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Introduction

Due to the potential risks that space
weather (SW) events pose on modern tech-
nology and infrastructure, there has been in-
creasing interest in physics-based forecasts
of the solar wind. Over the last few decades
signi�cant e�ort has been devoted to the de-
velopment of e�cient numerical schemes for
space plasmas simulations. More recently,
there has been increasing interest in incorporating observational
data within SW simulations via data assimilation (DA). In this
study, the results of the assimilation of synthetic plasma observa-
tions in a one-dimensional ideal MHD initial value problem are pre-
sented. Both, variational and sequential DA methods are employed
and compared. We thus presents a key milestone in moving towards
DA of the three-dimensional solar wind.

Magnetohydrodynamics

Magnetohydrodynamics is a general mathematical description of
electrically conducting �uids and their dynamics. Space plasmas
are typically modeled via the ideal Magnetohydrodynamics equa-
tions (MHD) which assume a perfectly electrically conducting, fully
ionized, quasi-neutral, inviscid, ideal gas. In 1D, the ideal MHD
equations may be written in the following conservative form
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noting that in 1D, ∇ ·B = 0 reduces to Bx = constant.

Finite Volume Method

The ideal MHD equations form a coupled system of hyperbolic
PDE's. Thus, a standard Godunov-type �rst-order upwind �nite-
volume method with the Riemann-solver-based �ux function of Pow-
ell is used here to obtain numerical solutions on a uniform 1D mesh.
The fully discrete form of this scheme is given by
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is the numerical �ux function de�ned
by the approximate solution to the Riemann problem
computed at each face of the ith computational cell.

1D Brio and Wu Shock Tube Problem
The Brio and Wu shock tube
problem is a canonical test for
ideal MHD numerical solution
schemes. The test comprises of
an initial condition where a high-
pressure, high-density plasma is
separated from a low-density
plasma by a thin membrane. The
membrane is removed at t = 0, re-
sulting in the propagation of var-
ious waves.

In this study we consider the Brio-Wu initial condition as the
true state. The initial data is generated by perturbing the true
state with the addition of random curves. Noisy measurements are
generated from n passes of a �ctitious observer.

4D Variational Data Assimilation

Variational DA poses the assimilation of observations as a mini-
mization problem. A cost function, J , is de�ned which measures
the discrepancies between measurements and the model state, as
well as di�erences between the corrected state and the background
state. J is minimized by a gradient-based minimization scheme.
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This constrained minimization problem can be cast as an uncon-
strained minimization problem by the method of Lagrange multi-
pliers. We thus de�ne the Lagrangian
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Taking derivatives w.r.t Un and setting them to zero yields the
adjoint equations.

ψN = −HT
nΣ−1

z (H(UN )− zN )

ψn = MT
nψ

n+1 −HT
nΣ−1

z (H(Un)− zn) ∀n ∈ [N − 1, · · · , 1]

Where

Mn
i = Un

i +
∆t

∆x
[Fi− 1

2
− Fi+ 1

2
], Mn =

∂M(Un)

∂Un
, Hn =

∂H(Un)

∂Un

It can be shown that the gradient of J w.r.t U0 is equal to:
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Ensemble Kalman Filter

Sequential DA algorithms follow a Bayesian framework whereby the
system state is updated successively as observations become avail-
able in time. Once the state has been updated by the assimilation
of observations, it is integrated forward in time until the next set
of observations. The Ensemble Kalman Filter (EnKF), is a sequa-
tial algorithm that extends the Kalman Filter (KF) to non-linear
models. The KF algorithm de�nes the Kalman gain, Kn, which
minimizes the variance of the corrected state, Ûn, given Gaussian
error statistics.
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The EnKF estimates the model error covariance, Σn
U, via a monte

carlo integration requiring S model runs. To generate the ensemble,
the state is perturbed by the addition of random curves.
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This correction takes place whenever an observation is available. If
observations are not available at the present time step, the ensemble
of model states are integrated forward in time.

Comparison of 4DVar and EnKF with Synthetic Shock Tube Data

References
1. K.J.H. Law, A.M. Stuart, K.C. Zygalakis. Data Assimilation: A Mathematical Introduction. 2015

2. G. Evensen. The ensemble Kalman �lter: Theoretical formulation and practical implementation. Ocean dynamics, 2003

3. Narechania et al. An integrated data-driven solar wind � CME numerical framework for space weather forecasting. Journal of Space Weather and Space Climate, 2021

4. M. Brio and C. C. Wu. An upwind di�erencing scheme for the equations of ideal magnetohydrodynamics. Journal of Computational Physics, 1988


