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Abstract7

Amplitude variation with offset (AVO) inversion, particularly for more than two model parameters,8

is a highly ill-posed problem and, hence, regularization is indispensable. Here, we propose a regularized9

inverse problem to mitigate the ill-posedness of the amplitude inversion. The regularization is10

added to measure the difference in information between the a priori probability density function11

and the predicted probability density of the inverted parameters. Information theory provides a12

collection of contrast functions which quantify the divergence from one probability distribution13

to another, such as the relative entropy. The a priori density is approximated by a Gaussian mixture14

model, obtained from well logs and rock physics model. The mixture model is a density estimator,15

providing the statistical properties of the model parameters of interest. The likelihood of the data16

and the divergence are combined in an augmented Lagrangian scheme, the alternating direction17

method of multipliers (ADMM), to obtain a unique solution that best generate the recorded seismic18

data and satisfy the geological constraints conveyed by the a priori probability density function.19

The proposed inversion scheme is then applied to the anisotropy AVO inversion, for estimating20

the elastic and seismic anisotropy parameters of shale formations. Compared to the unconstrained21

minimization, the P- and S-wave velocity, and ε are better recovered, moreover, density and Thomsen’s22

δ are well-constrained.23

Plain Language Summary24

Geophysical inverse problems are highly ill-posed, due to variable sensitivities of different25

model parameters, measurement errors, among other reason. To alleviate ill-posedness of the seismic26

amplitude inversion, a regularization function that measures the distance to a priori mixture model27

is proposed. The a priori mixture model is first obtained from well log and rock physics data, independently28

of the seismic data. The a priori model conveys the statistical properties of the parameters of interest.29

Then, the functional and regularization are combined via a proximal splitting scheme, to obtain30

a unique solution that is close to the a priori mixture model and best generate the observed seismic31

data.32

1 Introduction33

Seismic amplitude inversion has been successfully applied to predict the elastic properties34

of the subsurface (Hampson et al., 2005; Russell & Hampson, 2006); jointly with rock physics35

inversion, models for reservoir lithology and fluid properties are built (Bosch et al., 2010; Grana36

& Della Rossa, 2010). In a strong vertical transverse isotropy (VTI) medium, i.e., shale, isotropic37

approximations of the Zoeppritz equations fail to predict the correct AVO responses, which leads38

to incorrect lithology and fluid predictions, and fail to accurately describe the geomechanical behavior39

of the shale rocks (Sayers, 2013b). The anisotropy of shale is attributed to preferential orientation40

of clay minerals, micro-cracks, organic matter, amongst others, hence, anisotropy exists at all scale41

lengths (Sayers, 2013a). Since there is no direct method to measure anisotropy in vertical wells,42

rock physics modeling (RPM) is used to estimate the low-to-medium frequency anisotropy parameters43

necessary to initialize the seismic amplitude inversion for the lithology and fluid predictions. Bandyopadhyay44

(2009) showed that, increasing the volume fraction of kerogen increases the rock stiffnesses, and45

subsequently the elastic anisotropy. Consequently, the estimated seismic anisotropy parameters46

are of great relevance for the organic shale exploration and production.47

Daley & Hron (1977) gave the exact solution for reflection and transmission coefficients48

in a transversely isotropic medium. Many linear approximations have been subsequently introduced49

assuming weak elastic contrasts (Thomsen et al., 1993; Rüger, 1997). Despite a vertical transverse50

medium (VTI) is described by the Thomsen’s parameters ε, δ, and γ (Thomsen, 1986), the51

P-P reflection coefficients in a VTI medium depends only on ε and δ (Rüger, 1997). The effect52

of the NMO anisotropy δ appears at the small-to-middle angles of incidence (Banik, 1987), while53

P-wave anisotropy ε influences larger angles of incidence greater than 30○ (Kim et al., 1993). Plessix54

& Bork (2001) studied the AVO response in a VTI medium based on the least-squares function;55
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showing that, it is difficult to obtain all five parameters for small-to-medium angles of incidence56

due to the existence of local minimum solutions. F. Zhang et al. (2019) used implicit constraints57

to derive an approximation of the P-P reflection coefficients in a VTI medium, consisting of only58

three parameters. In addition, joint P-P and P-S amplitude inversion of a VTI medium has been59

proposed to better constrain the density and seismic anisotropy parameters (Nadri & Hartley, 2007;60

Lu et al., 2018; Luo et al., 2020; Zhou et al., 2020).61

Seismic amplitude inversion is highly ill-posed due to variable-sensitivities among model62

parameters; moreover, a small amount of noise in the observed seismic data results in a very large63

change in the estimates (Tarantola, 2005). Furthermore, the density and Thomsen’s anisotropy64

inversions are very challenging due to less information in the near-angle traces, whereas the far-angle65

traces are typically distorted (non-flatten) (L. Liu et al., 2013). To quote Treitel & Lines (2001),66

“A good match between the observed and theoretical geophysical responses provides us with a67

necessary, but by no means sufficient condition for the calculation to converge to the ground truth68

below us.”, a solution to ill-posed problems is to add regularization that enhances the stability69

of the inversion, such as L2−norm promoting smoothness in the solution (Velis, 2008), and L1−70

norm to promote sparsity in the solution (Y. Wang, 2010) and as an anti-noise functional (C. Liu71

et al., 2015). Total variation (TV −norm) has been successfully used to promote sparsity of the72

reflection coefficients (F. Zhang et al., 2014) and acoustic impedance (Wu, He, et al., 2019). Zand73

et al. (2020) used the TV − norm regularization to obtain a stable solution of the least-square74

reverse-time migration (LSRTM). Despite the norm regularization functions to provide a desired75

shape of the solution, it can not infer the statistical information about the model parameters of76

interest. Different geoscience data follow different distributions, such as the P- and S-wave velocity77

follow a Gaussian distribution (Hernlund & Houser, 2008) and a Lévy-stable distribution (Painter78

& Paterson, 1994), the P- and S-wave reflection coefficients follow a Lévy-stable distribution (Painter79

et al., 1995) and a Gaussian mixture distribution (Mukerji et al., 2009), and the porosity follows80

a log-normal distribution (Berezin, 1982). Accordingly, the Bayesian inference uses a prior probability81

distribution that infer the statistical properties of the model parameters to obtain the posterior distribution82

of the unknown model parameters, using deterministic approaches (Downton & Lines, 2001; Buland83

& Omre, 2003; Downton, 2005; Grana, 2020), or stochastic methods (D. Zhu & Gibson, 2018;84

Wu, Li, et al., 2019; K. Li et al., 2020).85

Zidan (2022) proposed a generalized framework for Bayesian inversion using a lower-bound86

estimate of the statistical information of the model parameters of interest, along with a Bregman87

divergence to regularize the amplitude inversion by measuring the distance to the a priori model.88

However, different rock facies and fluids saturations result in different elastic and petrophysical89

properties, and subsequently lead to multimodal behavior of the marginal and joint distributions90

of the model parameters of interest. Examples of such problems are petrophysical inversion of91

seismic data (Connolly & Hughes, 2016; de Figueiredo et al., 2017, 2018a; Kolbjørnsen et al.,92

2020), and anisotropy AVO inversion (Lu et al., 2018; Zhou et al., 2020), where more parameters93

must be estimated. To this end, a prior mixture model is necessary to infer the correct statistical94

information about the parameters of interest. Additionally, the mixture models provide good fit95

to heavy-tailed data (Mukerji et al., 2009; Grana & Bronston, 2015). Grana & Della Rossa (2010)96

proposed a Gaussian mixture model for the litho-fluid classes. Grana et al. (2017) obtained an97

analytical solution of the posterior distribution using a prior Gaussian mixture model. Fjeldstad98

& Grana (2018) used Markov chain Monte Carlo (McMC) to sample from a Gaussian mixture99

posterior density for predicting lithology-fluid classes. de Figueiredo et al. (2019) jointly inverted100

for facies and elastic properties, using a Gaussian mixture prior density. Consequently, a single-component101

density function is incompetent to represent the model space, and subsequently infer the wrong102

statistical information about the model parameters.103

To quote Goodfellow et al. (2016), “The basic intuition behind information theory is that104

learning that an unlikely event has occurred is more informative than learning that a likely event105

has occurred.”, we can calculate the amount of information conveyed by the inverted parameters106

using the relative entropy (Kullback & Leibler, 1951). Here, we propose a regularized inverse107

problem that holds for mixture probability density functions. The regularization is based on f -divergences,108
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which measure the difference between two probability distributions, i.e., the a priori distribution109

and predicted distribution. Firstly, an inverse rock physics (IRPM) problem is solved using well110

log and seismic data for estimating the P-wave anisotropy ε and normal-moveout (NMO) anisotropy111

δ parameters, in order to fully cover the low-to-medium frequency gap of the limited-bandwidth112

seismic data (Zidan et al., 2021). Then, a priori joint distribution is obtained using all five parameters113

[Vp, Vs, ρ, δ, ε]. The mixture model contains the statistical information about the model parameters114

of different litho-facies. Next, the anisotropy AVO modeling based on Rüger’s P-P reflection coefficients115

in a VTI medium is performed. A regularized inverse problem that measures the residual between116

the amplitudes of observed and synthetic seismic angle gathers, and the divergence of the predicted117

probability density from the a priori probability density is constructed. Subsequently, the alternating118

direction of multipliers method (ADMM) is used to minimize the functional and regularization119

alternately. The performance of the proposed approach is subsequently tested on synthetic and120

real seismic angel gathers. The regularized optimization successfully constrains the low-sensitivity121

density and δ parameters, and a better recovery of the elastic velocities and ε.122

Methodology123

1.1 Anisotropic AVO modeling124

Reflection amplitudes are parameterized by the angles of incidence and elastic properties
of rock layers across the interface. Assuming incident plane waves at an interface between two
VTI media, the energy partitioning is described by Daley & Hron (1977). Various weak-contrast
approximations have been introduced, including Ursin & Haugen (1996); Vavryčuk (1999); Shaw
& Sen (2004). Thomsen et al. (1993) derived a linear approximation of the PP reflection coefficients
for weak anisotropy VTI media:

RV TI
PP (θ) =

1

2
[
∆Z0

Z̄0
]

+
1

2

⎡
⎢
⎢
⎢
⎣
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)
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⎤
⎥
⎥
⎥
⎦
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+
1

2
[
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− (δ2 − δ1 − ε2 + ε1)] tan

2 θ sin2 θ,

(1)

where Z0 = ρVp0 and G0 = ρV
2
s0 are the vertical P-wave impedance and vertical S-wave modulus

(Castagna & Backus, 1993). The ∆δ appears on both sin2 θ and tan2 θ sin2 θ terms, resulting
in inaccurate reflection coefficients for large angles of incidence (> 20○). Moreover, for angles
larger than 45○, the tan2 θ sin2 θ dominates the AVO-gradient term, and equation 1 breaks down
(Rüger, 2002). Rüger (1997) decomposed the reflection coefficients into isotropic and anisotropic
terms:

RV TI
PP (θ) = R
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PP (θ) +R

ani
PP (θ), (2)

where,
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1
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(3)

Rani
PP (θ) =

1

2
∆δ sin2 θ +

1

2
∆ε tan2 θ sin2 θ. (4)
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In the above equation, ∆δ controls the small-angle reflection coefficients through the sin2 θ term,
whereas ∆ε controls the large-angle reflection coefficients with the tan2 θ sin2 θ term. Consequently,
equation 2 is more stable for large angles of incidence. Figure 1a shows comparison of the exact
isotropic and exact anisotropic solutions in a VTI medium, the difference between the two solutions
particularly for the mid-to-far angle of incidence may lead to the wrong lithology and fluid content.
Equation 2 is extended to a time-continuous reflectivity function reads per Stolt & Weglein (1985):

RV TI
PP (θ) = aVp(θ)

∂ lnVp

∂t
+ aVs(θ)

∂ lnVs

∂t
+ aρ(θ)

∂ lnρ

∂t
+ aδ(θ)

∂δ

∂t
+ aε(θ)

∂ε

∂t
, (5)

where,

aVp(θ) =
1

2
(1 + sin2 θ + sin2 θ tan2 θ), (6)

aVs(θ) = −(
2V̄s(t)

V̄p(t)
)

2

sin2 θ, (7)

aρ(θ) =
1

2

⎛

⎝
1 − (

2V̄s(t)

V̄p(t)
)

2

sin2 θ
⎞

⎠
, (8)

aδ(θ) =
1

2
sin2 θ, (9)

aε(θ) =
1

2
sin2 θ tan2 θ. (10)

In the above equation, accurate estimation of the background V̄s/V̄p is important, particularly for125

relatively strong elastic contrasts (Alemie, 2010); in practice, it is usually taken as a constant calculated126

from well logs. Figure 1b shows comparison between the Daley & Hron (1977) and the Rüger127

(1997) solutions in a VTI medium. In spite of the good fit between the two solutions, equation 5128

is highly ill-posed and rarely inverted directly.129

(a) (b)

Figure 1: (a) Comparison between the exact isotropic (red) and exact anisotropic (green) solutions
in a VTI medium. (b) Comparison between the exact anisotropic (green) and Rüger anisotropic
(cyan) solutions in a VTI medium. We have used the CREWES VTI Explorer 1.1 to perform the
above simulation.
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1.2 Alternating direction method of multipliers (ADMM)130

In constrained optimization, the goal is to solve:

x̂ = argmin
x

f(x) + g(x), (11)

where f(x) and g(x) are convex functions. The two functions can be separate using variable
splitting:

x̂ = argmin
x,z

f(x) + g(z), (12)

s.t. x = z.

The consensus constraint (x = z) can be presented as a penalty term using the augmented Lagrangian
(Parikh & Boyd, 2014):

Lρ(x, z, y) = f(x) + g(z) + y
T
(x − z) +

ρ

2
∥x − z∥

2
2 , (13)

where y is the Lagrange multiplier vector, and ρ > 0. Equation 13 can be solved iteratively using
the scaled dual variable uk = (1/ρ) yk at kth iteration and λ = (1/ρ) (Boyd et al., 2011; Parikh
& Boyd, 2014):

xk+1
= proxλf (z

k
− uk
) , (14)

zk+1 = proxλg (x
k+1
+ uk
) , (15)

uk+1
= uk

+ xk+1
− zk+1. (16)

The above equation is the proximal form of the ADMM, where proxλf , proxλg are the proximity
operators for f and g with penalty λ, respectively. The proximity operator of a function, e.g., g,
is defined in equation 17, where we try to minimize g(x), yet stay close to a given value y.

proxλg(y) = argmin
x

g(x) +
1

2λ
∥x − y∥22. (17)

For f and g convex, and kth iteration, the ADMM has O(1/k) rate of convergence (He &131

Yuan, 2012; Hong et al., 2016). Many variants of the ADMM have been developed, such as linearized132

(Goldfarb et al., 2013), online (H. Wang & Banerjee, 2013), stochastic (Ouyang et al., 2013; Huang133

et al., 2019), and accelerated (J. Zhang et al., 2019).134

The function f(x) can be set as the mean-square error (MSE) of the amplitude differences
between synthetic and observed seismic data:

MSE (ŷθ, yθ) =
1

n
∑
i

(ŷi,θ − yi,θ)
2
, (18)

where ŷθ, yθ are the synthetic and observed amplitudes at angle of incidence θ, respectively. The135

L2 loss function is strictly convex, with a positive-definite Hessian. The L2 loss function is more136

sensitive to noise, as it is related to the short-tailed Gaussian density (Guitton & Symes, 2003;137

Tarantola, 2005). In general, seismic data contains different types of noises, and therefore noise-insensitive138

loss functions are favorable, such as the L1 and Huber misfit functions. However, the mean-squares139

and Huber errors are not normally distributed, and therefore can lead to erroneous results (Kosheleva140

& Kreinovich, 2017) and, hence, a regularization g(z) may help in stabilizing the inversion.141
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1.3 f -divergences142

f -divergences (a.k.a. Csiszár f -divergences) are contrast functions that measure the dissimilarity
between two probability distributions (Csiszár, 2008). Let p a prior probability density defined
from the available well logs and rock physics model, and q is the predicted probability distribution
from seismic amplitude inversion, then for a convex function f with f(1) = 0, the f -divergence
of p from q is:

Df(p, q) = Eq [f(u(x))] , (19)

where u is the density ratio u(x) = p(x)/q(x). The divergence measure depends on the choice
of the function f , i.e., the KL divergence is a special case of the f -divergences for f(x) = x logx
(Polyanskiy & Wu, 2014). Examples of probability metrics f include (Liese & Vajda, 2006):

(Forward KL-div): DKL(p∥q) = u(x) logu(x) − (u(x) − 1), (20)

(Reverse KL-div): DKL(q∥p) = − logu(x) + (u(x) − 1), (21)

(Jensen-Shannon): DJS(p∥q) =
1

2

⎡
⎢
⎢
⎢
⎣
(u(x) + 1) log(

2

u(x) + 1
) + u(x) logu(x)

⎤
⎥
⎥
⎥
⎦
. (22)

The f -divergences are non-negative, and convex:

Df [λp1 + (1 − λ)p2∥λq1 + (1 − λ)q2] ≤ λDf (p1∥q1) + (1 − λ)Df (p2∥q2) . (23)

Figure 2: (a) Illustration of the difference in information between the true distribution p(x) and
observed distribution q(x). (b) The Kullback–Leibler metric is calculated as the area under the
curve DKL(p∥q) = ∫ p(x) ln

p(x)
q(x)

.

f -divergences appear in many machine learning applications and related fields (Nowozin143

et al., 2016; Ke et al., 2020; Ghasemipour et al., 2020; Yu et al., 2020; Gimenez & Zou, 2019).144

Figure 2 shows how to estimate the similarity between two Gaussian probability distributions via145

information. The Kullback–Leibler metric (area under the curve) increases much faster with increasing146

the difference in the mean value as compared to the difference in the variance value between the147

two distributions.148
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To solve equation 19, i.i.d. (independent and identically distributed) samples are generated
{xi}

M
i=1 from q, and then the Monte Carlo estimation is used as following (Mnih & Rezende, 2016):

Df(p, q) =
1

M

M

∑
i=1

f(u(x(i)q )), x(i)q ∼ q(x). (24)

In figure 3a, despite staring with a normal Gaussian distribution q0(x), we iteratively fit149

a mixture model of same number of components as p(x); nonetheless, we can always choose to150

fit a simpler model as shown in figure 3b. In equation 19, q(x) is calculated using the inverted151

model parameters {x}, and thereby would always have a significant mass that leads to zero-forcing152

of q, i.e., p(x) = 0⇒ q(x) = 0, hence, minimization of the reverse KL divergence is prompted153

as it steers clear of regions where q(x) is high and p(x) is small (a.k.a. mode-seeking). On the154

other hand, the forward KL divergence approximates p distribution across all its modes, by seeking155

the mean (a.k.a. mean-seeking). For our proposal, due to variable-sensitivities among model parameters,156

noises in the observed data, and bad starting model, the inverted parameters are incorrect leading157

to a variational distribution q0(x) (orange) that is far away from the a priori distribution (red) and,158

hence, minimizing the divergence between the two distributions can mitigate ill-posedness of the159

inverse problem.160

Intuitively, we use f -divergence to measure how far is the predicted parameters from the161

a priori probability density function, and consequently rejects local minima that have large divergence162

values. Figure 4 illustrates how a solution with larger divergence value from the a priori density163

is identified as a local minimum solution and, hence, inversion is proceeded until reaching a solution164

with a small divergence value, and best generate the observed seismic data. In a proximal splitting165

framework, both the likelihood of data and regularization are minimized, alternately. For f -divergence,166

minimization is done with respect to the model parameters {x} that used to approximate the variational167

distribution q, and without needing to sample from q. The seismic amplitude inversion is an underdetermined,168

hence, a direct method might not be accurate for the x-minimization step. Moreover, there is no169

closed form solution of the f -divergence proximity operator. Assuming f and g are smooth functions,170

we use the L-BFGS-B iterative solver to carry out the two primal variables’ minimization, the171

x-minimization and z-minimization (Boyd et al., 2011). The L-BFGS-B algorithm is useful to172

handle bound constraints on the variables, where the Hessian is updated at each iteration (Byrd173

et al., 1995; C. Zhu et al., 1997).174

1.4 The a priori model175

Because seismic anisotropy can not be measured directly in vertical wells, a rock physics176

model is built to predict the elastic anisotropy parameters δ and ε. A constrained inverse rock177

physics problem is constructed, in which the Hudson-Cheng crack model is combined with the178

anisotropy AVO convolution model to predict the Thomsen’s anisotropy parameters (Zidan et al.,179

2021).180

A prior probability density function of the elastic and seismic anisotropy parameters is then
defined, using a Gaussian mixture model and a multivariate Gaussian model. The a priori distribution
provides the statistical information that helps in stabilizing the amplitude inversion. A Gaussian
mixture model is defined as a weighted sum of various Gaussian probability density functions
(Reynolds, 2009):

p(x∣λ) =
M

∑
i=1

wi g(x∣µi,Σi), (25)

with,

λ = [wi, µi, Σi] , (26)

M

∑
i=1

wi = 1, (27)
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(a)

(b)

Figure 3: Minimization of f -divergence between (a) two mixture models using the reverse KL
divergence, and (b) a single and mixture models using the forward and reverse KL divergences.

where x is an N-dimensional data vector; g(x∣µi, σi) are the Gaussian densities components, each
defined by a mean vector µi, and a covariance matrix Σi. wi is a weight assigned to each component:

g(x∣µi,Σi) =
1

(2π)
N
2 ∣Σi∣

1
2

exp

⎧⎪⎪
⎨
⎪⎪⎩

[−
1

2
(x − µi)

′

Σ−1i (x − µi)]

⎫⎪⎪
⎬
⎪⎪⎭

. (28)
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p(x)f(x)
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Local Minima
x0

Figure 4: Illustration of the proposed constraint optimization, which aims to skip local minima
solutions with large f -divergence values from the a priori model. The probability density in (red)
obatined from the amplitude inversion, is compared with the probability density obtained from
well logs and rock physics data (gray).

Here, the Gaussian mixture model is emphasized as a density estimator that best describe
the input parameters and fully represents the model space. To achieve the best density estimation
of the GMM, a full-type covariance matrix is used. In addition, the optimal number of components
is estimated by adjusting the model likelihood, via minimizing the Bayesian information criterion
(BIC) and the Akaike information criterion (AIC) (VanderPlas, 2016). Smooth Gaussian components,
each with a mean vector and a covariance matrix, are fitted using Expectation–Maximization approach
(E-M) (Reynolds, 2009). The E-M algorithm is an iterative approach, where the mixture parameters
λ are updated to increase the likelihood of the model (VanderPlas, 2016):

ŵi =
1

T

T

∑
t=1

Pr (i∣xt, λ) , (29)

µ̂i =

T

∑
t=1

Pr (i∣xt, λ) xt

T

∑
t=1

Pr (i∣xt, λ)

, (30)

Σ̂i =

T

∑
t=1

Pr (i∣xt, λ) x
2
t

T

∑
t=1

Pr (i∣xt, λ)

− µ̂2
i , (31)
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with,

Pr (i∣xt, λ) =
wi g(xt∣µi,Σi)

M

∑
k=1

wk g(xt∣µk,Σk)

, (32)

where λ = [wi, µi, Σi] are the initial mixture parameters. ŵi, µ̂i, Σ̂i are the updated mixture181

parameters at ith iteration. Pr (i∣xt, λ) is the posterior probability for ith component. Figure 5182

shows the Bayesian information criterion and Akaike information criterion as a function of the183

number of the GMM components. The number of Gaussian components that enhances density184

estimation of the GMM is around 25 − 30 for the AIC, whereas BIC suggest a simpler model185

of 9 components; the simple model of 9 components is selected. The inversion results would therefore186

depend on the choice of the a priori density function, i.e., number of the mixture model components.187

The Gaussian mixture and multivariate Gaussian models are shown in figures 6a and 6b, respectively.188

All the 2D projections of the negative log-likelihood of the a priori distributions and the data points189

are plotted. The GMM preferably addresses the multimodal behavior of the model parameters.190

Nevertheless, there would be a covariance matrix for each component, and subsequently the Mahalanobis191

distance is not applicable (Zidan, 2022). Furthermore, the analytical solution of the posterior distribution192

for a GMM is not tractable and, hence, requires a stochastic sampling algorithm to explore the193

mixture prior density function, e.g., Markov chain Monte Carlo. However, the stochastic sampling194

algorithms are computationally expensive, and converges slowly in high-dimensional models.195

Moreover, the AVO models depend on the boundary properties rather than layer properties, which196

necessitates a longer McMC chain. Alternatively, we propose a deterministic approach to regularize197

the seismic amplitude inversion using a divergence measure from the a priori probability density198

function.199

1 5 10 15 20 25 30
n_components

5000

4750

4500

4250

4000

3750

3500

3250

3000

GMM components = 9

BIC
AIC

Figure 5: The optimal number of Gaussian components based on the AIC and BIC criterion.

Results200

Figure 7 shows cross-plot of the AVO intercept-and-gradient attributes, calculated from the201

pre-stack seismic angle gathers using the two term Aki-Richard’s equation. The AVO response202

of the organic-rich shale is of class IV (negative intercept and positive gradient), where the absolute203

values of the intercept and gradient increase with the kerogen content and porosity (Y. Li et al.,204
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Figure 6: The negative log-likelihood of the a priori probability distribution using a (a) Gaussian
mixture model, and (b) multivariate Gaussian model. The GMM components is set to 9. Black dots
are the input data samples from well logs and rock physics modelling.

2015). As shown, it is hard to distinct class IV AVO response of the organic-rich shales from the205

surrounding rocks. Despite conventional AVO attributes provide information about interfaces (top206

and base of the shale reservoir), they cannot infer the effective moduli of the shale reservoirs. Consequently,207

it is necessary to estimate supplementary parameters that are sensitive to the organic matters and208

correlated with the gas content of the sweetest intervals. The feasibility of the proposed regularization209

is demonstrated using synthetic seismic angle gathers. The model parameters consist of the P-210

and S-wave velocity, density, and Thomsen’s parameters δ and ε. The synthetic angle gathers are211
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obtained by convolving the P-P reflection coefficients calculated using equation 5 with a statistical212

wavelet. Figure 8 shows the synthetic angle gather consisting of 41 traces of range 1 − 41○.213

Figure 7: Cross-plot of the AVO intercept and gradient attributes calculated from pre-stack seismic
angle gathers, using the two term Aki-Richard’s equation. The red dots represent the class IV AVO
responses of the organic-rich shales.

The information contained in the a priori mixture density and the difference in information214

of the a priori distribution from the variational (predicted) distribution is measured via f -divergence.215

Subsequently, the amplitude inversion can be regularized by measuring how much information216

lost when substituting the a priori probability density p with the variational density q. In an augmented217

Lagrangian scheme, i.e., ADMM, the data residual between synthetic and real angle gathers is218

measured, next regularization is imposed by measuring the information lost in the model space,219

and then the functional and regularization are coordinated globally via constraints, i.e., the dual220

variable for the ADMM.221

To assess the proposed approach, results are compared with the unconstrained minimization222

of the L-BFGS-B algorithm. We use the same low-frequency model and boundaries as for the223

proposed approach. The initial model is necessary to fully cover the low-to-medium frequency224

gap of the seismic data. The proposed method is first tested on synthetic data with high signal-to-noise225

ratio of S/N = ∞. For this test, the mean-square error misfit and the Kullback-Leibler divergence226

regularization are used. Figure 9 shows the inversion results of the unconstrained L-BFGS-B and227

constrained ADMM methods. Despite the high signal-to-noise ratio, the unconstrained L-BFGS-B228

algorithm converges to a local minimum and couldn’t update all the five parameters properly due229

to the variable-sensitivities among the model parameters and missing information in the observed230

data (limited aperture and S-wave), particularly the density and Thomsen’s δ as shown in figure 9a.231

Using ADMM with the KL divergence regularization of the GMM a priori model, the model parameters232

Vp, Vs and ε have been recovered successfully, and ρ and δ are preferably constrained, as shown233

in figure 9b. The constrained minimization is next run using the multivariate Gaussian a priori234

model, as shown in figure 9c. Similarly, all five parameters have been recovered fairly well, yet235

the a priori density of the multivariate Gaussian could not properly model particular litho-facies,236
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Figure 8: Synthetic pre-stack angle gathers with (a) S/N = ∞, (b) S/N = 9, along with (c) the
P-wave velocity from well logs, and the statistical wavelet.

e.g., the shale gas zone as compared to the GMM. Notably, the log interval is consisting of alternating237

shale and mudstone, and thereby there are no significant variations in the lithofacies.238

Additionally, a simpler (single-component) variational distributions of a multivariate Gaussian239

and a multivariate student’s t- are used to model the inverted parameters, and to approximate the240

a priori Gaussian mixture model. Figures 10a and 10b show the inversion results of the multivariate241

Gaussian and multivariate student’s t-distributions. Despite using simpler models of the same (Gaussian)242

and different (student’s t-) density functions to fit the 9-components GMM, the f -divergence minimization243

successfully regularizes the parameters’ updates corresponding to the a priori Gaussian mixture244

model.245

Next, the proposed regularization is tested against noise by adding a random noise to the246

pre-stack angle gather corresponding to signal-to-noise ratio of S/N = 9 as shown in figure 8b.247

The Huber misfit and KL divergence are used. The unconstrained optimization fails to obtain the248

correct updates of model parameters, and the Huber misfit function fails to handle the low signal-to-noise249

ratio of the seismic data, as shown in figure 11a. In the constrained optimization, all five model250

parameters are fairly recovered, by constraining the model updates using the statistical properties251

of the unknown parameters. When the information lost from the a priori probability distribution252

is large, the dual variable is updated and proceed to next iteration until a solution of lower divergence253

and residual values is reached, as shown in figure 11b.254

Then, the regularization is tested with a poor starting model, represented by a constant mean255

value for each parameter. Because the initial model is far from the true solution, the unconstrained256

optimization fails to converge to the true solution, as illustrated in figure 12a. On the contrary,257

minimization step of the KL divergence imposes regularization that prompts solutions close to258

the a priori information, hence, fairly recover all the five model parameters as shown in figure 12b.259

Additionally, a single-component multivariate Gaussian and student’s t-distributions are used as260
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variational distributions to fit the a priori model of 9-components GMM. Figure 13 shows that261

the regularization functions, likewise, properly constrain the model parameters.262

Finally, the proposed constrained optimization is applied to pre-stack seismic data acquired263

at the Zhaotong national shale gas demonstration area, Sichuan basin. The marine shales of the264

Silurian Longmaxi formation occur along synclinal belt, the sweetest intervals have an average265

thickness of 35.5m and rich in organic matter (TOC ≈ 3.5%). The estimated anisotropy parameters266

are therefore used to accurately map the occurrence of the sweetest intervals across the seismic267

array. The maximum angle of incidence at the reservoir interval is estimated as 42○, and all the268

(1−42○) are used in the inversion process. The seismic convolution model of the Rüger equation,269

and the statistical wavelets estimated from the seismic data are used to synthesize angle gathers,270

which subsequently compared with the real angle gathers at each CDP location. The low-frequency271

models for the elastic and Thomsen’s anisotropy parameters are built based on the well log data272

and the structure and stratigraphy interpretation. A priori Gaussian mixture model is built, and273

a single-component Gaussian density function is used as the variational distribution. The sweetest274

shale intervals are well-identified with a lower P- and S-wave velocity, and density, and higher275

δ and ε along the synclinal structure at about 1750ms as shown in figures 14 and 15. The near-angle276

seismic traces have less information about density, while most information is in the far-angle traces,277

hence, the density result is less stable as it is more sensitive to the noise level in the data, particularly278

misalignment of reflectors at far angles of incidence.279

Discussion280

To alleviate ill-posedness of the amplitude inversion, the objective function is split into a281

loss, and regularization that addresses the statistical properties conveyed by a priori density function282

of the unknown parameters. The regularization is based on measuring the distance between two283

probability distributions. A priori mixture model, and a variational distribution of the same number284

of components or simpler are used as regularization. The proposed approach works as following,285

first the data residual between the observed and synthetic data is minimized, next the information286

loss in the model space is minimized, and then both the functional and regularization are coordinated287

globally via the dual variable. Despite the proposed regularization provides better constrains on288

the density and Thomsen’s parameter δ, P-S data and larger angles of incidence are required to289

fully constrain the inversion results. The proposed approach is very useful in solving geophysical290

inverse problems that involve different moduli and elastic attributes, such as the Young’s modulus,291

Poisson’s ratio, incompressibility, rigidity, Lame’ parameters, and density (Goodway et al., 1997;292

Xu & Bancroft, 1998; Gray et al., 1999; Golalzadeh et al., 2008; Zong et al., 2013; Yin et al., 2015);293

moreover, the joint elastic and petrophysical models, such as the P- and S-wave velocity, density,294

effective porosity, clay volume, and water saturation (Bosch, 2004; Z. Li et al., 2016; M. Liu &295

Grana, 2018; de Figueiredo et al., 2018b; Guo et al., 2021; K. Li et al., 2021). The latter AVO296

models necessitate robust a priori information to better addresses the joint distributions of the different297

model parameters.298

The performance of the proposed regularization is demonstrated using a high signal-to-noise299

seismic, low signal-to-noise seismic, and bad starting model. In the high signal-to-noise seismic,300

the proposed regularization successfully eases the ill-posedness due to variable-sensitivities among301

model parameters. With bad staring model, the regularization fairly mitigate the problem of frequency302

gap between the seismic data and prior model, by updating the dual variable of the functional and303

regularization. The regularization is also capable of mitigating the low signal-to-noise observed304

seismic data. Furthermore, the proposed regularization is suited for many probability distributions305

that can best describe the statistics of the well logs data, such as parametric distributions (e.g.,306

log-normal distribution), and non-parametric distributions (e.g., kernel density estimation). However,307

the resulting solution from ADMM is not exact because of the partial updates for the dual variable.308

Using a Bregman divergence as a regularization function (Zidan, 2022), a stationary statistical309

correlation information matrix is used, which can be extended in time using a temporal correlation310

function (Buland & Omre, 2003), and in space using a spatial correlation model (de Figueiredo311

et al., 2018b). Nonetheless, f -divergence is considered non-stationary and can be used for each312
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interface, without a temporal nor a spatial correlation functions (for sufficient well-control), hence,313

can be used for the entire well log interval and across the seismic array. Furthermore, the ADMM314

provides an adaptable framework to incorporate additional regularization functions, such as noise-reduction315

and sparsity-promoting functions. The ADMM can be extended for parallel implementation, to316

solve N sub-problems in parallel at each iteration (Boyd et al., 2011; Deng et al., 2017).317

Nevertheless, the divergence measure heavily depends on the choice of the probability metric;318

moreover, it is required to approximate a variational distribution from the inverted model parameters.319

Furthermore, optimization is done over the same data points (inverted model) that are used to approximate320

the variational distribution. This deterministic update might lead to biased estimates of the descent321

directions on the f -divergence. To enhance the estimates of the functional value and gradients,322

the Auxiliary f -divergence or the Fenchel-conjugate f -divergence can be used, which yield the323

upper and lower bounds on the divergence measure, respectively (M. Zhang et al., 2019). Furthermore,324

the tail-adaptive f -divergence can be used to achieve mass-covering of the target distribution (D. Wang325

et al., 2018). Other divergence measures such as the Alpha-, Beta- and Gamma-divergences can326

also be adapted for better convergence (Cichocki & Amari, 2010). Having said that, it is necessary327

to estimate the descent direction without the need to approximate a variational distribution. Zidan328

(2022) used the Stein’s method to estimate the optimal descent direction that maximally decreases329

the KL divergence without needing to approximate a variational distribution. The estimated descent330

direction depends only on the a priori probability density through a score function.331

Conclusion332

We proposed a constrained optimization scheme that can be used with a priori mixture models.333

We then applied the proposed regularization to anisotropy amplitude inversion in a VTI medium.334

We first combined the well logs and rock physics data to build a joint mixture prior probability335

distribution that conveys the statistical properties of the parameters of interest. We then set up336

a regularized inverse problem using the alternating direction of multipliers method (ADMM),337

in which the functional and regularization are solved separately. The goal is to obtain a single338

stable solution that minimizes the data residual, yet stay close to the a priori mixture probability339

distribution. Such constraints are necessary when the starting model is far away from the true solution.340

In comparison with the unconstrained optimization, the vertical velocities are better recovered,341

and the density and anisotropy parameters are well-constrained.342
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Figure 9: Inversion results of the (a) unconstrained L-BFGS-B, (b) ADMM of the
9-components-GMM, and (c) ADMM of the multivariate Gaussian. The signal-to-noise ratio is
set as S/N = ∞. Cyan lines represent the upper and lower boundary constraints.
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Figure 10: Inversion results of using a (a) single-component multivariate Gaussian, and (b)
single-component multivariate student’s t-distribution as the variational distribution to fit the
9-components Gaussian mixture a priori model. The signal-to-noise ratio is set as S/N = ∞. Cyan
lines represent the upper and lower boundary constraints.
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Figure 11: Inversion results of the (a) unconstrained optimization of the L=BFGS-B, and (b)
ADMM of 9-components GMM. The signal-to-noise ratio is set as S/N = 9. Cyan lines represent
the upper and lower boundary constraints.
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Figure 12: Inversion results of the (a) unconstrained L-BFGS-B, and (b) ADMM of 9-components
GMM. The signal-to-noise ratio is set as S/N = ∞, and with a bad initial model (the mean
value for each parameter along the time axis). Cyan lines represent the upper and lower boundary
constraints.
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Figure 13: Inversion results of using a (a) single-component multivariate Gaussian, and (b)
single-component multivariate student’s t-distribution as the variational distribution to fit the
9-components Gaussian mixture a priori model. The signal-to-noise ratio is set as S/N = ∞,
and with a bad initial model (the mean value for each parameter along the time axis). Cyan lines
represent the upper and lower boundary constraints.
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Figure 14: (a) Low-frequency anisotropy models of the (a) near-vertical anisotropy (δ), and (b)
P-wave anisotropy (ε), which used to initialize (b) the amplitude-versus-offset inversion using the
proposed constrained optimization.
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Figure 15: (a) Low-frequency elastic models of the (a) P-wave velocity (Vp), (b) S-wave velocity
(Vs), and (c) density (ρ), which used to initialize (b) the amplitude-versus-offset inversion using
the proposed constrained optimization.
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