Figure 8. Comparison of observed and modelled surface concentrations of NH3. Data are EMEP and UKEAP site measurements (points) and the model (background) for March-September 2016. Inset values are the Pearson’s spatio-temporal correlation coefficient (R ) and the model NMB for coincident monthly means.
6 Error analysis of the top-down emissions
The reported relative error for NAEI NH3 emissions is 31% (Ricardo, 2018b). Quantifiable random errors that contribute to total March-September satellite-derived emissions include uncertainties in retrieval of NH3, and in the modelled relationship between NH3 emissions and column densities (Eq. (1)). For the latter we test sensitivity to modelled sulfate aerosol and nitric acid abundances and prior assumptions of the spatial and temporal variability of NH3 emissions. IASI NH3retrieval errors for columns ≥ 2 × 1015 molecules cm-2 range from 0.7-34%. Retrieval errors larger than 34% do occur, but are in locations with very low emissions. The CrIS NH3 column errors across all grids range from 0.2-25%. Errors due to uncertainties in the magnitude and variability in SO2 and NOx emissions that affect abundance of sulfate and nitrate aerosols and hence the abundance and vertical distribution of NH3 are small compared to column density retrieval errors. We estimate the error contribution of these as the change in top-down emissions due to a perturbation in SO2 emissions for sulfate and NOxemissions for nitric acid. The percent change in top-down emissions from a 50% decrease in SO2 emissions is 4-5%. A 50% increase in NOx emissions increases nitric acid by 14%, aerosol nitrate by 11%, and satellite-derived NH3emissions by 8-9%. The limited sensitivity to sulfate and nitrate in the UK is because NH3 is in excess due to the success of emission controls targeting SO2 and NOxsources and absence of these for NH3 sources. This would not occur in regions and times with large unregulated SO2 and NOx sources. We find that (E /Ω)model used to convert satellite observations of column densities to emissions (Eq. (1)) is relatively insensitive to pertubations in NH3 emissions, so is relatively unaffected by errors in the spatial and temporal variability of NH3 emissions in GEOS-Chem. A 50% increase in NH3 emissions only causes a small (3-4%) decrease in satellite-derived NH3 emissions. The total relative error from adding these individual errors in quadrature is 11-36% for IASI and 9-27% for CrIS and is dominated by errors in retrieval of the columns. Total emissions for March-September are 198.7 ± 61.6 Gg for the bottom-up emissions and up to 271.5 ± 97.7 Gg for IASI and 389.4 ± 105.1 Gg for CrIS.
There are also known systematic biases in the satellite observations. Some studies reported that IASI NH3 column densities are biased low by 25-50% compared to ground-based measurements (Dammers et al., 2017; Whitburn et al., 2016a). However, these comparisons were for earlier versions of the IASI NH3 product. The version used here is consistent with columns derived with aircraft observations (Guo et al., 2021), though Guo et al. (2021) caution that their comparison is limited in time (summer) and location (Colorado, US) and sensitive to errors in column estimates from integrating aircraft measurements. There are no observations of the vertical distribution of NH3 over the UK. The CrIS column amounts display a gradual increase with time (Figure S1) that we correct for in this work, though further work is required to determine the cause. Biases in the satellite-derived emissions due to differences in overpass times of the two instruments is mitigated by sampling modelled columns (Ωmodel in Eq. (1)) during the satellite overpass.
Both satellite products preferentially sample clear-sky conditions. The bias that this imparts on the top-down emissions estimates is challenging to quantify. The modelled emissions and columns used to derive top-down emissions ((E /Ω)model in Eq. (1)) are sampled under all-sky conditions, though there would likely be compensating effects of sampling clear-sky conditions on (E /Ω)model. Warmer temperatures and absence of clouds increase Ω by suppressing the amount of NH3 that partitions to the aqueous phase (Stelson & Seinfeld, 1982; Walters et al., 2018), but E l also increases in response to warmer temperatures (Sutton et al., 2013). Preferentially sampling clear-sky conditions likely has the largest impact on Ωsat. We find that the effect is greatest in July when boundary-layer clear-sky air temperatures, according to GEOS-Chem, are warmer than all-sky scenes by 5.6ºC during the morning overpass and 5.3ºC during the afternoon overpass. According to Sutton et al. (2013), 5°C warmer temperatures increase NH3 emissions by 42%. Clear-sky temperatures are only 1.6-1.7 ºC warmer in the preceding month (June), so the greater clear-sky temperature in July may in part account for the discrepancies between observed and modelled NH3emissions in that month (Figure 6) and the steep increase in July columns and emissions relative to June (Figures 7 and S5). A challenge though of using GEOS-Chem to diagnose sensitivity of air temperature to cloud cover is that the model is inferior to the satellite observations at resolving clouds, due to its coarser spatial resolution (25-31 km), and only 3-12% of daily overpass model data are retained in each month after filtering for cloudy scenes (GEOS-FP cloud fractions > 0.1). NH3 emissions in GEOS-Chem also do not include changes in farming practices in response to shifts in meteorology.
7 Conclusions
Emissions of ammonia (NH3) in the UK are mostly (>80%) from agriculture and are challenging to estimate with bottom-up approaches and validate exclusively with current ground-based networks. Here we used satellite observations of NH3 in March-September for multiple years from the Infrared Atmospheric Sounding Interferometer (IASI) (2008-2018) and the Cross-track Infrared Sounder (CrIS) (2013-2018) with the GEOS-Chem chemical transport model to derive top-down monthly emissions across the UK at high spatial resolution (~10 km).
Total top-down March-September emissions are 272 Gg from IASI and 389 Gg from CrIS. Bottom-up emissions estimated with the UK National Atmospheric Emission Inventory (NAEI) annual emissions and GEOS-Chem monthly scaling factors are 27% less than IASI-derived emissions and 49% less than CrIS-derived emissions. This is supported by a 38-42% underestimate in surface NH3 concentrations from GEOS-Chem driven with the NAEI. We infer UK top-down annual anthropogenic NH3 emissions of 383-431 Gg from IASI and 559-642 Gg from CrIS compared to 276 Gg from the NAEI. Seasonality in the top-down emissions confirms the well-known spring April peak from fertilizer and manure use, but there is also a summer July peak coincident with intensive dairy farming that is absent in the bottom-up emissions.
The relative error in the top-down emissions, mostly due to NH3 column retrieval errors, is 11-36% for IASI and 9-27% for CrIS and is similar to the error reported for the NAEI (31%). The top-down emissions estimates are relatively insensitive to model uncertainties in SO2, NOx and NH3 emissions, as NH3 is in excess and the relationship between modelled NH3 columns and emissions is near-linear.
Our study demonstrates the tremendous potential to use satellite observations to derive NH3 emissions and assess bottom-up emissions under particularly challenging observing conditions (cloudy, cool) in the UK. This is critical for assessing reliability of inventories used to inform policies and mitigation strategies. The discrepancy between bottom-up and top-down emissions identified here warrants further investigation of both approaches.
Acknowledgments, Samples, and Data
The authors are grateful for helpful discussions with Daven Henze and Hansen Cao. EAM and AKP acknowledge funding from DEFRA (contract reference ecm_55415) and EAM acknowledges additional funding from NERC/EPSRC (grant number EP/R513465/1). The research in Belgium was funded by the F.R.S.-FNRS and the Belgian State Federal Office for Scientific, Technical and Cultural Affairs (Prodex 645 arrangement IASI.FLOW). Both MVD and LC are supported by the Belgian F.R.S.-FNRS.
The top-down and bottom-up emissions estimated in this work are publicly available from the UCL Data Repository (https://doi.org/10.5522/04/14566635). The CrIS CFPR NH3 data are created by Environment and Climate Change Canada and hosted by the Meteorological Service of Canada (MSC) Datamart. Access to the CrIS NH3 data can be requested from MWS (mark.shephard@canada.ca). The IASI NH3 data are publicly available from the IASI data catalogue (https://iasi.aeris-data.fr/nh3/).
References
Adams, C., McLinden, C. A., Shephard, M. W., Dickson, N., Dammers, E., Chen, J., et al. (2019), Satellite-derived emissions of carbon monoxide, ammonia, and nitrogen dioxide from the 2016 Horse River wildfire in the Fort McMurray area, Atmospheric Chemistry and Physics ,19 (4), 2577-2599, doi:10.5194/acp-19-2577-2019.
AIC (2020). B2.4 Total quantities of nitrogen, phosphate and potash, UK . Retrieved from https://www.agindustries.org.uk/static/0dd85abd-807d-4137-a00e609888633c89/Fertiliser-consumption-in-the-UK-quantity-data.pdf
Amos, H. M., Jacob, D. J., Holmes, C. D., Fisher, J. A., Wang, Q., Yantosca, R. M., et al. (2012), Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition, Atmospheric Chemistry and Physics , 12 (1), 591-603, doi:10.5194/acp-12-591-2012.
Beer, R., Shephard, M. W., Kulawik, S. S., Clough, S. A., Eldering, A., Bowman, K. W., et al. (2008), First satellite observations of lower tropospheric ammonia and methanol, Geophysical Research Letters ,35 (9), L09801, doi:10.1029/2008gl033642.
BEIS (2016). Offshore Energy Energy Strategic Environmental Assessment 3 (OESEA3) Appendix 1 . Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/504559/OESEA3_A1f_Climate___Meteorology.pdf
Boersma, A., Pels, J., Cieplik, M., van der Linden, R., Hesseling, W., & Heslinga, D. (2008). Emissions of the use of biomass fuels in stationary applications Retrieved from https://www.rivm.nl/bibliotheek/digitaaldepot/BOLK_I_biomass_Final.pdf
Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., VanderHoek, K. W., & Olivier, J. G. J. (1997), A global high-resolution emission inventory for ammonia, Global Biogeochemical Cycles ,11 (4), 561-587, doi:10.1029/97gb02266.
Cady-Pereira, K. E., Payne, V. H., Neu, J. L., Bowman, K. W., Miyazaki, K., Marais, E. A., et al. (2017), Seasonal and spatial changes in trace gases over megacities from Aura TES observations: two case studies,Atmospheric Chemistry and Physics , 17 (15), 9379-9398, doi:10.5194/acp-17-9379-2017.
Chen, Y., Shen, H., Kaiser, J., Hu, Y., Capps, S. L., Zhao, S., et al. (2021), High-resolution hybrid inversion of IASI ammonia columns to constrain US ammonia emissions using the CMAQ adjoint model,Atmospheric Chemistry and Physics , 21 (3), 2067-2082, doi:10.5194/acp-21-2067-2021.
Chin, M., Savoie, D. L., Huebert, B. J., Bandy, A. R., Thornton, D. C., Bates, T. S., et al. (2000), Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets, Journal of Geophysical Research: Atmospheres ,105 (D20), 24689-24712, doi:10.1029/2000jd900385.
Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D., & Coheur, P.-F. (2009), Global ammonia distribution derived from infrared satellite observations, Nature Geoscience , 2 (7), 479-483, doi:10.1038/ngeo551.
Clarisse, L., Shephard, M. W., Dentener, F., Hurtmans, D., Cady-Pereira, K., Karagulian, F., et al. (2010), Satellite monitoring of ammonia: A case study of the San Joaquin Valley, Journal of Geophysical Research: Atmospheres , 115 (D13), D13302, doi:10.1029/2009jd013291.
Clarisse, L., R’Honi, Y., Coheur, P.-F., Hurtmans, D., & Clerbaux, C. (2011), Thermal infrared nadir observations of 24 atmospheric gases,Geophysical Research Letters , 38 (10), L10802, doi:10.1029/2011gl047271.
Clarisse, L., Van Damme, M., Clerbaux, C., & Coheur, P. F. (2019), Tracking down global NH3 point sources with wind-adjusted superresolution, Atmospheric Measurement Techniques , 12 (10), 5457-5473, doi:10.5194/amt-12-5457-2019.
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., et al. (2017), Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, The Lancet ,389 (10082), 1907-1918, doi:10.1016/s0140-6736(17)30505-6.
Dammers, E., Palm, M., Van Damme, M., Vigouroux, C., Smale, D., Conway, S., et al. (2016), An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements,Atmospheric Chemistry and Physics , 16 (16), 10351-10368, doi:10.5194/acp-16-10351-2016.
Dammers, E., Shephard, M. W., Palm, M., Cady-Pereira, K., Capps, S., Lutsch, E., et al. (2017), Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR, Atmospheric Measurement Techniques , 10 (7), 2645-2667, doi:10.5194/amt-10-2645-2017.
Dammers, E., McLinden, C. A., Griffin, D., Shephard, M. W., Van der Graaf, S., Lutsch, E., et al. (2019), NH3 emissions from large point sources derived from CrIS and IASI satellite observations,Atmospheric Chemistry and Physics , 19 (19), 12261-12293, doi:10.5194/acp-19-12261-2019.
DEFRA (2016a). Maps of livestock populations in 2000 and 2010 across England . Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/183109/defra-stats-foodfarm-landuselivestock-june-detailedresults-livestockmaps111125.pdf
DEFRA (2016b). Maps of crop areas in 2000 and 2010 across England . Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/183108/defra-stats-foodfarm-landuselivestock-june-detailedresults-cropmaps111125.pdf
DEFRA (2019). Clean Air Strategy 2019 . Retrieved from https://www.gov.uk/government/publications/clean-air-strategy-2019
DEFRA (2020a). Consultation on reducing ammonia emissions from solid urea fertilisers . Retrieved from https://consult.defra.gov.uk/air-quality-and-industrial-emissions/reducing-ammonia-emissions-from-urea-fertilisers/supporting_documents/Solid%20Urea%20Fertilisers%20Consultation%20Document_Nov%202020.pdf
DEFRA (2020b). Key crop areas and livestock numbers: UK and country level data 1866-2020 . Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/946207/structure-june-ukkeyresults-22dec20.ods. Accessed on 5 January 2021.
Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., et al. (1993), An association between air pollution and mortality in six U.S. cities, New England Journal of Medicine ,329 (24), 1753-1759, doi:10.1056/nejm199312093292401.
EMEP (2019). EMEP/EEA air pollutant emission inventory guidebook 2019: 1.A.1 Energy industries . 13/2019. Retrieved from https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-1-energy-industries/view
Fortems-Cheiney, A., Dufour, G., Dufossé, K., Couvidat, F., Gilliot, J.-M., Siour, G., et al. (2020), Do alternative inventories converge on the spatiotemporal representation of spring ammonia emissions in France?, Atmospheric Chemistry and Physics , 20 (21), 13481-13495, doi:10.5194/acp-20-13481-2020.
Fountoukis, C., & Nenes, A. (2007), ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O aerosols, Atmospheric Chemistry and Physics , 7 (17), 4639-4659, doi:10.5194/acp-7-4639-2007.
Fowler, D., Sutton, M. A., Flechard, C., Cape, J. N., Storeton-West, R., Coyle, M., & Smith, R. I. (2001), The control of SO2dry deposition on to natural surfaces by NH3 and its effects on regional deposition, Water, Air and Soil Pollution: Focus , 1 (5/6), 39-48, doi:10.1023/a:1013161912231.
Fowler, D., Smith, R., Muller, J., Cape, J. N., Sutton, M., Erisman, J. W., & Fagerli, H. (2007), Long term trends in sulphur and nitrogen deposition in Europe and the cause of non-linearities, Water, Air, & Soil Pollution: Focus , 7 (1-3), 41-47, doi:10.1007/s11267-006-9102-x.
Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer, J., et al. (2009), Atmospheric composition change: Ecosystems–Atmosphere interactions, Atmospheric Environment ,43 (33), 5193-5267, doi:10.1016/j.atmosenv.2009.07.068.
Friedrich, R. (2000), GENEMIS: Generation of European Emission Data for Episodes, in Transport and Chemical Transformation of Pollutants in the Troposphere , edited by P. Borrell, Borrell, P. M. & Midgley, P., pp. 375-386, Springer-Verlag, Berlin, doi:10.1007/978-3-642-59718-3_18.
Galloway, J. N. (1998), The global nitrogen cycle: changes and consequences, Environmental Pollution , 102 (1), 15-24, doi:10.1016/s0269-7491(98)80010-9.
Goldberg, M. D., Kilcoyne, H., Cikanek, H., & Mehta, A. (2013), Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system, Journal of Geophysical Research: Atmospheres , 118 (24), 13463-13475, doi:10.1002/2013jd020389.
Guo, X., Clarisse, L., Wang, R., Van Damme, M., Whitburn, S., Coheur, P. F., et al. (2021), Validation of IASI satellite ammonia observations at the pixel scale using in‐situ vertical profiles, Journal of Geophysical Research: Atmospheres , 126 , doi:10.1029/2020jd033475.
Hauglustaine, D. A., Balkanski, Y., & Schulz, M. (2014), A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate, Atmospheric Chemistry and Physics ,14 (20), 11031-11063, doi:10.5194/acp-14-11031-2014.
Heald, C. L., Collett, J. L., Lee, T., Benedict, K. B., Schwandner, F. M., Li, Y., et al. (2012), Atmospheric ammonia and particulate inorganic nitrogen over the United States, Atmospheric Chemistry and Physics , 12 (21), 10295-10312, doi:10.5194/acp-12-10295-2012.
Hellsten, S., Dragosits, U., Place, C. J., Misselbrook, T. H., Tang, Y. S., & Sutton, M. A. (2007), Modelling seasonal dynamics from temporal variation in agricultural practices in the UK ammonia emission inventory, Water, Air, & Soil Pollution: Focus , 7 (1-3), 3-13, doi:10.1007/s11267-006-9087-5.
Hellsten, S., Dragosits, U., Place, C. J., Vieno, M., Dore, A. J., Misselbrook, T. H., et al. (2008), Modelling the spatial distribution of ammonia emissions in the UK, Environmental Pollution ,154 (3), 370-379, doi:10.1016/j.envpol.2008.02.017.
Hickman, J. E., Dammers, E., Galy-Lacaux, C., & van der Werf, G. R. (2018), Satellite evidence of substantial rain-induced soil emissions of ammonia across the Sahel, Atmospheric Chemistry and Physics ,18 (22), 16713-16727, doi:10.5194/acp-18-16713-2018.
Hickman, J. E., Andela, N., Dammers, E., Clarisse, L., Coheur, P.-F., Van Damme, M., et al. (2020), Changes in biomass burning, wetland extent, or agriculture drive atmospheric NH3 trends in several African regions, Atmospheric Chemistry and Physics Discussions , doi:10.5194/acp-2020-945.
Johnson, P. T. J., & Carpenter, S. R. (2010), Chapter Four. Influence of Eutrophication on Disease in Aquatic Ecosystems: Patterns, Processes, and Predictions, in Infectious Disease Ecology , edited by R. S. Ostfeld, Keesing, F. & Eviner, V. T., pp. 71-99, Princeton University Press, Princeton, NJ, doi:10.1515/9781400837885.71.
Keller, C. A., Long, M. S., Yantosca, R. M., Da Silva, A. M., Pawson, S., & Jacob, D. J. (2014), HEMCO v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models,Geoscientific Model Development , 7 (4), 1409-1417, doi:10.5194/gmd-7-1409-2014.
Luo, G., Yu, F. Q., & Schwab, J. (2019), Revised treatment of wet scavenging processes dramatically improves GEOS-Chem 12.0.0 simulations of surface nitric acid, nitrate, and ammonium over the United States,Geoscientific Model Development , 12 (8), 3439-3447, doi:10.5194/gmd-12-3439-2019.
Luo, G., Yu, F., & Moch, J. M. (2020), Further improvement of wet process treatments in GEOS-Chem v12.6.0: impact on global distributions of aerosols and aerosol precursors, Geoscientific Model Development , 13 (6), 2879-2903, doi:10.5194/gmd-13-2879-2020.
Makkonen, U., Virkkula, A., Mantykentta, J., Hakola, H., Keronen, P., Vakkari, V., & Aalto, P. P. (2012), Semi-continuous gas and inorganic aerosol measurements at a Finnish urban site: comparisons with filters, nitrogen in aerosol and gas phases, and aerosol acidity,Atmospheric Chemistry and Physics , 12 (12), 5617-5631, doi:10.5194/acp-12-5617-2012.
Marais, E. A., Jacob, D. J., Kurosu, T. P., Chance, K., Murphy, J. G., Reeves, C., et al. (2012), Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns, Atmospheric Chemistry and Physics , 12 (14), 6219-6235, doi:10.5194/acp-12-6219-2012.
Martin, N. A., Ferracci, V., Cassidy, N., Hook, J., Battersby, R. M., di Meane, E. A., et al. (2019), Validation of ammonia diffusive and pumped samplers in a controlled atmosphere test facility using traceable Primary Standard Gas Mixtures, Atmospheric Environment ,199 , 453-462, doi:10.1016/j.atmosenv.2018.11.038.
McCarthy, M., Christidis, N., Dunstone, N., Fereday, D., Kay, G., Klein‐Tank, A., et al. (2019), Drivers of the UK summer heatwave of 2018, Weather , 74 (11), 390-396, doi:10.1002/wea.3628.
Misselbrook, T. H., Sutton, M. A., & Scholefield, D. (2006), A simple process-based model for estimating ammonia emissions from agricultural land after fertilizer applications, Soil Use and Management ,20 (4), 365-372, doi:10.1111/j.1475-2743.2004.tb00385.x.
Nowak, J. B., Neuman, J. A., Bahreini, R., Brock, C. A., Middlebrook, A. M., Wollny, A. G., et al. (2010), Airborne observations of ammonia and ammonium nitrate formation over Houston, Texas, Journal of Geophysical Research , 115 (D22), D22304, doi:10.1029/2010jd014195.
Palmer, P. I., Jacob, D. J., Fiore, A. M., Martin, R. V., Chance, K., & Kurosu, T. P. (2003), Mapping isoprene emissions over North America using formaldehyde column observations from space, Journal of Geophysical Research: Atmospheres , 108 (D6), 4180, doi:10.1029/2002jd002153.
Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., & Chin, M. (2004), Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy, Journal of Geophysical Research: Atmospheres ,109 (D15), D15204, doi:10.1029/2003jd004473.
Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., & Henze, D. K. (2014), Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3), Journal of Geophysical Research: Atmospheres , 119 (7), 4343-4364, doi:10.1002/2013jd021130.
Paulrud, S., Kindbom, K., & Gustafsson, T. (2006). Emission factors and emissions from residential biomass combustion in Sweden . Retrieved from https://www.diva-portal.org/smash/get/diva2:1184181/FULLTEXT01.pdf
Ricardo (2017). A review of the NAEI shipping emissions methodology: Final report . Retrieved from https://uk-air.defra.gov.uk/assets/documents/reports/cat07/1712140936_ED61406_NAEI_shipping_report_12Dec2017.pdf
Ricardo (2018a). UK Emission Mapping Methodology: A report of the National Atmospheric Emission Inventory 2016 . Retrieved from https://uk-air.defra.gov.uk/assets/documents/reports/cat07/1812061112_MappingMethodology-for-NAEI-2016.pdf
Ricardo (2018b). UK Informative Inventory Report (1990 to 2016) . Retrieved from https://uk-air.defra.gov.uk/assets/documents/reports/cat07/1803161032_GB_IIR_2018_v1.2.pdf
Ricardo (2019a). Ammonia futures: understanding implications for habitats and requirements for uptake of mitigation measures . Retrieved from https://uk-air.defra.gov.uk/assets/documents/reports/cat09/1909040930_Ammonia_futures_Understanding_implications_for_habitats_requirements_for_uptake_of_mitigation_measures_Modelling_workshop_report.pdf
Ricardo (2019b). UK Informative Inventory Report (1990 to 2017) . Retrieved from https://uk-air.defra.gov.uk/assets/documents/reports/cat09/1904121008_GB_IIR_2019_v2.0.pdf
Ricardo (2020). UK Informative Inventory Report (1990 to 2018) . Retrieved from https://uk-air.defra.gov.uk/assets/documents/reports/cat07/2003131327_GB_IIR_2020_v1.0.pdf
Riddick, S. N., Dragosits, U., Blackall, T. D., Daunt, F., Wanless, S., & Sutton, M. A. (2012), The global distribution of ammonia emissions from seabird colonies, Atmospheric Environment , 55 , 319-327, doi:10.1016/j.atmosenv.2012.02.052.
Rodgers (2000), Inverse Methods for Atmospheric Sounding - Theory and Practice , World Scientific, River Edge, N.J., doi:10.1142/3171.
Schiferl, L. D., Heald, C. L., Van Damme, M., Clarisse, L., Clerbaux, C., Coheur, P.-F., et al. (2016), Interannual variability of ammonia concentrations over the United States: sources and implications,Atmospheric Chemistry and Physics , 16 (18), 12305-12328, doi:10.5194/acp-16-12305-2016.
Shephard, M. W., Cady-Pereira, K. E., Luo, M., Henze, D. K., Pinder, R. W., Walker, J. T., et al. (2011), TES ammonia retrieval strategy and global observations of the spatial and seasonal variability of ammonia,Atmospheric Chemistry and Physics , 11 (20), 10743-10763, doi:10.5194/acp-11-10743-2011.
Shephard, M. W., & Cady-Pereira, K. E. (2015), Cross-track Infrared Sounder (CrIS) satellite observations of tropospheric ammonia,Atmospheric Measurement Techniques , 8 (3), 1323-1336, doi:10.5194/amt-8-1323-2015.
Shephard, M. W., Dammers, E., Cady-Pereira, K. E., Kharol, S. K., Thompson, J., Gainariu-Matz, Y., et al. (2020), Ammonia measurements from space with the Cross-track Infrared Sounder: characteristics and applications, Atmospheric Chemistry and Physics , 20 (4), 2277-2302, doi:10.5194/acp-20-2277-2020.
Simet, A. (2017). Drax reports good operational year, discusses future in biomass . Retrieved from http://biomassmagazine.com/articles/14201/drax-reports-good-operational-year-discusses-future-in-biomass
Simpson, D., Winiwarter, W., Borjesson, G., Cinderby, S., Ferreiro, A., Guenther, A., et al. (1999), Inventorying emissions from nature in Europe, Journal of Geophysical Research: Atmospheres ,104 (D7), 8113-8152, doi:10.1029/98JD02747.
Stelson, A. W., & Seinfeld, J. H. (1982), Relative humidity and temperature dependence of the ammonium nitrate dissociation constant,Atmospheric Environment , 16 (5), 983-992, doi:10.1016/0004-6981(82)90184-6.
Stettler, M. E. J., Eastham, S., & Barrett, S. R. H. (2011), Air quality and public health impacts of UK airports. Part I: Emissions,Atmospheric Environment , 45 (31), 5415-5424, doi:10.1016/j.atmosenv.2011.07.012.
Stieger, B., Spindler, G., Fahlbusch, B., Müller, K., Grüner, A., Poulain, L., et al. (2017), Measurements of PM10 ions and trace gases with the online system MARGA at the research station Melpitz in Germany – A five-year study, Journal of Atmospheric Chemistry , 75 (1), 33-70, doi:10.1007/s10874-017-9361-0.
Sun, K., Zhu, L., Cady-Pereira, K., Chan Miller, C., Chance, K., Clarisse, L., et al. (2018), A physics-based approach to oversample multi-satellite, multispecies observations to a common grid,Atmospheric Measurement Techniques , 11 (12), 6679-6701, doi:10.5194/amt-11-6679-2018.
Sutton, M. A., Asman, W. A. H., & Schjorring, J. K. (1994), Dry deposition of reduced nitrogen, Tellus B , 46 (4), 255-273, doi:10.1034/j.1600-0889.1994.t01-2-00002.x.
Sutton, M. A., Miners, B., Tang, Y. S., Milford, C., Wyers, G. P., Duyzer, J. H., & Fowler, D. (2001), Comparison of low cost measurement techniques for long-term monitoring of atmospheric ammonia,Journal of Environmental Monitoring , 3 (5), 446-453, doi:10.1039/b102303a.
Sutton, M. A., Reis, S., Riddick, S. N., Dragosits, U., Nemitz, E., Theobald, M. R., et al. (2013), Towards a climate-dependent paradigm of ammonia emission and deposition, Philosophical Transactions of the Royal Society B-Biological Sciences , 368 (1621), 20130166, doi:10.1098/rstb.2013.0166.
Tan, J., Fu, J. S., & Seinfeld, J. H. (2020), Ammonia emission abatement does not fully control reduced forms of nitrogen deposition,Proceedings of the National Academy of Sciences , 117 (18), 9771-9775, doi:10.1073/pnas.1920068117.
Tang, Y. S., Braban, C. F., Dragosits, U., Simmons, I., Leaver, D., van Dijk, N., et al. (2018), Acid gases and aerosol measurements in the UK (1999-2015): regional distributions and trends, Atmospheric Chemistry and Physics , 18 (22), 16293-16324, doi:10.5194/acp-18-16293-2018.
ten Brink, H., Otjes, R., Jongejan, P., & Slanina, S. (2007), An instrument for semi-continuous monitoring of the size-distribution of nitrate, ammonium, sulphate and chloride in aerosol, Atmospheric Environment , 41 (13), 2768-2779, doi:10.1016/j.atmosenv.2006.11.041.
Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., et al. (2012), Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009, Atmospheric Chemistry and Physics , 12 (12), 5447-5481, doi:10.5194/acp-12-5447-2012.
Twigg, M. M., Di Marco, C. F., Leeson, S., van Dijk, N., Jones, M. R., Leith, I. D., et al. (2015), Water soluble aerosols and gases at a UK background site - Part 1: Controls of PM2.5 and PM10 aerosol composition, Atmospheric Chemistry and Physics , 15 (14), 8131-8145, doi:10.5194/acp-15-8131-2015.
UK (2018). The National Emission Ceilings Regulations 2018 (No. 129) . Retrieved from https://www.legislation.gov.uk/uksi/2018/129/made/data.pdf
UNECE (2019). Annex I and II of the Gothenburg Protocol . Retrieved from https://unece.org/DAM/env/documents/2017/AIR/Gothenburg_Protocol/Annex_II_and_III_updated_clean.pdf
Van Damme, M., Clarisse, L., Heald, C. L., Hurtmans, D., Ngadi, Y., Clerbaux, C., et al. (2014a), Global distributions, time series and error characterization of atmospheric ammonia (NH3) from IASI satellite observations, Atmospheric Chemistry and Physics ,14 (6), 2905-2922, doi:10.5194/acp-14-2905-2014.
Van Damme, M., Kruit, R. J. W., Schaap, M., Clarisse, L., Clerbaux, C., Coheur, P. F., et al. (2014b), Evaluating 4 years of atmospheric ammonia (NH3) over Europe using IASI satellite observations and LOTOS-EUROS model results, Journal of Geophysical Research: Atmospheres , 119 (15), 9549-9566, doi:10.1002/2014jd021911.
Van Damme, M., Clarisse, L., Dammers, E., Liu, X., Nowak, J. B., Clerbaux, C., et al. (2015a), Towards validation of ammonia (NH3) measurements from the IASI satellite,Atmospheric Measurement Techniques , 8 (3), 1575-1591, doi:10.5194/amt-8-1575-2015.
Van Damme, M., Erisman, J. W., Clarisse, L., Dammers, E., Whitburn, S., Clerbaux, C., et al. (2015b), Worldwide spatiotemporal atmospheric ammonia (NH3) columns variability revealed by satellite,Geophysical Research Letters , 42 (20), 8660-8668, doi:10.1002/2015gl065496.
Van Damme, M., Whitburn, S., Clarisse, L., Clerbaux, C., Hurtmans, D., & Coheur, P.-F. (2017), Version 2 of the IASI NH3neural network retrieval algorithm: near-real-time and reanalysed datasets, Atmospheric Measurement Techniques , 10 (12), 4905-4914, doi:10.5194/amt-10-4905-2017.
Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D., Clerbaux, C., & Coheur, P. F. (2018), Industrial and agricultural ammonia point sources exposed, Nature , 564 (7734), 99–103, doi:10.1038/s41586-018-0747-1.
Van Damme, M., Clarisse, L., Franco, B., Sutton, M. A., Erisman, J. W., Wichink Kruit, R., et al. (2021), Global, regional and national trends of atmospheric ammonia derived from a decadal (2008-2018) satellite record, Environmental Research Letters , 16 (5), 055017, doi:10.1088/1748-9326/abd5e0.
Vieno, M., Heal, M. R., Williams, M. L., Carnell, E. J., Nemitz, E., Stedman, J. R., & Reis, S. (2016), The sensitivities of emissions reductions for the mitigation of UK PM2.5,Atmospheric Chemistry and Physics , 16 (1), 265-276, doi:10.5194/acp-16-265-2016.
Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., et al. (1997), Human alteration of the global nitrogen cycle: Sources and consequences, Ecological Applications , 7 (3), 737-750, doi:10.1890/1051-0761(1997)007[0737:Haotgn]2.0.Co;2.
Vohra, K., Marais, E. A., Suckra, S., Kramer, L., Bloss, W. J., Sahu, R., et al. (2021a), Long-term trends in air quality in major cities in the UK and India: a view from space, Atmospheric Chemistry and Physics , 21 (8), 6275-6296, doi:10.5194/acp-21-6275-2021.
Vohra, K., Vodonos, A., Schwartz, J., Marais, E. A., Sulprizio, M. P., & Mickley, L. J. (2021b), Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem,Environmental Research , 195 , 110754, doi:10.1016/j.envres.2021.110754.
Walker, H. L., Heal, M. R., Braban, C. F., Ritchie, S., Conolly, C., Sanocka, A., et al. (2019), Changing supersites: assessing the impact of the southern UK EMEP supersite relocation on measured atmospheric composition, Environmental Research Communications ,1 (0410011), doi:10.1088/2515-7620/ab1a6f.
Walters, W. W., Chai, J., & Hastings, M. G. (2018), Theoretical phase resolved ammonia–ammonium nitrogen equilibrium isotope exchange fractionations: Applications for tracking atmospheric ammonia gas-to-particle conversion, ACS Earth and Space Chemistry ,3 (1), 79-89, doi:10.1021/acsearthspacechem.8b00140.
Webb, J., & Misselbrook, T. H. (2004), A mass-flow model of ammonia emissions from UK livestock production, Atmospheric Environment ,38 (14), 2163-2176, doi:10.1016/j.atmosenv.2004.01.023.
Wesely, M. L. (1989), Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmospheric Environment (1967) , 23 (6), 1293-1304, doi:10.1016/0004-6981(89)90153-4.
Whitburn, S., Van Damme, M., Clarisse, L., Bauduin, S., Heald, C. L., Hadji-Lazaro, J., et al. (2016a), A flexible and robust neural network IASI-NH3 retrieval algorithm, Journal of Geophysical Research: Atmospheres , 121 (11), 6581-6599, doi:10.1002/2016jd024828.
Whitburn, S., Van Damme, M., Clarisse, L., Turquety, S., Clerbaux, C., & Coheur, P. F. (2016b), Doubling of annual ammonia emissions from the peat fires in Indonesia during the 2015 El Niño, Geophysical Research Letters , 43 (20), 11007-11014, doi:10.1002/2016gl070620.
White, E., Shephard, M., Cady-Periera, K., Kharol, S., Dammers, E., Chow, E., et al. (2021), Accounting for non-detects in satellite retrievals: Application using CrIS ammonia observations, presented at EGU General Assembly, online, 19-30 April.
Zhu, L., Henze, D., Bash, J., Jeong, G. R., Cady-Pereira, K., Shephard, M., et al. (2015), Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes, Atmospheric Chemistry and Physics , 15 (22), 12823-12843, doi:10.5194/acp-15-12823-2015.
Zhu, L., Jacob, D. J., Keutsch, F. N., Mickley, L. J., Scheffe, R., Strum, M., et al. (2017), Formaldehyde (HCHO) as a hazardous air pollutant: Mapping surface air concentrations from satellite and inferring cancer risks in the United States, Environmental Science & Technology , 51 (10), 5650-5657, doi:10.1021/acs.est.7b01356.