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‘{X Discussion/Future Work

O This work was only an initial
proof-of-concept! We have only -
run a single scenario, GCM P | MR TN ,‘
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S{X Background

O Snow is a major water
resource globally

Average households supplied from peak SWE (100k) /\ 5
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due to warming
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Q We could also target other
products such as GlobSnow

Evaluation of long-term Northern Hemisphere

snow water equivalent products Q Mortimer et al. (2020) found
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the model for snow predictions we also would like

Q Redder colors show loss of peak SWE, blue shows gains to explore if this approach could work for other
ERA5-land based variables like soil moisture.

%Z Methods t Q@ Showing results from CanESM5, GARD-SV, SSP245 for the 2060s This work is very preliminary! Aside from improving

O We trained a Long Short Termm Memory network
to predict snow using daily data from ERAS

O We also processed elevation, slope, and aspect
from SRTM to match the ERAS grid for use as
input features

o Predictive performance ‘{Z What's going on, on
e can make spatialy soparated tast, vadation, | =wsreeoe s L in test regions is good! the Tibetan plateau? %Z Open science

and training datasets
ning O CarbonPlan has produced
an ensemble of downscaled
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Ready, Cloud Optimized long tails in the distributions which need investigation 5 overprediction in the O Allof our data, code, and
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We train LSTM based models with ERA5 data to 5 RS 2 training data
predict .the snow water equivalent given.a .180. day past E -100 - o0 523 R0 o3 weowo ms Bo s w o Precipitation changes do We are writing a set of interactive tutorials that
timeseries of daily air temperature, precipitation, -1000 - . W not drive this shift reproduce the key ideas all while running in the
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