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Abstract 15 

Conceptual hydrological models are practical tools for estimating the performance of green roofs, 16 

with respect to stormwater management. Such models require calibration to obtain parameter 17 

values, which limits their use in cases when measured data are not available. One approach that 18 

has been thought to be useful is to transfer parameters from a gauged roof calibrated locally (i.e., 19 

single-site calibration) to a similar ungauged roof located in a different location. This study tested 20 

this approach by transferring calibrated parameters of a conceptual hydrological model between 21 

sixteen extensive green roofs located in four Norwegian cities with different climatic conditions. 22 

The approach was compared with a multi-site calibration scheme that explores trade-offs of model 23 

performances between the different sites. The results showed that single site calibration could yield 24 

optimal parameters for one site and perform poorly in other sites. In contrast, obtaining a common 25 

parameter set that yields satisfactory results (Kling Gupta Efficiency >0.5) for different sites, and 26 

roof properties could be achieved by multi-site calibration. The practical implications of multi-site 27 

calibration have been discussed in the context of stormwater management. The multi-site 28 

calibration scheme is recommended not only for transferability amongst roofs in different sites but 29 

also when applying conceptual models for evaluating climate change scenarios in which the 30 

climatic variables are significantly different from the ones used for calibration.   31 

1 Introduction 32 

In the last few decades, green roofs have emerged as a sustainable stormwater infrastructure option. 33 

Green roofs reduce the volume and intensity of stormwater runoff entering the sewer network, 34 

through retention and detention processes (Hamouz et al., 2018; Johannessen et al., 2018; Stovin 35 

et al., 2013). Furthermore, green roofs reduce the urban heat island effect (Susca et al., 2011); 36 

enhance urban biodiversity (Wooster et al., 2022); improve the visual amenity of urban catchments 37 

(Jungels et al., 2013); reduce the energy consumption of buildings (Jim, 2014; Refahi & Talkhabi, 38 

2015).  39 

Hydrological models are practical tools for evaluating the efficiency of various design 40 

configurations of green roofs under different climatic conditions. Thus, they can assist 41 

practitioners aiming at quantifying the hydrological impact, i.e., retention and detention processes, 42 

of green roof implementation in urban catchments. Numerous hydrological models of green roofs 43 

have been developed and tested in the literature. The models can be classified into physically-44 

based (Bouzouidja et al., 2018; Yanling Li & Babcock, 2015; Palla et al., 2009), conceptual 45 

(Abdalla et al., 2022; Palla et al., 2012; Vesuviano et al., 2014) and data-driven (Abdalla et al., 46 

2021). The use of conceptual hydrological models has been favored by many studies due to their 47 

simplicity, accuracy, and computational efficiency (Abdalla et al., 2022; Palla et al., 2012).         48 

Conceptual hydrological models apply simplified equations to simulate the hydrological processes 49 

of green roofs. Due to the simplification of these equations, they depend on empirical parameters 50 

that are not physically measurable. Therefore, calibration is required to obtain optimal values for 51 

these parameters. The high dependency on calibration limits the application of conceptual models 52 

in cases when measured data are not available for calibration. Several studies have attempted to 53 

obtain explicit relationships between conceptual model parameters and physically measurable 54 

characteristics of green roofs. For instance, a handful of studies concluded that conceptual model 55 

parameters representing internal green roof storages could be estimated from the field capacity of 56 

green roof substrates (Abdalla et al., 2022; Stovin et al., 2013), which can be physically measured 57 
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(Fassman & Simcock, 2012). Moreover, parameters controlling flow movements and dynamics 58 

within the green roof layers were found to be correlated with roof properties such as the depth of 59 

the substrate layer (Soulis et al., 2017; Yio et al., 2013),the  drainage layer type, and the slope of 60 

the roof (Vesuviano & Stovin, 2013). However, no explicit formulas were obtained that could 61 

estimate flow parameters solely from the physical roof characteristics.           62 

Few studies have attempted to transfer calibrated models amongst similar roofs located in different 63 

cities, with the premise of physical similarity, a common approach in predicting flows for 64 

ungauged basins (Oudin et al., 2008; Tsegaw et al., 2019). For example, Johannessen et al. (2019) 65 

tested the transferability of calibrated parameters of the SWMM model (Rossman, 2015) between 66 

similar green roofs located in four Norwegian cities with different climatic conditions. However, 67 

only calibrated models from wetter cities (higher amount of precipitation) showed to yield 68 

satisfactory modelling results for the green roofs of the drier cities, but not vice versa, indicating 69 

an influence of climatic inputs on model parameters. Abdalla et al. (2021) attempted to transfer 70 

trained machine learning models between the same set of similar green roofs located in four 71 

Norwegian cities. They found the transferred models to yield satisfactory results only between 72 

cities with similar rainfall events characteristics.  73 

The effect of climatic variables on conceptual model parameters has not been thoroughly discussed 74 

in the context of green roof modelling. It is particularly important not only for transferring 75 

calibrated parameters of conceptual models amongst similar green roofs located in different 76 

locations but also for utilizing calibrated conceptual models of green roofs for evaluating climate 77 

change scenarios in which the climatic variables are significantly different from the ones used for 78 

model calibration. Abdalla et al. (2022) tested and evaluated the performance of a conceptual green 79 

roof model for 16 green roofs located in the Norwegian cities. They discussed the effect of climatic 80 

data on the calibrated model parameters, in particular the flow parameters. They found high values 81 

of flow parameters for cities that receive rainfall events with higher amount and intensity and have 82 

shorter anticipant dry weather periods (ADWP), in comparison to cities with low precipitation 83 

amounts and longer ADWP. They acknowledged the difficulties of estimating flow parameters 84 

from climatic conditions.  85 

Many studies that conducted hydrological modelling of large basins found the performance of 86 

conceptual models to reduce significantly when evaluated using different climatic conditions 87 

compared to the calibration period (Coron et al., 2012; Hartmann & Bárdossy, 2005). Fowler et 88 

al. (2016) discussed the effect of the calibration method on producing robust parameter sets that 89 

are applicable for contrasting climatic conditions. They recommended a calibration strategy based 90 

on multi-objective optimization to explore trade-offs between model performance in different 91 

climatic conditions.  Similarly, Saavedra et al. (2022) found the hydrological models in their study 92 

to produce poor flow simulations in contrasting climatic conditions from calibration periods and 93 

proposed a model calibration strategy based on multi-objective optimizations for reducing the 94 

dependency of model parameters on climatic inputs.    95 

A multi-objective optimization aims at approximating a Pareto front that contains a set of optimal 96 

solutions. In early hydrological modelling studies using Pareto front, the Pareto front was 97 

estimated by aggregating objective functions into one scalar value and running a series of 98 

independent optimization runs of the scalar value with varying weights of the objective functions 99 

(H. Madsen, 2000; Henrik Madsen, 2003). The development of algorithms that are customized for 100 
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multi-objective problems, such as the nondominated sorting genetic algorithm II (NSGA-II) (Deb 101 

et al., 2002) and the multi-objective Shuffled Complex Evolution Metropolis (Vrugt et al., 2003) 102 

allows for efficient estimation of Pareto front. In recent years, several multi-objective algorithms 103 

were developed and evaluated in hydrological modelling studies. Examples include the multi-104 

objective Artificial Bee Colony optimization algorithm (Huo & Liu, 2019), the differential 105 

evolution with adaptive Cauchy mutation and Chaos searching (MODE-CMCS) (Liu et al., 2016), 106 

and the multi-objective Bayesian optimization (M T M Emmerich et al., 2006). Some studies 107 

attempted to compare the performance of algorithms in the context of hydrological modelling (Guo 108 

et al., 2014; Wang et al., 2010).  109 

This research sought to investigate a multi-objective optimization scheme for multi-site 110 

calibrations of sixteen extensive green roofs located in four Norwegian cities with different 111 

climatic conditions. The primary aim of this study is to demonstrate the possible advantages of 112 

multi-site calibration over single-site calibration for conceptual hydrological models of green 113 

roofs. Moreover, the study provides insights on the practical implication of multi-site optimization 114 

for urban stormwater management.  115 

2 Green roof data 116 

Sixteen extensive green roofs located in four Norwegian cities were used in this study. The cities 117 

are Bergen, Sandnes, Trondheim and Oslo. Bergen city receives the highest amount of annual 118 

precipitation of 3110 mm, followed by Sandnes city which receives annual precipitation of around 119 

1700 mm. Both Sandnes and Bergen are classified as temperate oceanic climate (Cfb), according 120 

to Köppen–Geiger climate classification (Kottek et al., 2006). Trondheim is the northmost city 121 

with annual precipitation of around 1100 mm and has a subpolar oceanic climate (Dfc). The driest 122 

city in the study is Oslo, receiving annual precipitation of 970 mm, with a temperate oceanic 123 

climate (Cfb). A comparison between the rainfall characteristics of the four cities can be found in 124 

Abdalla et al. (2021).     125 

The green roofs vary in geometries (i.e., width, length, and slope) among the four cities. According 126 

to similarities in configurations, they were categorized into five types, as shown in Table 1. 127 

Precipitation, outflow, and temperature were collected between 2015-2017 in one-minute 128 

resolution. The roofs in Oslo have a long record of data (from 2011-2017). The reader is directed 129 

to Johannessen et al. (2018) for more details about field measurements and data pre-processing.   130 

3 Materials and Methods 131 

3.1 The rationale for multi-site calibration 132 

The performance of the calibration is typically assessed via objective functions such as the Nash 133 

Sutcliffe efficiency (Nash & Sutcliffe, 1970) and the Kling Gupta efficiency (Gupta et al., 2009). 134 

A single site calibration yields solutions that are near-optimal for the specific site. Many 135 

optimization algorithms used in hydrological modelling are stochastic, such as the shuffled 136 

complex evolution (SCE-UA) (Duan et al., 1992), resulting in different solutions for the same site 137 

and calibration setup. When these solutions are applied at another site with contrasting climatic 138 

conditions, they might result in poor solutions reflected by low values of objective functions. This 139 

was reported by Johannessen et al. (2019), attempting to transfer unchanged model parameters 140 

between similar green roofs located in different locations. On the other hand, the multi-site 141 

calibration explores trade-offs between model performance in different climatic conditions. 142 
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 145 

Table 1: Green roofs geometries and configurations 146 

Roof 

type 

Roof ID Geometry Configuration 

Width 

(m) 

Length 

(m) 

Slope 

(%) 

Substrate Drainage mat 

Type A BERG1 1.6 4.9 16 VM (10 mm) TR (10 mm) 

OSL3 2 4 5.5 VM (10 mm) TR (10 mm) 

SAN1 1.6 5.3 27 VM (10 mm) TR (10 mm) 

TRD1 2 7.5 16 VM (10 mm) TR (10 mm) 

Type B BERG3 1.6 4.9 16 VM (10 mm) + MW (50 mm) EPS (75 mm) + TR (5 mm) 

OSL2 2 4 5.5 VM (10 mm) + MW (50 mm) HDPE (40 mm) + TR (5 mm) 

SAN2 1.6 5.3 27 VM (10 mm) + MW (50 mm) EPS (75 mm) + TR (5 mm) 

TRD3 2 7.5 16 VM (10 mm) + MW (50 mm) HDPE (25 mm) + TR (5 mm) 

Type C BERG2 1.6 4.9 16 VM (10 mm) L+B (50 mm) 

SAN4 1.6 5.3 27 VM (10 mm) L+B (50 mm) 

TRD2 2 7.5 16 VM (10 mm) L+B (50 mm) 

Type D BERG4 1.6 4.9 16 VM (10 mm) TR (3 mm) 

SAN3 1.6 5.3 27 VM (10 mm) TR (3 mm) 

Type E BERG5 1.6 4.9 16 VM (10 mm) + Pumice (50 mm)  TR (3 mm) 

OSL1 2 4 5.5 VM (10 mm) HDPE (25 mm) 

TRD4 2 7.5 16 VM (10 mm) + MW (50 mm) PE (30 mm)  

VM: vegetation mats (sedum) 

MW: a mineral wool plate 

TR: Textile retention fabric  

L+B: a mixture of Leca and bricks   

PE: plastic drainage layers of polyethylene 

EPS: plastic drainage layers of expanded polystyrene 

HDPE: plastic drainage layers of high-density polyethylene 

 147 

Multi-site calibration aims to approximate the Pareto front containing non-dominated solutions for 148 

the objective functions used for calibration. Figure 1 presents a hypothetical Pareto front for two 149 

green roofs with contrasting climatic conditions. According to Figure 1, calibration solutions can 150 

be classified into one of five classes: i) theoretically possible that are neither acceptable for both 151 

green roofs, ii) theoretically impossible solutions, iii) solutions that are only acceptable for green 152 

roof 1, iv) solutions that are only acceptable for green roof 2 and v) solutions that are acceptable 153 

for both green roofs. The latter class is desirable for yielding parameters that are applicable to 154 

different climatic conditions.   155 
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 156 
Figure 1: Results of two hypothetical calibrations of two green roofs plotted in two-dimensional objective space.  157 

3.2 Calibration methods 158 

3.2.1 Single-site calibration 159 

In this study, single-site calibration refers to the process of obtaining optimal values of model 160 

parameters for a single green roof, using a single objective optimization algorithm (SOO).  The 161 

differential evolution algorithm (DE) was used for single-site calibration (Storn & Price, 1997). 162 

DE is a stochastic algorithm that belongs to a family of optimization methods, referred to as 163 

evolutionary algorithms. These methods are suitable for global optimization and do not require the 164 

optimized function to be differentiable or continuous. DE generates populations of candidate 165 

solutions iteratively until a certain stoppage criterion is met. Each solution contains a vector of 166 

model parameters, and each population evolves from the previous one in such a way that each 167 

solution is either improved or remained the same. The initial generation is formed through random 168 

sampling of parameters from the user-defined ranges. To generate the next population, the DE 169 

applies a differential mutation process for each member of the current generation. In this process, 170 

three solutions (x0, x1, and x2) are randomly selected from the current population to produce a 171 

population of mutant solutions (𝑣) for each member of the population as follows: 172 

 173 

𝑣 =  𝑥0 + 𝐹 . (𝑥1 − 𝑥2) Equation 1 

𝐹, called the mutation factor, is a positive scale value typically less than 1. After the mutation 174 

process is done for each member of the population, the DE applies the crossover process which 175 

controls the fraction of parameters that are copied from the mutant or the original solution. A trial 176 

solution (𝑢) is formed for each member of the population as follows:  177 

 178 
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𝑢𝑗,𝑖,𝐺+1 = {
𝑣𝑗,𝑖,𝐺+1, 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗,𝑖  ≤ 𝐶𝑅 𝑜𝑟 𝑗 =  𝐼𝑟𝑎𝑛𝑑

𝑥𝑗,𝑖,𝐺 , 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗,𝑖 > 𝐶𝑅 𝑜𝑟 𝑗 ≠  𝐼𝑟𝑎𝑛𝑑
 

 

Equation 2 

Where 𝑟𝑎𝑛𝑑𝑗,𝑖 is a random real value between (0,1), 𝑗  is the index of the parameter in the solution 179 

vector, 𝑖 is the index of the solution in the population, 𝐺 is the index of the population, CR is the 180 

cross-over probability, and 𝐼𝑟𝑎𝑛𝑑 is a random integer number between (1, D) where D is the number 181 

of solutions for each population.  𝐼𝑟𝑎𝑛𝑑 ensure that 𝑢𝑖,𝐺+1  ≠  𝑥𝑖,𝐺. After the cross-over process, 182 

the DE applies the selection process, in which each solution from the current population is 183 

compared with its associated trial solutions from the cross-over process. the solution with the best 184 

objective value is selected for the next population. If the two objective functions are equal, the trial 185 

solution is selected for the next population.  186 

 187 

In this study, the DEopim library in R was used (Mullen et al., 2011), and the KGE of the simulated 188 

outflow was selected as an objective function. The hyperparameter of the optimizer were selected 189 

as follow: CR = 0.5, F = 0.8, D = 10 * number of model parameters. The stoppage criterion was 190 

running the DE until the maximum number of populations (N = 200) was reached. Typically, the 191 

best solution in the last population is considered optimal in single-site calibration. In this study, 192 

however, the best solution for each population was considered a near-optimal solution. Hence, for 193 

each single site calibration, a group of 200 parameter sets was selected. Note that some solutions 194 

were duplicated since the best solution could remain the same in several populations.  195 

3.2.2 Multi-site calibration 196 

In this study, multi-site calibration refers to the process of estimating the Pareto front for two 197 

green roofs using a multi-objective optimization algorithm (MOO).  For multi-site optimization, 198 

multi-objective Bayesian optimization (MBO) was selected. This algorithm requires a fewer 199 

number of model evaluations to approximate the Pareto front, in comparison to other multi-200 

objective optimization methods (Binois & Picheny, 2019). The steps of the MBO are as follows:  201 

i. Select an initial population of candidate solutions based on random sampling from the 202 

pre-defined parameter limits and determined the value of the objective functions of each 203 

solution. 204 

ii. Apply the Pareto dominance test to extract non-dominance solutions, forming an initial 205 

Pareto front. A solution x1 is said to dominate solution x2 if and only if i) solution x1 is 206 

not worse than x2 in all objective functions and ii) x1 is better than x2 in at least one 207 

objective function. Non-dominated solutions are solutions that are not dominated by any 208 

member of the solution set.       209 

iii. Build a surrogate model for each objective function from the candidate solutions. The 210 

Gaussian process was selected for building the surrogate model in this study (Binois & 211 

Picheny, 2019; Snoek et al., 2012; Worland et al., 2018). 212 

iv. Select a new solution based on the surrogate models. The new solution is selected 213 

following a specific criterion that improves the Pareto front of the current iteration.  214 

v. The selected solution is evaluated in the hydrological model, and its objective functions 215 

are determined and used to update the surrogate models of the objective functions.  216 

vi. Repeat steps iii to v for N iteration (1000 in this study).  217 
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This study applied a common criterion for selecting potential solutions from surrogate models, 218 

termed the expected hypervolume improvement (Emmerich et al., 2011) which is presented in 219 

Figure 2.  220 

 221 
Figure 2: Hypervolume criterion for selecting potential solutions. The orange solution is better than the green solution 222 

based on the method. The orange solution maximizes the hypervolume which is measured from the reference point. 223 

modified from (Binois & Picheny, 2019)  224 

The GPareto library in R (Binois & Picheny, 2019) was used for the multi-objective optimization 225 

in this study. The objective functions used were the KGE of simulated outflows for each green 226 

roof.  227 

3.3 The hydrological model (CRRM linear) 228 

The green roofs were modelled with a linear reservoir model (Figure 3). The model was developed 229 

and tested by Abdalla et al. (2022). It applies several equations (Equation 3 - Equation 10) to 230 

calculate infiltration (INF), drainage flow (Q), actual evapotranspiration (AET), soil moisture 231 

(SW), and drainage storage (DW). The potential evapotranspiration (PET) is determined using the 232 

Oudin formula (Oudin et al., 2005), which is suitable for cold climates and was found to be suitable 233 

by Johannessen et al. (2017) for cities in this study. The model contains five calibrated parameters; 234 

S1 (available storage of the soil layer), S2 (available storage of the drain layer), S11 (the threshold 235 

of soil water after which AET is equal to PET), k1 (flow parameter of the soil layer) and k2 (flow 236 

parameter of the drainage layer).  237 

 238 
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 239 
Figure 3: The linear reservoir model 240 

𝐼𝑁𝐹𝑡 =  𝑘1 × max(𝑆𝑊𝑡 − 𝑆1,0) Equation 3 

𝑄𝑡 =  𝑘2 × max(𝐷𝑊𝑡 − 𝑆2,0) Equation 4 

𝑆𝑊𝑡 =  max (𝑆𝑊𝑡−1 + 𝑃𝑡 − 𝐴𝐸𝑇1𝑡 − 𝑆1, 0) Equation 5 

𝐷𝑊𝑡 =  max (𝐷𝑊𝑡−1 + 𝐼𝑁𝐹𝑡 − 𝐴𝐸𝑇2𝑡 − 𝑆2, 0) Equation 6 

𝑃𝐸𝑇 [
𝑚𝑚

𝑑𝑎𝑦
] =  {

0 𝑖𝑓 𝑇𝑚𝑒𝑎𝑛 ≤  5℃
𝑅𝑎

𝜆𝜌
× 0.01 × (𝑇𝑚𝑒𝑎𝑛 + 5) 𝑖𝑓 𝑇𝑚𝑒𝑎𝑛 > 5℃

  Equation 7 

𝑓𝑡 = min (1,
𝑆𝑊𝑡−1

𝑆11
) 

Equation 8 

𝐴𝐸𝑇1𝑡 =  𝑓𝑡 × 𝑃𝐸𝑇𝑡 Equation 9 

𝐴𝐸𝑇2𝑡 =  min (𝐷𝑊𝑡−1, 𝑃𝐸𝑇𝑡 − 𝐴𝐸𝑇1𝑡) Equation 10 

3.4 Study experiments 241 

To investigate the performance of the multi-objective optimization, three experiments were 242 

conducted as follows:  243 

• Experiment one: calibration of two similar green roofs configurations in different sites 244 

• Experiment two: calibration of two different green roofs configurations in the same site 245 

• Experiment three: calibration of four similar green roofs configurations in different sites 246 

In all experiments, the Pareto optimal solutions were compared with the results of single-site 247 

calibrations. Based on the value of KGE, the model results were classified as:  248 

- Poor (KGE<0.5) 249 

- Satisfactory (0.5<KGE<0.75) 250 

- Good (KGE>0.75) 251 
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The classification followed the recommendation of  Thiemig et al. (2013). It should be emphasized 252 

that such classification is based on the consensus of what is considered “good” or “poor” modelling 253 

results in the literature. 254 

Measurements from 2017 were selected for model calibration while 2016 data were used for model 255 

validation. Snow periods (i.e., October to March) were excluded since the model does not simulate 256 

snow accumulation and melting. A 5 min time-step was use for the modelling. Hence, data were 257 

aggregated accordingly.    258 

4 Results and discussion 259 

4.1 Two-site calibration (similar roofs configurations on different sites) 260 

The optimal solutions for the two-site and the single-site calibration schemes were plotted and 261 

compared. Figure 4 presents the comparisons for type A and type B roofs.  Some solutions were 262 

found by the single-site calibration to yield poor model results when transferred to different sites. 263 

For instance, all parameter sets of OSL3 yielded KGE values below 0.1 for the TRD1 roof. In 264 

contrast, multi-site calibration yielded solutions that were satisfactory for both OSL3 and TRD1 265 

roofs. In some cases, single-site calibration yielded satisfactory to good results for other roofs than 266 

the one used for calibration. For instance, all solutions of OSL3 roof yielded good to satisfactory 267 

results for BERG1, and vice versa. However, solutions found by the multi-site calibration for the 268 

two roofs were closer to the 1:1 line (i.e., best compromised solutions).    269 

For some roofs, different parameter sets gave the same results for the same site, indicating 270 

equifinality (Beven, 1993). These solutions, however, yielded different results when transferred to 271 

different sites. For instance, optimal solutions that produced the same model performance at 272 

BERG3 yielded poor to satisfactory results for the OSL2 roof. This shows that single-site 273 

calibration could potentially miss promising solutions which produce satisfactory results in 274 

different locations. A similar conclusion was drawn in a study by Fowler et al. (2016), where they 275 

assessed the transferability of model parameters between dry and wet conditions. 276 

4.2   Two-site calibration (different roofs configurations on the same site) 277 

The comparison between the two calibration schemes (single vs multi-sites) is presented in Figure 278 

5 for Bergen roofs. Almost all parameter sets found by the single-site calibration could yield 279 

satisfactory to good results in the other roofs with different configurations. Only a few parameter 280 

sets of BERG2 roofs yielded poor results for BERG3. On the other hand, results from the two-site 281 

calibration yielded better compromised results (closer to the 1:1 line).  282 

It can be noted that climatic variables (i.e., location) could have a greater influence on model 283 

parameters than the roof's physical characteristics, as shown in Figure 5 as opposed to Figure 4. 284 

Similarly, Abdalla et al. (2021) found that ML trained in one location could yield satisfactory 285 

model performance for the different roof properties that are located in the same location.  286 

 287 
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 288 
Figure 4: The comparison between two-site (MOO) and single-site (SOO) calibrations for similar green roofs located 289 

in different cities. Solutions that are close to the 1:1 line are considered the best compromised solutions. The grey-290 

shaded area represents solutions that are considered satisfactory for both sites (0.5<KGE<0.75). The green-shaded 291 

area represents solutions that are considered good for both sites (KGE>0.75) 292 

 293 
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 294 
Figure 5: The comparison between two-site (MOO) and single-site (SOO) calibrations for different green roof types 295 

located at the same site (Bergen). The grey-shaded area represents solutions that are considered satisfactory for both 296 

sites (0.5<KGE<0.75). The green-shaded area represents solutions that are considered good for both sites (KGE>0.75) 297 

4.3 Four site calibration (similar roofs in different cities) 298 

The solutions of the single site calibration were used to simulate outflows for the green roofs in 299 

the other cities in the study. Figure 6  presents the performance of these simulations for type A and 300 

type B roofs. The result showed that transferring single site calibration results into different 301 

locations could yield poor modelling results. A similar finding was reported in the study of 302 

Johannessen et al. (2019) in which calibrated SWMM models were found to yield poor results 303 

when validated in multiple locations. As shown in Figure 6, transferability could yield satisfactory 304 

results between some cities (for instance, Bergen and Oslo). However, obtaining one parameter 305 

set from single-site calibration that produces satisfactory results in the four cities is very difficult, 306 

if not impossible. On the other hand, multi-site calibration resulted in a set of non-dominated 307 

solutions that allowed for exploring trade-offs of model performance amongst cities. 308 

One parameter set that yielded the highest minimum KGE between the four locations was selected 309 

(S1 = 6.794, S11 = 8.378, k1 = 0.435, k2 = 0.031, S2 = 3.989). The selected set yielded KGE 310 

values ranging between 0.62 to 0.89 for the calibration periods and 0.6-0.82 for the validation 311 

periods, as shown in Table 2, for the four roofs which are considered satisfactory to good results. 312 

Figure 7 illustrates the simulated and observed outflows of type A roofs for the validation periods. 313 
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The simulated outflows matched well with observation, although some of the peak values were 314 

underestimated. 315 

The selected parameter set was used to simulate outflows from the sixteen roofs in the study. Table 316 

2 presents the performance of these simulations, as measured by KGE. All simulations yielded 317 

KGE values that were higher than 0.5 and some scored KGE above 0.75, indicating satisfactory to 318 

good results. Therefore, in contrast to single-site calibration, it is possible to obtain a common 319 

parameter set that yields satisfactory model results for different locations, by evaluating Pareto 320 

optimal solutions from multi-site calibration.  321 

It could be noted that the variation of KGE values between locations and modelling period was 322 

slightly higher than between the different roof properties. For instance, the common set scored 323 

KGE values that ranged only between 0.58-0.63 for Oslo roofs (calibration periods), and only 324 

between 0.67-0.89 for Bergen roofs (validation periods). This further strengthens the conclusion 325 

that the influence of climatic variables on conceptual model parameters is higher than the influence 326 

of the roof properties.   327 

 328 
Figure 6: The performance of parameter sets obtained from single-site calibration in similar roofs located in other 329 

cities 330 
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 331 
Figure 7: The performance of the best compromised parameter set on the validation periods of the four roofs.  332 

Table 2: The performance of the best compromised parameter set from the four site-calibration on the 16 green roofs  333 

GR KGE (Calibration periods) KGE (validation periods) 

BERG1 0.77 0.82 

BERG2 0.86 0.86 

BERG3 0.6 0.67 

BERG4 0.66 0.68 

BERG5 0.89 0.89 

OSL1 0.59 0.65 

OSL2 0.58 0.63 

OSL3 0.63 0.67 

SAN1 0.89 0.78 

SAN2 0.76 0.61 

SAN3 0.68 0.86 

SAN4 0.82 0.84 

TRD1 0.62 0.6 

TRD2 0.68 0.79 

TRD3 0.51 0.77 

TRD4 0.68 0.86 
 334 
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4.4 Implications for stormwater management  335 

Single-site calibration was found to yield optimal parameters for one location which performed 336 

poorly in the other sites, due to the different climatic conditions. In the future, climatic variables 337 

are expected to change significantly due to climate change (Sun et al., 2006). Therefore, a 338 

conceptual model calibrated with the current climate variables using a single-site scheme is likely 339 

to yield poorer simulations for the future. Nevertheless, this argument has rarely been discussed in 340 

the context of modelling sustainable stormwater measures, such as green roofs. It is a common 341 

practice in sustainable stormwater modelling studies to investigate climate change scenarios using 342 

a model calibrated with the current conditions. Therefore, caution should be exercised when 343 

interpreting the results of a model that is calibrated in contrasting climatic conditions from those 344 

used in model scenarios. 345 

 346 

The results of this study are in-line with the common consensus in catchment modelling studies, 347 

in which hydrological models were found to score poor simulation results when evaluated on 348 

contracting climatic compared to those used for model calibration (Coron et al., 2012; Hartmann 349 

& Bárdossy, 2005. A solution which has been suggested by some scholars, is to calibrate models 350 

on climatic conditions similar to those used in model scenarios (C. Z. Li et al., 2012). For instance, 351 

if the model is intended to simulate wet conditions it must be calibrated on a wet condition period 352 

from the historical data. However, as argued by Fowler et al. (2016), this limits the applicability 353 

of calibrated model beyond the climatic conditions available in the historic periods. In green roof 354 

studies, observations are even more scarce than in large catchments which further limits the 355 

applicability of such an approach.     356 

The results of this study show that obtaining a common parameter set that fit “reasonably well” 357 

for different locations and roof properties could be achieved by multi-site calibration. This is 358 

valuable for stormwater management, as it provides a fast and reliable tool for quantifying the 359 

hydrological impact of green roofs in different locations and climate change scenarios.  It should 360 

be noted, however, that such a common parameter set typically will yield lower performance for 361 

one roof than the best parameter set from the single site calibration of that roof. A question is 362 

whether this decrease in performance affects the usefulness of the model for stormwater 363 

management. 364 

Before answering this question, it is useful to discuss the common metrics used to quantify the 365 

hydrological benefits of green roofs. Typically, green roof performance is measured by assessing 366 

retention and detention. The former is the measure of how much water is retained (i.e., removed) 367 

via roof evapotranspiration. In the literature on green roof modelling, simple water balance models 368 

with hourly or daily time steps and suitable evapotranspiration equations were found to be 369 

sufficient for estimating retention (Abdalla et al., 2021; Bengtsson et al., 2005; Stovin et al., 2013). 370 

On the other hand, green roof detention refers to the reduction and delay of outflows due to the 371 

temporal storage of water in the green roof. Estimating detention requires calibrated models and 372 

short time steps (sub-hourly). Typically, detention is measured by event-based metrics, such as 373 

peak reduction, peak delay, etc. However, recent studies discussed issues of event-based metrics 374 

and suggested alternative approaches based on long term-simulations (Stovin et al., 2017).  Among 375 

these alternatives, flow duration curves (FDCs) were found to provide an unambiguous estimation 376 

of green roof detention (Hernes et al., 2020). Hence, it was adopted in the study.  377 

We investigated the accuracy of simulated FDCs from the common parameter set in Table 2 378 

(regional set) and whether these FDCs are comparable with those derived from the best parameter 379 

set from the single-site calibration setup (best fit). Figure 8 presents the observed outflow and FDC 380 
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of the BERG1 roof compared with the simulated results from the best fit, and the regional 381 

parameter sets.  Both parameters sets underestimated the high flows. However, the best fit set 382 

produced better estimates of the high flows than the regional set. This represents the part of the 383 

FDC with low durations (e.g., less than 5 hours). For medium and low parts of the FDC (duration 384 

> 5 hours), the regional set produced slightly better estimates for medium and low values. Figure 385 

9 presents the simulated and observed FDCs for the sixteen roofs in the study. For visualization 386 

purposes, the log-log scale was used. The regional parameter set produced FDCs that were 387 

comparable to those derived by the best fit sets for each roof. for cities with high and intense 388 

precipitation, such as Bergen, the best-fit parameters produced better estimates of high values 389 

while the regional set slightly produce better simulations for medium and low values. On the other 390 

hand, for Trondheim city, which receives lower precipitation amount and intensity, the regional 391 

set overestimated low values and provided a better estimate for high values.  392 

 393 
Figure 8: a) observed outflows of BERG1 roof compared by simulated outflows from the best parameter set (best fit) 394 

and the four-site calibration (Regional) for the selected period. b) Observed flow duration curve (FDC) of BERG1 395 

compared by the simulated FDC obtained from the parameter set that produces the best fit at BERG1 (single site) and 396 

from the best compromised parameter set from the four-site calibration (Regional).  397 

 398 
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 399 
Figure 9: Observed flow duration curve (FDC) of the sixteen green roofs compared by the simulated FDC obtained 400 

from the parameter set that produces the best fit at each site (single site calibration) and from the best compromised 401 

parameter set from the four-site calibration (Regional).  402 

 403 
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5 Summary and conclusions 404 

The current study aimed to evaluate the potential of multi-site calibration for conceptual 405 

hydrological models of green roofs. Additionally, the study provided insights on the practical 406 

implication of multi-site calibration, concerning stormwater management. Based on the results of 407 

the study, the following conclusions can be drawn:  408 

 409 

• Single site calibration obtains optimal parameters for one site that perform poorly for 410 

other locations and climate conditions.   411 

• The variation of model performance due to climatic variables is greater than due to roof 412 

properties. 413 

• Obtaining a common parameter set that yields satisfactory (Kling Gupta Efficiency >0.5) 414 

for different locations and roof properties can be achieved by multi-site calibration. Such 415 

a parameter set provides flow durations curves that are comparable in accuracy to those 416 

derived from the best parameter sets from single-site calibration  417 

• The multi-site calibration scheme is recommended not only for transferability among 418 

roofs in different cities but also when applying conceptual models for evaluating climate 419 

change scenarios for which the climatic variables are significantly different from the ones 420 

used for calibration. 421 
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