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Abstract

Designing where to plant riparian vegetation is a component of many river
projects. Several mechanistic models have been developed considering biologi-
cal, soil, hydrological, and hydraulic requirements that influence riparian vege-
tation growth. However, many models are not spatial explicit and there remains
high uncertainty as to where plantings will survive or die. This study sought to
determine if a machine learning (ML) algorithm could be trained to accurately
characterize the complex set of site attributes that promote survival, and do
so exclusively using metrics derived from airborne LiDAR. Results could then
be used to guide planting strategies. The selected testbed river was 34 km
of alluvial, regulated, gravel/cobble river where planting projects are common
and have high mortality. The lower Yuba River, California, USA was mapped
at sub-meter resolution in 2017. Our approach has four steps. First, a set of
32,000 vegetation presence/absence observations were randomly selected from
LiDAR-derived polygons of naturally occurring established vegetation. Second,
the river was split into 75 training, validation and test areas. Third, a set of
17 LiDAR-derived topographic potential predictors were computed at 0.91-m
(3-ft) resolution. Finally, a Random Forest machine learning model was trained
to best predict vegetation presence. The model results in a riparian vegetation
presence probability map and has a “Area Under the Curve” (AUC) of 0.77. As
probability values are difficult to interpret, a forage ratio electivity index anal-
ysis was performed with statistical bootstrapping. Results show that points
with probability values > 0.8 had ~ 8.5 times more riparian vegetation present
than would be likely from random chance at the 95% confidence level. Microto-
pographic ‘vector ruggedness’ was identified as the main driver for vegetation
presence, followed by Terrain Ruggedness Index and Roughness. In conclusion,
a ML model can identify where riparian vegetation planting are most likely to
succeed and guide design. Our results also suggest that more attention should
be paid to creating rugged microtopography under plantings to help cuttings
and seedlings establish deposition critical for nutrition.
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Plain-Language Summary:

Designing where to plant riparian vegetation is a component of many river
projects. We propose that artificial intelligence can be used to aid the design
of riparian plantings, hopefully improving project outcomes. In this study we
show that machine learning can accurately predict where vegetation is found on
a gravel/cobble river and that machine learning identifies important variables
critical to planting success but which are not typically used in planting design.

Session Title:

EP002. Applications of Ecosystem Restoration and Natural or Nature-based
Features as Green Infrastructure for Vulnerable Aquatic Systems

Session Description:

Aquatic systems, including wetlands, estuaries, rivers, and lakes, provide ecolog-
ically and economically important services for the communities that surround
them. These human and natural systems are tightly coupled, and development
pressures have led to significant degradation in aquatic ecosystems over the last
century. Opportunities are increasingly sought to recover lost ecosystem services
through restoration and to harness ecosystem benefits by implementing green
infrastructure designs inspired by natural and nature-based features (NNBF).
This multidisciplinary session welcomes studies related to aquatic restoration or
design of NNBF, including (1) development of novel strategies and best prac-
tices for “successful” restoration and/or green infrastructure design (e.g. design
of reef restoration, living shoreline or bank protection, floodplain storage), (2)
biogeochemical or hydrodynamic impacts of implementation (e.g. flow alter-
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ation, wave buffering, carbon sequestration), and (3) scientific advances leading
to high-fidelity predictions of outcomes related to these investments (e.g. ecosys-
tem modelling, site or species selection, benefit valuation).
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