Corentin Kenelm Louis

and 15 more

Robert Wilkes Ebert

and 20 more

We present multi-instrument Juno observations on day-of-year 86, 2017 that link particles and fields in Jupiter’s polar magnetosphere to transient UV emissions in Jupiter’s northern auroral region known as dawn storms. Juno ranged from 42ºN - 51ºN in magnetic latitude and 5.8 – 7.8 jovian radii (1 RJ = 71,492 km) during this period. These dawn storm emissions consisted of two separate, elongated structures which extended into the nightside, rotated with the planet, had enhanced brightness (up to at least 1.4 megaRayleigh) and high color ratios. The color ratio is a proxy for the atmospheric penetration depth and therefore the energy of the electrons that produce the UV emissions. Juno observed electrons and ions on magnetic field lines mapping to these emissions. The electrons were primarily field-aligned, bi-directional, and, at times, exhibited sudden intensity decreases below ~10 keV coincident with intensity enhancements up to energies of ~1000 keV, consistent with the high color ratio observations. The more energetic electron distributions had characteristic energies of ~160 – 280 keV and downward energy fluxes (~70 – 135 mW/m2) that were a significant fraction needed to produce the UV emissions for this event. Magnetic field perturbations up to ~0.7% of the local magnetic field showing evidence of upward and downward field-aligned currents, whistler mode waves, and broadband kilometric radio emissions were also observed along Juno’s trajectory during this timeframe. These high latitude observations show similarities to those in the equatorial magnetosphere associated with dynamics processes such as interchange events, plasma injections, and/or tail reconnection.

Bertrand Bonfond

and 17 more

Kamolporn Haewsantati

and 18 more

Yash Sarkango

and 8 more

We expand on previous observations of magnetic reconnection in Jupiter’s magnetosphere by constructing a survey of ion-inertial scale plasmoids in the Jovian magnetotail. We developed an automated detection algorithm to identify reversals in the component and performed the minimum variance analysis for each identified plasmoid to characterize its helical structure. The magnetic field observations were complemented by data collected by the Juno Waves instrument, which is used to estimate the total electron density, and the JEDI energetic particle detectors. We identified 87 plasmoids with ‘peak-to-peak’ durations between 10 s and 300 s. 31 plasmoids possessed a core field and were classified as flux-ropes. The other 56 plasmoids had minimum field strength at their centers and were termed O-lines. Out of the 87 plasmoids, 58 had in situ signatures shorter than 60 s, despite the algorithm’s upper limit to be 300 s, suggesting that smaller plasmoids with shorter durations were more likely to be detected by Juno. We estimate the diameter of these plasmoids assuming a circular cross-section and a travel speed equal to the Alfven speed in the surrounding lobes. Using the electron density inferred by Waves, we contend that these plasmoid diameters were within an order of the local ion-inertial length. Our results demonstrate that magnetic reconnection in the Jovian magnetotail occurs at ion scales like in other space environments. We show that ion-scale plasmoids would need to be released every 0.1 s or less to match the canonical 1 ton/s rate of plasma production due to Io.