Xun Zou

and 7 more

Narrow cold-frontal rain bands (NCFR) often produce short-duration and high-intensity precipitation that can lead to flooding and debris flow in California (CA). On 27 January 2021, an atmospheric river (AR) associated with an intense surface cyclone made landfall over coastal northern CA, which featured a prominent NCFR. This study uses high-resolution West WRF simulations to accurately resolve the gap and core structure of the NCFR and provides reliable precipitation estimations, compensating for limitations of radar and satellite observations. This NCFR was supported by robust synoptic-scale quasi-geostrophic (QG) forcing for ascent and frontogenesis. It propagated southward from Cape Mendocino to Big Sur in 12 hours before stalling and rotating counter-clockwise in central/southern CA due to upstream Rossby wave breaking and amplifying upper-tropospheric trough. With the lower to middle tropospheric flow backed considerably to the south-southwest over the NCFR, the increase of the vertical wind shear caused the transition from parallel to trailing stratiform precipitation. The stall and pivot of the AR and NCFR led to intense rainfall with a 2-day precipitation accumulation greater than 300 mm over central CA. In addition, under the potential instability and frontogenesis, a moist absolutely unstable layer between 850 hPa to 700 hPa was captured at the leading edge of the NCFR, which indicated slantwise deep layer lifting and high precipitation efficiency. This study reveals synoptic-scale and mesoscale drivers of rainfall outside orographic lifting and reaffirms the importance of high-resolution numerical modeling for the prediction of extreme precipitation and related natural hazards.

Nora R Mascioli

and 2 more

Atmospheric rivers can provide as much as 50% of the total annual rainfall to the U.S. West Coast via orographic precipitation. Dust is thought to enhance orographic precipitation via the “seeder-feeder”; mechanism, in which ice particles from a high cloud fall through a lower orographic cloud, seeding precipitation in the low cloud. Using the Weather Research and Forecasting model, we vary dust concentrations in simulations of two-dimensional flow over a mountain. This idealized framework allows us to test the sensitivity of the precipitation-dust response to a variety of different dust concentrations and initial conditions. The model is run using an ensemble of 60 radiosondes collected from Bodega Bay, CA in 2017-2018, clustered based on their vertical moisture profile into “deep moist”, “shallow moist”, and “subsaturated” clusters. The principle impact on precipitation is to increase the ratio of precipitation falling as snow. This produces a “spillover” effect, decreasing precipitation upwind of the peak and increasing precipitation downwind of the peak. The largest impacts on the snow/rain ratio occur at the end of the event, during cold front passage. The ensemble mean does not produce a significant seeder-feeder response, however in individual cases with favorable initial conditions there is a significant increase in precipitation throughout the domain due to dust effects on the seeder-feeder mechanism. These findings afford an opportunity to build a more comprehensive understanding for the conditions under which dust aerosol can have a significant impact on precipitation during atmospheric rivers, with implications for future developments in forecasting.

Benjamin J Hatchett

and 19 more

Michael Sierks

and 3 more

Robust and reliable projections of future streamflow are essential to create more resilient water resources, and such projections must first be bias corrected. Standard bias correction techniques are applied over calendar-based time windows and leverage statistical relations between observed and simulated data to adjust a given simulated datapoint. Motivated by a desire to connect the statistical process of bias correction to the underlying dynamics in hydrologic models, we introduce a novel windowing technique for projected streamflow wherein data are windowed based on hydrograph-relative time, rather than Julian day. We refer to this method as ‘seasonally anchored’. Four existing bias correction methods, each using both the standard day-of-year and the novel windowing technique, are applied to daily streamflow simulations driven by 10 global climate models across a diverse subset of six watersheds in California to investigate how these methods alter the model climate change signals. Among the methods, only PresRat preserves projected annual streamflow changes, and does so for both windowing techniques. The seasonally anchored window PresRat reduces the ensemble bias by a factor of two compared to quantile mapping (Qmap), cumulative distribution function transform (CDFt), and equidistant quantile matching (EDCDFm) methods. For wet season flows, PresRat with seasonally anchored windowing best preserves the original model change over the entire distribution, particularly at the highest quantiles, and the other three methods show improved performance using the novel windowing method. Concerning temporal shifts in seasonality, PresRat and CDFt preserve the original model signals with both the novel and standard windowing methods.