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Study Region
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Colorado Headwaters River Basin

Source:
RJ Sangosti, The Denver Post



Data
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Streamflow

Covariates (1965-2018)
• Climate indices: ENSO, PDO, AMO

(https://www.esrl.noaa.gov/psd/data/climateindices/list/)

• April Mean Temperature (AMT) – Global 
Historical Climatology Network (GHCN) dataset 
(https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/)

• Snow Water Equivalent (SWE) – Natural 
Resources Conservation Service (NRCS) 
(https://wcc.sc.egov.usda.gov/reportGenerator/)

• Daily observed streamflow – U.S. Geological Survey 
(USGS) 

• Years: 1965-2018 (54 years), no. of sites 7
• 3-day maximum (May-Jun) seasonal streamflow

Colorado Headwaters River Basin

https://www.esrl.noaa.gov/psd/data/climateindices/list/
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/
https://wcc.sc.egov.usda.gov/reportGenerator/


General Bayesian Model Structure
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𝜽 𝑠𝑗 , 𝑡𝑖 = 𝜇 𝑠𝑗 , 𝑡𝑖 , log 𝜎 𝑠𝑗 , 𝑡𝑖 , 𝜉 𝑠𝑗 , 𝑡𝑖

For each time and location

𝑦 𝑠𝑗 , 𝑡𝑖 ~𝐺𝐸𝑉 𝜇 𝑠𝑗 , 𝑡𝑖 , 𝜎 𝑠𝑗 , 𝑡𝑖 , 𝜉 𝑠𝑗 , 𝑡𝑖



Gaussian copula can replicate the dependence 
structure of the observed data
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Without copula              Gaussian copula             Student-t copula

Joe copula                     Gumbel copula                  Vine copula

Observed Simulated contour lines



Models Considered
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Stationary
Nonstationary

SWE

Nonstationary

SWE+Climate predictors

Nonstationary

SWE+Climate predictors

+ Gaussian copula

We considered 4 models for 0-month lead time (Nov-April)

And three different lead times for the last model
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Two covariates show a strong correlation with 
Seasonal maximum streamflow
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Exploratory analysis: 0-month lead time (Nov-April)



Predictors and copula allow to capture the 
spatial-temporal dependence
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Energy Skill Score (ESS)
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Stationary (0-month lead time)

SWE (0-month lead time)

SWE+SAMT (0-month lead time)

SWE+SAMT with Gaussian copula (0-month lead time)



By adding a copula, the model can capture the 
observed values
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Average of seasonal maximum flow over all gauges, models with SWE+ SAMT
(0-month lead time)

Observation non captured by ensembles Observation captured by ensembles Ensembles

(a) without a Gaussian copula                              (b) with a Gaussian copula(b) SWE+SAMT with Gaussian copula(a) SWE+SAMT



Three models has a better performance than 
climatology for predict high flows years
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Energy Skill Score (ESS) for different cases



The performance is not so difference between 
different lead times
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average of seasonal maximum flow over all gauges, Case 2 (cross-validation 
all years)

Observation non captured by ensembles

Observation captured by ensembles

Ensembles



Deliver interpretable seasonal projections
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Description
Average Seasonal 

Streamflow (mm/day)

Max streamflow 75% (2018) 21.0

Max streamflow 50% (2018) 26.8

Max streamflow 25% (2018) 35.3

Max streamflow (high flow event) 48.2

Max median streamflow (normal year) 29.2

Proposed Spring Seasonal Projection
• Provide 3 percentiles along with some past streamflow as reference 
• Reference values can help to make decision about risk mitigation in 

advance 
• Example: Forecast 2018 for 0-month lead time

Reference values

Max streamflow with 
a xx% of chance of 

being exceeded 



Conclusions

13

Skillful seasonal projections by 
considering no stationarity, 
spatial dependence, and 
parameter uncertainties 

Seasonal projections up 
to 2 months in advance 
without reduce the 
model skill significantly

The framework can be 
easily applied to another 
region or adjusted to 
represents future climate 
conditions 
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