct
the pattern of diurnal variation of observed VITEC throughout hours of the
day. However, there is a difference in their capability to reproduce VTEC,
particularly at around 10 UTC. NTCM and NN models retrieve the VTEC for
almost all hours. However, the NeQuick2 model can capture diurnal variations
of VTEC for intervals of UTC before and after 8-14 UTCs except for DOY 170.

The second, third, and fourth column panels of Figure 7 display the frequency
distributions of mis-modeling of NTCM & NeQuick2 after data ingestion and
NN in their order, including the means () and standard deviations () at the
Asab station. The mean error range for the NTCM model is 0.02-0.12 TECU.
However, for NN and NeQuick2, the mean error ranges are 0 TECU and -0.01
-0.34 TECU, respectively. The standard deviations of errors for the NTCM
model range from 2.09 to 5.33 TECU. For the NeQuick2 model it is 3.48 -
4.67 TECU, but for NN, it is 1.20 -2.12 TECU. In general, the means of mis-
modeling of NeQuick2 are considerably higher than the means of mis-modeling
NTCM and NN. The negative sign of means indicates that the models averagely
overestimated the experimental. The standard deviations of mis-modeling for
NN are less than their values for NeQuick2 and NTCM (see Figure 7). The
NTCM and NN estimate the observation VITEC better than NeQuick2.
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Figure 7: Diurnal variation of experimental and modeled (NTCM,NN and
NeQuick2) VTEC (left); frequency distribution of mis-modeling of hourly VTEC
(second column NTCM, third column NN and fourth column NeQuick2) at Asab
station for DOY 80,170,266 and 350 in 2015.

Similarly, we used GPS data from different stations (see Figure 8 and Table
3). Panels (a-b) in Figure 8 indicate that the modeled VTECs agree with
the experimental TEC. The frequency distributions of mis-modeling of NTCM,
NN and NeQuick2 are almost symmetric near 0 TECU showing a Gaussian
distribution. The means and standard deviations, presented in Figure 8 (second
column NTCM, third Column NN, and fourth column NeQuick2) and Table 3,
quantify the extent of mis-modeling. The means and standard deviations of
mis-modeling for NN are significantly less relative to NTCM and NeQuick2. In
these stations, NTCM showed better performance than NeQuick2 as NeQuick2
averagely overestimated the experimental VTEC.
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Figure 8 : Diurnal variation of experimental and modeled (NTCM,NN and
NeQuick2) VTEC (left); frequency distribution of mis-modeling of hourly VTEC
(second column NTCM, third column NN and fourth column NeQuick2) at
Arbaminch station for DOY 80,170,266 and 350 in 2015.

Table3: Means and standard deviations of mis-modling of NTCM, NeQuick2
and NN -VTEC for sample stations

stations Models NTCM NeQuick2 NN

ADIS DOY Mean STD Mean STD Mean STD
80 -0.01 4.17 -0.18 475 0.00 2.79
170 0.02 2.50 0.35 3.15  0.00 1.76
266 -0.02 2.48 -0.02 376 -0.01 1.74
350 0.05 3.21 -0.76  4.28 0.01 2.48

DEBK 80 0.03 4.30 -0.13  4.12  0.00 2.36
170 -0.01 2.04 -0.06 3.15 0.01 1.19
266 0.01 3.83 -0.32 436 0.01 2.11
350 0.02 3.20 0.39 4.13  0.01 1.35

MOIU 80 -0.01 6.08 -0.01  4.58 0.00 2.21
170 -0.06 3.63 0.05 340 -0.01 1.61
266 0.01 4.72 -0.16  3.94 0.01 1.99
350 0.04 3.08 -0.83 275 0.00 1.55

ASOS 80 -0.04 3.47 -0.14  4.14 0.00 1.68
170 0.00 1.59 0.01 2.33  0.00 1.24
266 0.00 2.60 -1.34 431 0.01 1.32
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stations Models NTCM NeQuick2 NN
350 0.05 2.11 -0.38  3.35 0.00 0.94

4.4 Comparison of NTCM, NeQuick2, and NN performances in predicating
VTEC

The primary aim of models is to predict the variation of a parameter ahead of
time; therefore, we analyzed the NTCM, NeQuick2, and NN model’s prediction
capabilities at 1hr, 2hrs, 3hrs, and 4hrs ahead, of DOY 90 in 2015 at Addis
Ababa station. We used the Id (for NTCM) and the Az (for NeQuick2) at
1hr, 2hrs, 3hrs, and 4hrs ahead to determine the models VTEC. Similarly, after
training the NN model for daily VTEC, its 1hr, 2hrs, 3hrs, and 4hrs prediction
capability has been assessed. Figure 9 shows the predicted VITEC with the
observed VTEC. Table 4 presents standard deviations of the TEC prediction
errors of these models. For 1hr ahead prediction, the performance of NTCM
is better than that of NN and NeQuick2 (see Table 4). However, as the time
of prediction increases (2hrs, 3hrs, and 4 hrs ahead), their prediction ability
reduces. But, the errors for NTCM became higher than for NeQuick2 and NN
at two hours (and above) predication. Generally, the model’s performances
suffer during mid-day time (from 4-15 UTC) as the errors are higher for this
time interval.

Time intervals(in hrs) Error STD in TECU for Models

NTCM NeQuick2 NN
1 8.96 11.11 10.79
2 15.63 14.13 15.23
3 21.80 16.56 19.28
4 27.91 18.83 22.92

Table 4: hourly prediction error STD for NTCM, NN and NN models
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Figure 9: Diurnal variation of experimental and predicted model VTEC at Addis
Ababa station for DOY 90 in 2015. Panels a,b,c and d are lhr,2hrs,3hrs and
4hrs time of prediction respectively.

Figure 10 shows the daily variation of standard deviation (STD) of mismodel-
ings of VTEC for ten consecutive days. For both now casting and one day ahead
prediction, the performances of NN and NTCM are relatively better than the
performance of NeQuick2. Generally, Table 4 and Figure 10 show their perfor-
mances suffer more for hourly prediction than daily prediction. It agrees with
the expectation that hour-to-hour variation of the state of the ionosphere is
higher than that of day to day for no random irregularities.
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Figure 10: Daily variation of error std a) for now casting VITEC & b) for one
day head prediction VTEC at Addis Ababa station in 2015.

To summarize, the performance of NN highly depends on the time length of
the data used. In the case of extended time data, as NN tries to capture the
dominant variation by ignoring small changes in the data, its performance is
reduced. However, in the case of short-time data, it reproduces more details
of changes in VTEC, and therefore, its performance becomes high. As data
ingestion works point by point for the data used, the performance of NTCM
and NeQuick2 models cannot be much affected by the data used. Since we used
extended data for the annual case, NN’s performance is relatively weaker than
NTCM’s and comparable to NeQuick2’s. However, for VITEC mapping, NN
could perform better than NTCM and comparably to NeQuick2. For diurnal
nowcasting, NN is best to capture the experimental TEC, which may be due to
the limited data variation. For the case of one day ahead prediction, NN showed
better performance than that of the other models. However, for the prediction
of an hour ahead, its performance is comparable to the other models.

5 Conclusions

As the ionosphere empirical models such as NeQuick2, NTCM, and NN have var-
ious mathematical expressions, their complexity and performances in describing
the ionosphere of different sectors are not the same. However, there is a demand
for a simple, fast and effective model to specify the state of the ionosphere. We
have evaluated the GPS- VTEC-assisted NTCM model performance compared
to the adapted NeQuick2 and NN models in characterizing the East African
ionosphere. We have assessed their annual, diurnal, mapping, and prediction
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performances. The result showed that the NTCM model performs better than
the NeQuick2 model and NN for annual VTEC reconstructions. The correlation
coefficient (R) values for the NTCM model and observed VTEC are higher than
for NN and NeQuick2. The STDs and RMSEs for NTCM are smaller than for
NN and NeQuick2. In the case of diurnal, NN is the best model for capturing
experimental VTEC. However, for mapping VTEC the performance of NN is
better than NTCM and comparable to that of the NeQuick2 model. The mod-
els could capture the observed EIA in the region. However, NN and NeQuick2
models capture the EIA more clearly than NTCM and the Interpolation tech-
nique. For hourly prediction, their performances are weaker than their daily
prediction performances. Overall, the performance of NN varies with the extent
of the data used. Therefore, it seems that, since NTCM is simple & fast to use
and its performance when it is assisted by GPS data is comparable to (in some
cases better than) other models, it might be a good candidate model to study
the East-African ionosphere.
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