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Abstract. The Earth’s global radiation budget depends critically on the relationship13

between outgoing longwave radiation (OLR) and surface temperature (Ts). Above 27014

K, which represents 89% of the surface of Earth, we find that linearity poorly represents15

the OLR-TS relationship. Although the AMIP runs of CMIP6 models largely capture16

the linearity of OLR and Ts, there is considerable variation in how they represent this17

departure from linearity.18

In this study, we investigate physical mechanisms that control the OLR-Ts19

relationship seen in ERA5 reanalysis and CMIP6 models by using accurate radiative20

transfer calculations. Our study identifies three key mechanisms to explain both the21

linearity and departure from linearity of OLR-Ts relationship. The first is the total22

infrared opacity of the atmosphere, which accounts for 60% of the observed OLR-Ts23

linear slope. The second is changes in atmospheric emission induced by a foreign24

pressure effect on absorption lines (of water vapor and other greenhouse gases) and25

continuum absorption of water vapor, which accounts for 30% of the linear slope. The26

third is changes in atmospheric emission induced by variations in relative humidity,27

particularly in the mid-troposphere (250 to 750 hPa), which determines the non-28

linearity in the OLR-Ts relationship and adds to the remaining 10% of the slope.29

Furthermore, we find that inter-model spread in mid-tropospheric relative humidity30

explains a large fraction of the differences in OLR across CMIP6 models at given31

surface temperatures. Our research also shows that the humidity-induced clear-sky32

OLR curve is synergistically enhanced by clouds owing to a strong correlation between33

cloud and humidity.34
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1. Introduction37

The Earth’s climate is regulated by the balance between the net incoming solar radiation38

and the outgoing longwave radiation (OLR) at the top-of-atmosphere (TOA). The39

surface of the Earth absorbs energy from incoming solar radiation and emits it in the40

longwave spectrum. Greenhouse gases and clouds trap the longwave energy radiated41

from the surface and re-radiate it back to space, controlling the OLR at the TOA.42

Any additional energy input leads to an increase in the planet’s surface temperature43

(Ts), which is a key quantity for evaluating the potential impacts of climate change44

on natural and human systems. Understanding the global relationship between OLR45

and Ts is vital for comprehending the radiation balance of the present-day climate and46

serves as an important indicator of future climate change.47

The relationship between outgoing longwave radiation (OLR) and surface48

temperature (Ts) has been extensively studied using Earth system models and49

observational data. Previous research has revealed that over Earth’s surface, the OLR50

exhibits a near-linear relationship with Ts, characterized by a regression coefficient of51

approximately 2 Wm−2K−1 under clear-sky conditions [1, 2, 3]. This overall linearity is52

attributed to the greenhouse effect of water vapor, which is predominantly influenced by53

Ts and offsets the growth curve in surface thermal emission [2]. However, it is important54

to note that OLR is not solely controlled by Ts, as it is also sensitive to atmospheric55

conditions and clouds [4, 5, 6, 7, 8, 9, 10, 11, 12]. Consequently, stronger deviations56

from a simple linear function over Ts are observed in subtropical and tropical regions57

[13], exhibiting seasonal [14] and inter-annual variations [15], as well as under global58

warming scenarios [16, 17].59

This study investigates the key atmospheric conditions that shape the observed60

OLR over the present-day Earth in Sections 2 and 3 and the causes of the inter-model61

spread in OLR in Section 4. The results are summarized and discussed in Section 5.62

2. The OLR-Ts Relationship in the Present-day Earth63

OLR is jointly determined by the opacity of the atmosphere and the thermal emissions64

from both the surface and the atmosphere. Mathematically, it can be expressed as65

follows:66

OLR =

∫
υ

TυBυ(Ts)dυ +

∫
υ

Eυdυ

= T̄B(Ts) + E

(1)

Here, Ts represents the surface temperature, υ denotes the spectral frequency, Tυ67

and Eυ refer to the transmission through the atmosphere and atmospheric emission at68

each spectral frequency, respectively. B(υ, Ts) represents the black-body emission at69

frequency υ, determined by Planck function of temperature. The terms E =
∫
υ
Eυdυ70

and B =
∫
υ
Bυdυ correspond to the integrated atmospheric emission and black-body71
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Figure 1. (a) All-sky and (b) clear-sky outgoing longwave radiation (OLR) in W/m2

as a function of local surface temperature (Ts) in K, based on multi-year-mean gridded

ERA5 reanalysis from 1998 to 2014. The color represents the percentile of data grids

falling within each 1 K × 1 W/m2 box over the globe. The solid curves show the mean

OLR at each 1 K Ts bin from ERA5. The dotted lines represent the linear regression

lines of OLR to Ts, with the regression coefficients labeled. The top x-axis displays

the percentiles of the surface area colder than 220, 240, 260, 280, and 300 K based

on multi-year-mean Ts. Panel (c) is similar to (b), but it covers the Ts range from

270 K to 305 K, corresponding to 89 % of the surface area. Panel (d) is similar to

(b) but represents the clear-sky surface contribution to the OLR-Ts slope, evaluated

as δT̄B(Ts) at every grid, and the mean of it at every Ts bin is integrated into the

dashed curves in panels (b) and (c).
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emission, respectively. The term T̄ =
∫
υ
TυBυ(Ts)dυ/B(Ts) represents the broadband72

transmission, indicating the rate at which surface emission transmits to space.73

Under clear-sky conditions, [2] proposed that the rate at which surface emission74

transmits to space determines the rate at which OLR increases with Ts. They suggested75

that OLR tends to increase linearly with Ts rather than following a quadratic growth76

curve following B(Ts), and that this linearity arises because the quadratic growth curve77

rate is offset by the rate at which water vapor transmittance (∼ T̄cs) decreases with Ts.78

With ERA5 reanalysis [18] and line-by-line radiative transfer (GRTCODE), we can79

quantitatively examine how well the surface contribution can explain the observed and80

simulated OLR-Ts relationship on present-day Earth. Figure 1(a) shows the multi-year-81

mean OLR at every grid point on Earth as a function of Ts, based on the reanalysis,82

with the global distribution of multi-year-mean Ts presented in Figure B1. Figure 1(a)83

suggests a near-linear increase in OLR with Ts, with more pronounced deviations from84

linearity in warmer regions. The linear regression slope is 1.93 Wm−2K−1 under clear-85

sky conditions, consistent with the findings of [2], and 1.68 Wm−2K−1 under all-sky86

conditions.87

To understand what controls the increase in OLR (δOLR) in response to a Ts88

increase (δTs) under the impact of the co-variation of atmospheric transmittance and89

emission with Ts (δT̄ and δE), we analytically decompose δOLR as follows:90

δOLR = T̄[B(Ts + δTs)−B(Ts)]︸ ︷︷ ︸
T̄δB(Ts)

+δT̄B(Ts + δTs) + δE
(2)

In this expression, T̄δB(Ts) represents the change in OLR resulting from a one-sided91

partial radiative perturbation in Ts, equivalent to the surface contribution proposed in92

[2]. When δTs = 1K, this term is known as the “surface Planck feedback” [2, 19, 20] or93

the surface temperature kernel [10, 21, 22] at local grid points.94

To compute T̄csδB(Ts) at each grid point, we conduct line-by-line radiative transfer95

calculations using GRTCODE, as described in Data and Method. Similar to Figure 1(a),96

Figure 1(d) presents T̄csδB(Ts) as a function of Ts. When compared to the observed97

clear-sky OLR-Ts slope, however, T̄csδB(Ts) is significantly lower and decreases further98

with increasing Ts. The magnitude of T̄csδB(Ts) is highly consistent with the line-by-99

line calculations conducted in [20] and the clear-sky surface temperature kernel available100

in publicly accessible datasets [10, 21].101

To determine how much OLR increase from a reference Ts due to the surface102

contribution, we integrate T̄ (as a function of Ts) over B(Ts) as:103

∆OLRsfc(Ti) =

∫ Ts=Ti

Ts=270

T̄dB(Ts) (3)

The derived ∆OLRcs,sfc is then utilized to “predict” the clear-sky OLR curve and is104

shown as the black dotted curve in Figure 1(b,c), following [2], using reference Ts values105

of 220 K. It becomes evident that ∆OLRsfc significantly underestimates the OLR slope,106

regardless of the reference Ts. Thus, the surface contribution T̄csδB(Ts) alone cannot107
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explain the linear OLR-Ts relationship to the first order. In particular, in regions with108

Ts above 290 K, T̄csδB(Ts) is less than 1 Wm−2K−1. Given its magnitude, which is much109

smaller than the actual OLR-Ts slope observed in these regions [3], T̄csδB(Ts) cannot110

account for the observed OLR-Ts slope, regardless of the grid points being selected111

from this region. A significant portion of the linearity must arise from the atmospheric112

contribution through δT̄B(Ts + δTs) + δE in Equation 2.113

Moreover, it is important to note that because Ts is not evenly distributed across114

the planet, using Ts as a coordinate exaggerates the linearity of the OLR-Ts relationship.115

In reality, regions with non-linearity (Ts > 270 K) cover 89% of Earth’s surface area. To116

address this visual artifact, Figure 1(c), as well as the following context of this paper,117

focuses on regions with Ts warmer than 270 K, roughly from 60o north to south (Figure118

B1). As Ts increases, OLR deviates more strongly from a simple linear function over119

Ts, and this deviation pattern is well described by the mean OLR at each Ts bin.120

The mean OLR-Ts curves under clear-sky and all-sky conditions appear similar, with121

a steeper gradient in regions with Ts above 270 K, reaching a peak at 298 K, and then122

a dip at 302 K. From the sea surface temperature shown in Figure B1, we find that123

the OLR peak is reached in the subtropical ocean and tropical cold pool, corresponding124

to dry, subsidence region. The dip is reached in the tropical warm pool, corresponding125

to moist, convective regions. The observed OLR curvature cannot be explained by the126

surface contribution.127

3. How Atmosphere Shapes the Clear-sky OLR-Ts Relationship128

While the surface contribution to OLR, which can be directly computed from radiative

transfer models, fails to effectively explain the observed OLR-Ts relationship, the

atmospheric contribution poses a challenge due to the interplay between transmission,

emission, and perturbations to them. Alternatively, we infer the sum of atmospheric

contributions from the OLR increase not explained by ∆OLRsfc as ∆OLRatm:

∆OLR(Ti) = OLR(Ts = Ti)−OLR(Ts = 270)

∆OLRatm(Ti) = ∆OLR(Ti)−∆OLRsfc(Ti)
(4)

Figure 2 shows the ∆OLRcs, ∆OLRcs,sfc, and ∆OLRcs,atm based on monthly-mean129

reanalysis dataset in black curves, with respect to 270 K Ts; similar results but with130

respect to 220 K are shown in Figure B2. In the 270 to 305 K Ts range, the clear-sky131

OLR-Ts slope is at 2.11 Wm−2K−1 (Figure 2(a)), 1.27 Wm−2K−1 of it is explained by132

the surface term (Figure 2(b)). Figure 2(c) reveals that the atmospheric term not only133

contributes to 0.85 Wm−2K−1 of the linear slope but also controls the curved OLR-Ts134

relationship.135

Earlier studies [13] have depicted a “radiator fin” in dry, descending regions and136

a “radiator furnace” in moist, ascending regions, which highly aligns with the key137

feature observed in Figure 1. The proposed explanation was that higher OLR occurs138

in drier regions because the atmosphere is more transparent in the longwave spectrum139
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with less water vapor content, allowing for more efficient heat loss to space. Thus140

it would appear that the transmission through the entire atmospheric column (T̄ and141

δT̄) might explain the observed OLR-Ts curve. On the other hand, it is well-known142

that OLR is quantitatively sensitive to layer-by-layer perturbations in atmospheric143

humidity [5, 6, 7, 9, 11, 17, 12]. However, it is unclear whether the OLR sensitivities144

to perturbations in global-mean or local grid points would lead to a conclusion that145

differs from the first-order picture in which transmission through the entire atmospheric146

column shapes the OLR-Ts relationship.147

To understand how the complex atmospheric properties shape the observed OLR-Ts148

relationship, we construct a set of atmospheric columns using ERA5 reanalysis dataset.149

At each 1-K Ts bin, we build three cases, as summarized in Table 1, that have identical150

temperature and ozone profiles, well-mixed greenhouse gas contents, stratospheric water151

vapor, and column-integrated water vapor in the troposphere (CIWV), but distribute152

CIWV differently in vertical levels.153

In Case a, the tropospheric RH is fixed at 40%, while the bottom layer humidity154

is adjusted to achieve the prescribed CIWV. Case b assumes vertically-uniform155

tropospheric RH within each Ts bin, with the RH values inferred from the prescribed156

CIWV. Case c utilizes the mean RH profile at each Ts bin derived from ERA5 and157

should largely reproduce the mean OLR of each bin. Given that the transmission158

through the entire atmospheric column is primarily influenced by CIWV, we expect159

the mean transmission (T̄) and changes in transmission (δT̄) to be similar across these160

different cases.161

Following this idea, we conduct clear-sky radiative transfer calculations for three162

cases at every Ts bin using MODTRAN 5.2 [23] (see Data and Method) to derive163

the OLR-Ts relationship, ∆OLRcs, the surface component, ∆OLRcs,sfc, and the164

atmospheric component, ∆OLRcs,atm. As expected, the surface component overlaps165

among the three cases, primarily owing to the dominant impact of CIWV on the166

magnitude of T̄, further suggesting the similarity of δT̄ across these cases. Consequently,167

any discrepancies observed in the OLR-Ts relationship among the three cases can be168

attributed solely to changes in atmospheric emission. These OLR-Ts relationships and169

their differences are used to elucidate how atmospheric conditions shape the slope and170

curvature observed in the OLR-Ts relationship.171
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Table 1. A summary of atmospheric columns constructed at every 1-K surface

temperature bin with different vertical distribution of tropospheric humidity.

Temperature profiles, well-mixed greenhouse gases, O3, and tropospheric column-

integrated water vapor (CIWV), and stratospheric humidity (above 200 hPa) are the

same in Cases a, b, and c as in ERA5 multi-year-mean. Clear-sky radiative transfer

calculations are conducted at every Ts bin using MODTRAN 5.2 [23] at 1 cm−1 spectral

resolution to obtain OLR, ∆OLRsfc, and ∆OLRatm presented in Figure 2. ∆OLRsfc,

and ∆OLRatm are used to derive the linear regression slope (∂OLRcs,sfc/∂Ts and

∂OLRcs,atm/∂Ts) and are presented in this table.
Experiments Temperature Humidity ∂OLRcs,sfc/∂Ts ∂OLRcs,atm/∂Ts

Atmospheric Columns with Different Tropospheric Humidity

a. 40% RH
Multi-year-mean within each Ts bin

figure B4(b)

Prescribed CIWV

40% tropospheric RH

(except for the bottom layer)

1.30 Wm−2K−1 0.62 Wm−2K−1

b. Mean RH Figure B4(b)

Prescribed CIWV

Vertically-uniform RH in the troposphere

Green curve in Figure B4(a)

1.34 Wm−2K−1 0.70 Wm−2K−1

c. RH profile Figure B4(b) Vertically-resolved tropospheric RH 1.27 Wm−2K−1 0.87 Wm−2K−1

ERA5 - - 1.27 Wm−2K−1 0.85 Wm−2K−1

3.1. Atmospheric Emission Maintains the Near-constant ∂OLR/∂Ts172

Figure 2(a) shows that the observed OLR-Ts slope is much steeper than the surface173

component (Figure 2(b)) could explain, even in Case a when a constant tropospheric RH174

is maintained. This result should not be taken for granted because it breaks ‘Simpson’s175

law’ suggested by previous studies [24, 19], which states that if the water vapor mass176

at any given temperature level is constant (i.e., constant RH) regardless of Ts, then177

thermal emission from water vapor should be largely constant even when the surface178

warms. Figure 3(a)) shows that Case a maintains a near-constant water vapor path179

(WVP) at temperature levels, but ∆OLRcs,atm still increases significantly with Ts.180

Similar magnitude in ∆OLRcs,atm is found even when water vapor is held as the only181

greenhouse gas in Figure B3 for an idealized scenario constructed in Table C1.182

To understand why ∆OLRcs,atm increases with Ts, we examine the opacity of water183

vapor of Case a in Figure 3(b). It shows that with constant RH ∆OLRcs,atm increases184

with Ts because the opacity of water vapor is not constant for the same mass of water185

vapor. The Simpson’s law would hold only if the temperature-pressure relationship is186

perfectly maintained, as depicted in a hypothetical scenario ‘Simpson’ built in Table C1187

and Figure B3(c), which is unrealistic in Earth’s atmosphere. Due to a near-constant188

surface air pressure, a foreign pressure effect on the thermal emission of water vapor is189

introduced, reducing the absorption coefficient per unit mass at a given air temperature190

[25, 26, 20]. Consequently, the opacity contour shifts to warmer atmospheric layers191

(Figure 3(b)), leading to an increase in ∆OLRcs,atm with Ts. The effective emission192

temperature of the atmosphere follows this shift and increases by approximately 0.25193

K for every 1 K increase in Ts (25% of ∆Ts). This rate of emission temperature shift194

is determined by the Clausius-Clapeyron equation and the hydrostatic balance [27], as195

demonstrated in Equation 9 of [20]. Therefore, the near-linear relationship between196

∆OLRcs,atm and Ts in Case a arises from the cancellation of the quadratic growth curve197
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Figure 2. The clear-sky OLR curvature is sourced from atmospheric emission,

controlled by the variation in RH with respect to Ts, particularly in the vertical range

between 250 and 750 hPa. (a) The black solid curve and the grey-shaded area are the

same as Figure 1 but for ∆OLRcs, using ERA5 reanalysis. Markers are color-coded for

atmospheric columns constructed with different temperature and humidity conditions

as described in Table 1. (b) Same as (a) but for ∆OLRcs,sfc. (c) Same as (a) but for

∆OLRcs,atm. The purple solid curve shows B(Tref +0.25∆Ts)−B(Tref ) based on Eq.

9 in [20], where Tref is set to be 230 K inferred from the mean atmospheric emission

at 270 K Ts. (d) ∆OLRcs,atm when RH profile from ERA5 is used from surface to

TOA layer-by-layer, color-shaded by vertical pressure layer [hPa].
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Figure 3. (a) Integrated water vapor path (WVP) [gm−2] from TOA to layer-by-

layer atmosphere as a function of air and surface temperatures, for cases with different

humidity inputs. (b) The same as (a) except for the atmospheric transmittance with

water vapor as the only greenhouse gas (measured from the top-of-atmosphere to the

surface, Planck-averaged over 1 to 3250 cm−1).

in B(Ts) by the dampened emission temperature shift, making the observed OLR-Ts198

relationship much steeper and more linear than the surface contribution could explain.199

3.2. Atmospheric Emission Shapes the OLR-Ts Relationship via Relative Humidity200

Distribution201

However, Case a cannot reproduce the curved OLR-Ts relationship even with its total202

atmospheric transmittance matching the reanalysis. The big discrepancies between Case203

a and other cases with the same CIWV but varying humidity preclude any major effects204

from the trapping greenhouse effect of water vapor (via T̄ and δT̄), suggesting that205

the atmospheric emission must have played a key role in shaping the observed OLR-Ts206

curve.207

Figure 2 demonstrates that the curved OLR-Ts relationship is better captured in208

Case b, where RH is uniformly prescribed in every tropospheric layer to yield the mean209

CIWV at each Ts bin. In this case, the increasing RH from 298 K to 302 K lifts the210

transmittance contour (Figure 3(b)), making atmospheric emission at colder layers more211

effective and significantly reducing OLR.212

Surprisingly, the mean tropospheric RH alone cannot fully explain the linear slope213

in ∆OLRcs,atm. Case b underestimates the overall ∆OLRcs and fails to account for214

the maximum ∆OLRcs,atm occurring at 298 K instead of 294 K, where the mean215
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tropospheric RH is the lowest (Figure B4(a)). Case c eliminates these discrepancies216

by using a vertically-resolved RH profile in the troposphere at each Ts bin. Figure217

2(d) shows that the WVP with respect to air temperature levels reaches a minimum218

at 298 K, and the contour curves in the middle troposphere (around 240 to 270 K219

air temperature levels or 250 to 750 hPa pressure levels) are much steeper than the220

average troposphere. It suggests that the mean tropospheric RH in Case b inadequately221

represents the humidity change in the middle troposphere. By considering contributions222

from realistic RH layer-by-layer from the surface to the top of the atmosphere (TOA)223

and conducting radiative transfer calculations, we demonstrate in Figure 2(c) that the224

middle troposphere (between 250 and 750 hPa) significantly influences both the slope225

and intensity of the ∆OLRcs,atm-Ts curve. While previous studies have recognized226

the importance of middle-tropospheric humidity using radiative partial perturbation227

methods and kernels [7, 11, 12], the radiative transfer through the constructed columns228

proves that the middle-tropospheric humidity is important because it determines the229

atmospheric emission to space. It also explains why the OLR-Ts relationship appears230

more linear when grids with conserved middle-tropospheric RH, rather than boundary-231

layer RH, are chosen [3].232

In conclusion, we find that the total transmission alone is insufficient to describe233

the OLR-Ts relationship (Figure 2(b) versus Figure 2(a)). On one hand, a significant234

fraction (approximately 40%) of the linear slope in the observed OLR-Ts relationship235

is attributable to atmospheric thermal emission, primarily from water vapor (Figure236

B3(a)), which is induced by the pressure-broadening effect and enhanced by variations237

in tropospheric RH. On the other hand, the curved shape in the OLR-Ts relationship238

is predominantly due to atmospheric emission: OLR peaks at 298 K because this 1-K239

surface temperature bin on average corresponds to the driest mid-troposphere, allowing240

for more effective emission from warmer atmospheric layers rather than just the surface.241

These key characteristics of the OLR-Ts relationship cannot be reproduced if the column242

mass of greenhouse gases is prescribed without considering the vertical distribution of243

RH.244

4. The Cause of Inter-model Spread in the Clear-sky OLR Curve245

The mean clear-sky OLR at each Ts bin from the AMIP simulation of 24 CMIP6246

models is shown in Figure 4(a). The inter-model spread in clear-sky multi-year-mean247

OLR at given Ts is surprisingly large with the prescribed sea surface temperature in248

the AMIP experiment. In this section, the cause of inter-model spread in clear-sky249

OLR at given Ts is examined. In particular, it is intriguing to decompose whether the250

spread is caused by differences in radiative transfer schemes used by these models or251

by differences in atmospheric states. Therefore, we perform global clear-sky radiative252

transfer calculations for 24 CMIP6 models using RTE-RRTMGP [28], as described253

in Data and Method. The multi-year-mean OLR and transmittance at every model254

grid point are computed from monthly-mean results. This set of calculations excludes255
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Figure 4. Inter-model spread in the clear-sky OLR-Ts relationship can largely be

attributed to differences in mid-tropospheric RH (700 to 300 hPa), as revealed by

RRTMGP calculations (b, c) and CMIP6 standard output (d, e) for the period 1998

to 2014, focusing on regions with multi-year-mean temperatures above 270 K. Panel (a)

displays the clear-sky OLR as a function of Ts from 24 models. Panels (b), (c), and (d)

depict the differences in OLR at 298 K compared to 302 K for each CMIP6 model, with

respect to differences in surface OLR (∆OLRcs,sfc), atmospheric OLR (∆OLRcs,atm)

computed using RRTMGP with CMIP6 inputs (plev19 temperature and humidity

profiles), and mid-tropospheric RH derived from CMIP6 fluxes and humidity profiles,

respectively. Panel (e) shows the inter-model spread in CMIP6 clear-sky OLR at each

1 K Ts bin as a function of the inter-model spread in mid-tropospheric RH. Dashed

lines represent linear correlation regression between the x and y axes in each panel,

and the R-squared values indicate the proportion of variation in the y-axis that can

be explained by the x-axis.

any discrepancies induced by the treatment of greenhouse gases and biases in radiative256

transfer schemes.257

The spread in clear-sky OLR computed from RRTMGP remains comparable to258

the standard output from CMIP6 (Figure B5(a)), suggesting a large fraction of the259

inter-model spread is caused by discrepancies in atmospheric states. Overall, these260

models exhibit curved shapes in OLR that are highly consistent with ERA5, reaching261

a maximum around 298 K and a dip around 302 K. However, the strength of this262
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OLR curvature, evaluated as the OLR contrast between the two Ts bins is quite263

different across models, as shown in the y axes of Figure 4(b,c,d), ranging from -264

0.3 to 4 Wm−2. The region between 298 and 302 K spans over the majority of the265

subtropical and tropical ocean (Figure B1), and is representative of the most dramatic266

changes in humidity conditions with Ts over the present-day Earth. The magnitude of267

OLR contrast between the two bins indicates how each model represents the tropical268

circulation that transports heat and moisture between the moist, ascending “radiator269

furnace” and the dry, descending “radiator fin” on Earth [13].270

Based on RRTMGP calculations and following Section 3, we break down the271

contribution to the OLR contrast between 298 and 302 K region into the surface272

(∆OLRcs,sfc) and atmospheric contributions (∆OLRcs,atm), as shown in Figure 4(b,c).273

While the consistency in ∆OLRcs,sfc across models suggests an overall good agreement274

in the CIWV, the changes in atmospheric emission do not align well among the CMIP6275

models when using the same radiative transfer codes. Combing Figure 4(b) and (c),276

our results suggest that the inter-model spread in the strength of OLR curvature is277

primarily sourced from atmospheric emission, potentially due to the mid-tropospheric278

RH as alluded to in Section 3.2.279

Next, we examine whether the inter-model spread in clear-sky OLR can be280

explained by the mid-tropospheric RH. Figure 4(d) shows that 73 % of the inter-model281

spread in the clear-sky OLR difference between the 298 K and 302 K regions can be282

attributed to the inter-model spread in mid-tropospheric RH. If the contrast in the283

mid-tropospheric RH is too low in one model, the model tends to produce a relatively284

low or even negative OLR contrast between the subtropical ocean at 298 K and the285

tropical warm pool at 302 K, due to compensation from the ∆OLRcs,sfc term at -3286

Wm−2. Meanwhile, models with excessively high RH contrast overestimate the OLR287

contrast between the two regions.288

Furthermore, Figure 4(e) shows that, outside of the 298 to 302 K range, the inter-289

model spread in mid-tropospheric RH explains 48 % of the inter-model spread in OLR290

at each 1-K bin of surface temperature. It implies that lower clear-sky OLR at a given291

surface temperature in one model is most likely due to a moister mid-troposphere RH292

in this model; this finding is consistent with recent studies on the cause of spread in293

global-mean OLR [29].294

5. Discussion295

This study reveals a robust and curved relationship between outgoing longwave radiation296

(OLR) and surface temperature (Ts) in CMIP6 models and ERA5 reanalysis datasets.297

While the OLR-Ts relationship appears linear within a wide Ts range (220 K to 305 K),298

this masks the uneven distribution of Ts across the globe and the deviation of OLR from299

a simple linear relationship in the warmer regions of Earth’s surface under both clear-300

and all-sky conditions. By constructing atmospheric columns based on ERA5 multi-301

year-mean data, our results explain the key feature in the observed OLR-Ts relationship.302
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Figure 5. (a) The same as Figure 2(a) for clear-sky (black) and all-sky (red) ∆OLR.

Solid curves are ERA5 multi-year-mean and the shaded area represents the 5-95

percentile of multi-year-mean CMIP6 output for AMIP experiments. (b) The same

as Figure 2(b,c) for all-sky ∆OLRsfc (solid curve with marker) and ∆OLRatm (solid

curve) based on ERA5 multi-year-mean. (c) Similar to Figure 3(a), color-shaded for

cloud water vapor to TOA [gm−2] based on ERA5 multi-year-mean. Grey dotted

contour curves are WVP, the same as black curves in Figure 3(a).
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First, the overall linearity observed in the OLR-Ts relationship is a result of the303

Clausius-Clapeyron relation, which governs the dependence of humidity on temperature304

and effectively offsets the quadratic growth curve in blackbody thermal emission from305

both the surface and the atmosphere. On the one hand, the infrared opacity of water306

vapor throughout the atmospheric column, as noted in [2], controls the rate at which307

surface thermal emission escapes to space. On the other hand, the emission temperature308

from water vapor itself tends to increase by 0.25 K per 1 K of increase of Ts, a309

rate jointly determined by the Clausius-Clapeyron relation and a pressure-broadening310

effect on water vapor absorption lines, as explained in [20]. Both the surface and the311

atmosphere contribute to the linear OLR slope, with their magnitudes compensating312

for each other depending on atmospheric opacity. In colder and drier regions, the313

surface contribution is dominant, while in warmer and moister regions, the atmospheric314

contribution becomes more significant. This finding aligns with previous studies by [20]315

and [30]. On the present-day Earth, the surface contribution accounts for 60 % and the316

atmospheric emission via pressure-broadening effect accounts for 30% of the linear slope317

in the observed clear-sky OLR-Ts relationship.318

Second, the variability in tropospheric relative humidity (RH) in the mid-319

troposphere (250 to 750 hPa vertical range) has a substantial impact on atmospheric320

thermal emission and contributes to an additional 10% increase in OLR with Ts.321

Moreover, the spatial variations in mid-tropospheric humidity play a crucial role in322

the observed non-linearity of the OLR-Ts relationship over the subtropical and tropical323

oceans, as illustrated in Figure 2(c, d), resulting from the large-scale tropical circulation324

[13]. We find that OLR over the dry subtropical ocean (around 298 K Ts) is higher than325

over the moist tropical ocean (around 302 K Ts) because the drier mid-troposphere shifts326

atmospheric emission to warmer layers (Figure 3(b)), rather than reducing the trapping327

of surface thermal emission.328

Furthermore, our results reveal that CMIP6 models have a remarkably wide spread329

(up to 10 Wm−1) in multi-year-mean clear-sky OLR at given surface temperatures for330

AMIP simulations. A main cause of the spread (for regions warmer than 270 K) is found331

to be model biases in mid-tropospheric RH (Figure 4(c,d)), which can be affected by332

discrepancies in land surface temperature, microphysics and convective parameterization333

across models. In addition, we find that a few CMIP6 models may be biased in radiation334

parameterization and the treatment of well-mixed greenhouse gases, as it clearly diverges335

from other CMIP6 models (Figure 4(b)) and RRTMGP-computed fluxes (Figure B5(b)).336

These biases should be carefully examined in the future.337

Moreover, based on similar approaches conducted in Section 3, Figure 5(a) shows338

that the all-sky OLR-Ts curve (∆OLR) is quite similar to clear-sky, with comparable339

magnitudes of linear slope for the 270 to 305 K Ts range, and a similar curved shape340

that deviates from the linear slope among CMIP6 models and the reanalysis. The341

∆OLRsfc of ERA5 is computed using the all-sky total atmospheric transmittance and342

shown in Figure 5(b) based on GRTCODE. With cloud masking effects, ∆OLRsfc can343

only explain 27 % of the slope in the OLR-Ts relationship. However, the OLR-Ts slope344
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stays comparable to that in the clear-skies because ∆OLRatm is greatly enhanced by345

clouds and compensates for the masked surface contribution. Furthermore, we show that346

clouds are in synergy with water vapor when contributing to the atmospheric emission,347

as the contour plot of the cloud water path from TOA to air temperature levels appears348

to be largely parallel to the WVP. Consequently, the cloud extinction (proportional349

to the cloud water path) enhances the clear-sky OLR-Ts curve. The synergy between350

clear- and all-sky OLR curves indicates that the general circulation from the tropics351

to poles and across the tropical ocean is important for redistributing the atmospheric352

energy and moisture to maintaining the observed OLR-Ts relationship in Earth’s climate353

[13, 31, 32].354
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Appendix A. Data and Method367

This study uses ERA5 reanalysis [18] and CMIP6 model AMIP simulations [33] to368

examine what shapes the overall OLR-Ts relationship over the present-day Earth, based369

on the period from 1998 to 2014. The AMIP simulation is an atmosphere-only climate370

simulation using prescribed sea surface temperature and sea ice concentrations, and371

historical well-mixed greenhouse gas concentrations.372

While OLR fluxes from reanalysis and model outputs are used, we also conduct373

radiative transfer calculations to explicitly calculate atmospheric transmission of surface374

emission and atmospheric emission. Three sets of radiative transfer models are used to375

balance the need for accuracy and efficiency. Monthly-mean ozone profiles and well-376

mixed greenhouse gas concentrations are used in these models if not otherwise specified.377

Temperature and humidity profiles from ERA5 and CMIP6 models at every grid point378

are used to drive the radiative transfer calculations. They consist of 37 model levels for379

ERA5 and 19 pressure levels for CMIP6 models.380
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Geophysical Fluid Dynamics Laboratory (GFDL)’s GPU-able Radiative Transfer381

code (GRTCODE) is a well-benchmarked [34] line-by-line code. It is used to set382

up a benchmark value for atmospheric transmittance over the present-day Earth. It383

is computed at every grid point from the year 1998 to 2014 with monthly-mean384

temperature and humidity profiles from the reanalysis for both clear- and all-sky385

conditions.386

MODTRAN 5.2 [23] is a fast yet accurate band model that has been widely used387

in atmospheric radiation studies. It is used to compute atmospheric transmittance at388

every 1 cm−1 through constructed temperature and humidity profiles at each Ts bin.389

With identical atmospheric inputs, the difference in atmospheric transmittance between390

MODTRAN 5.2 and GRTCODE is within 1 %.391

RTE-RRTMGP [28] is a radiative transfer code designed for fast global-scale392

radiative transfer calculations. It is used to compute broadband fluxes and393

transmittance at every grid point with multi-year monthly-mean temperature and394

humidity profiles from AMIP simulations of 24 CMIP6 models and to analyze the cause395

of intermodel spread in OLR.396
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Figure B1. Multi-year-mean surface temperature (Ts) based on ERA5 reanalysis

from the year 1998 to 2014. Grey contour marks the 297.5 and 302.5 K Ts.

Figure B2. Similar to Figure 2 for ∆OLR (a), ∆OLRsfc (b) and ∆OLRatm (c) for

clear-sky OLR (black) and all-sky OLR (red) but using 220 K Ts as a reference point.

Appendix B. Supplementary Figures397
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Figure B3. The clear-sky OLR curvature sources from thermal emission of water

vapor. The clear-sky ∆ OLRcs,atm computed from RRTMGP using temperature

and humidity profiles from ERA5 reanalysis datasets as a function of local surface

temperature (Ts [K]) with Present-day (PD) greenhouse gas levels (black solid,

comparable to the black curve in Figure 2 (c)) and with water vapor as the only

greenhouse gas (black dot). Solid and dotted blue curves are similar to black curves

but for ‘Ideal’. The Blue dashed curve is the ‘Simpson’ case. (b) Temperature profiles

for ‘Ideal’ at 270 K and 300 K Ts. (c) Temperature profiles for ‘Simpson’. These

profiles at different Ts perfectly overlap, and are isothermal for every 1-K atmospheric

layer from 270 K air temperature to the surface, as demonstrated in the sub-panel on

the bottom left.
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temperature from the ERA5 gridded multi-year-mean. The green solid curve shows

the tropospheric-mean RH as a function of surface temperature. (b) The same as (a)

but for air temperatures. (c) The same as b but for cloud cover.



How Uncertainties in RH Drive the Spread in OLR- Ts Across CMIP6 models 19

270 275 280 285 290 295 300 305
Surface Temperature [K]

220

230

240

250

260

270

280

290

300

310

C
le

ar
-s

ky
 O

LR
 [W

m
-2

]

(a)
 RRTMGP OLR

2 3 4 5 6 7 8
RRTMGP, OLR(298K)cs,atm-OLR(302K)cs,atm  [W/m2]

0

1

2

3

4

5

6

R
R

TM
G

P,
 O

LR
(2

98
K)

cs
-O

LR
(3

02
K)

cs
 [W

/m
2 ]

ACCESS-CM2
ACCESS-ESM1-5
BCC-CSM2-MR
BCC-ESM1
CIESM
CMCC-CM2-SR5
CanESM5

EC-Earth3-AerChem
EC-Earth3-Veg
EC-Earth3-Veg-LR
FGOALS-f3-L
FGOALS-g3
GFDL-CM4
GISS-E2-1-G

IITM-ESM
INM-CM5-0
IPSL-CM6A-LR
MIROC6
MPI-ESM-1-2-HAM
MPI-ESM1-2-HR
MRI-ESM2-0

NESM3
SAM0-UNICON
TaiESM1

Ensemble Mean
2 3 4 5 6 7 8

RRTMGP, OLR(298K)cs,atm-OLR(302K)cs,atm  [W/m2]

0

1

2

3

4

5

6

R
R

TM
G

P,
 O

LR
(2

98
K)

cs
-O

LR
(3

02
K)

cs
 [W

/m
2 ]

ACCESS-CM2
ACCESS-ESM1-5
BCC-CSM2-MR
BCC-ESM1
CIESM
CMCC-CM2-SR5
CanESM5

EC-Earth3-AerChem
EC-Earth3-Veg
EC-Earth3-Veg-LR
FGOALS-f3-L
FGOALS-g3
GFDL-CM4
GISS-E2-1-G

IITM-ESM
INM-CM5-0
IPSL-CM6A-LR
MIROC6
MPI-ESM-1-2-HAM
MPI-ESM1-2-HR
MRI-ESM2-0

NESM3
SAM0-UNICON
TaiESM1

Ensemble Mean
ERA5

-16 -14 -12 -10
Mid RH, 298K - 302K

-1

0

1

2

3

4

C
M

IP
6 

O
LR

cs
, 2

98
K 

- 3
02

K 
[W

/m
2 ]

(b)

-10 -5 0 5 10
Inter-model spread, mid RH

-10

-5

0

5

10

In
te

r-m
od

el
 s

pr
ea

d,
 O

LR
cs

, [
W

/m
2 ]

(c)
Coeff: -0.45  Rsq: 0.66

-16 -14 -12 -10
Mid RH, 298K - 302K

-1

0

1

2

3

4

C
M

IP
6 

O
LR

cs
, 2

98
K 

- 3
02

K 
[W

/m
2 ]

(b)

-10 -5 0 5 10
Inter-model spread, mid RH

-10

-5

0

5

10

In
te

r-m
od

el
 s

pr
ea

d,
 O

LR
cs

, [
W

/m
2 ]

(c)
Coeff: -0.45  Rsq: 0.66

Figure B5. Same as Figure 4(a,d,e) except that OLR fluxes computed from RRTMGP

are used.
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Appendix C. Supplementary Table398

Table C1. Similar to Table 1 but for idealized atmospheric columns with vertically

uniform RH and lapse rate in the troposphere.
Experiments Temperature Humidity ∂OLRcs,sfc/∂Ts ∂OLRcs,atm/∂Ts

Ideal

Uniform tropospheric lapse rate

Surface pressure at 1000 hPa

Figure B3(b)

40% tropospheric RH 1.40 Wm−2K−1 0.43 Wm−2K−1

Simpson

Same as Ideal,

except that the 270 K air is at 1000 hPa,

regardless of the actual Ts

Figure B3(c)

Same as Ideal 1.25 Wm−2K−1 0 Wm−2K−1
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