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Abstract 

The traditional ocean color remote sensing usually focuses on using optical inversion models to 

estimate the properties of in-water components from the above-surface spectra, so we call it the 

spectrum-concentration (SC) scheme. Unlike the SC scheme, this study proposed a new research 

scheme, distribution-distribution (DD) scheme, which uses statistical inference models to estimate 

the possibility distribution of these in-water components, based on the possibility distribution of the 

observed spectra. The DD scheme has the advantages that (1) it can rapidly give the key and 

overview information of the interest water, instead of using the SC scheme to compute each image 

pixel, (2) it can assist the SC scheme to improve their models and parameters, and (3) it can provide 

more valuable information for better understanding and indicating the features and dynamics of 

aquatic environment. In this study, based on Landsat-8 images, we analyzed the spectral possibility 

distributions (SPD) of 688 global water and found many of them were normal, lognormal, and 

exponential distributions, but with diverse patterns in distribution parameters such as the mean, 

standard deviation, skewness and kurtosis. Furthermore, we used Monte-Carlo and Hydrolight 

simulations to study the theoretical and statistical connections between the possibility distributions 

of in-water components and SPDs. The simulation results were basically consistent with the 

observations on the real water. Then by using the simulation and field measured data, we proposed 

a bootstrap-based DD scheme and developed some simple statistical inference models to estimate 

the distribution parameters of yellow substance in lakes. Since DD scheme is still on its early stage, 

we also suggested some potential and useful topics for the future work.  
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1. Introduction 

An important content of aquatic remote sensing is estimating the properties of in-water 

components from the above-surface spectra (Bukata et al., 1995; O’Reilly et al., 1998). See an 

example in Fig. 1a, the absorption coefficient of yellow substance (also called CDOM, colored 

dissolved organic matter) at 440 nm, i.e., aCDOM(440), was estimated from a spectrum at an image 

pixel of the interested lake (Zhu et al., 2014; Chen et al., 2017), by using a remote sensing inversion 

model – we call this approach the spectrum-concentration (SC) scheme of ocean color remote 

sensing. In this study, we will propose a new research scheme, distribution-distribution (DD) 

scheme, which uses statistical inference to estimate aCDOM(440)’s distribution of the whole lake, 

based on the spectral possibility distributions (SPD) of all water pixels over the lake at different 

wavelengths, see Fig. 1b. Note that we do not call it spectral frequency distribution, because the 

term ‘frequency’ is likely to be confused with the reciprocal of the ‘wavelength’, a well-known term 

used in remote sensing. 

 

Figure 1. The new scheme for ocean color remote sensing: (a) SC scheme, the conventional 

spectrum-concentration scheme based on optical inversion, and (b) DD scheme, the possibility 

distribution-distribution scheme based on statistical inference.  
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The possibility distribution method (e.g., histogram) has been widely used in many disciplines. 

In image processing, for example, it helps image segmentation to extract the interested objects from 

an image (Ohlander, et al., 1978; Gonzalez & Wood, 2017). In remote sensing, it also has some 

applications in image classification (Battiti, et al., 2015; Demir & Beguem, 2016), image 

enhancement (Demirel, et al., 2010; Fu, et al., 2015), image registration (Paul & Pati, 2016), haze 

removal (Huang, et al., 2019), land cover change detection (Lv, et al., 2019), and etc. However, so 

far it has not been widely associated with the radiative transfer and applied in aquatic remote sensing 

– some studies only reported the distribution characteristics of the measured water samples on their 

physical, geographical, biological, chemical, or inherent optical properties (IOPs), and many of 

these studies were more on the distributions of the collected samples instead of the whole population, 

or their distributions were statistically counted from the results of the SC scheme (Schwarz, et al., 

2005; McKee, et al., 2006; Foden, et al., 2008; Sabetta, et al., 2008; Dong, et al., 2010; Zhu, et al., 

2013b; Alcântara, et al., 2016; Keller, et al., 2018; Zhao, et al., 2018; Chen, et al., 2019; Kuhn, et 

al., 2019). In remote sensing, possibility distributions of in-water components have not been directly 

connected to the possibility distributions of water’s apparent optical properties (AOPs), such as the 

surface reflectance. Most of relevant studies still follow the SC scheme, which directly connects the 

IOP and AOP themselves, rather than their possibility distributions in a water area. 

Like the SC scheme, the DD scheme also has a theoretical foundation of radiative transfer but 

with more statistical issues involved. In SC scheme, the radiative transfer process from IOPs to 

AOPs determines the spectrum at a given pixel (Mobley 1994; Kirk 1994), while in DD scheme, 

the same process also changes the possibility distributions from IOPs to AOPs within the whole 

underwater and above-surface light fields. If the SC scheme is based on the classic geometric optics, 

then the DD scheme could be more based on the statistical optics (Goodman, 2015).   

One of advantages of using DD scheme is that sometimes we do not need exactly to know 

water properties of every pixel. Instead, quite often the water resource administrators or 

environment monitors only want to roughly overview the water quality – that is the DD scheme can 

do. In practice, it is almost impossible to know the real distribution of an ocean color component, 

unless we had a very high-resolution field measurement over the entire study water. One approach 

of knowing the real distribution is making a statistical inference from the collected samples – that 

is what the classic statistical inference does, but this approach may have high cost on time and labor. 

Another approach is making a remote sensing inversion model using the collected samples, and then 

applying the model to satellite images – that is what the traditional ocean color remote sensing does, 

but this approach may be time-consuming and inaccurate if with large-size images and/or poor 

inversion models. The DD scheme proposed in this study combines the above two approaches and 

try to directly infer the statistical distributions of ocean color components, without first making and 

later applying an inversion model. Extracting the SPDs from an image and executing a statistical 

inference model once would be much faster than repeating an inversion model millions of times for 

a large number of image pixels.  

DD scheme can also assist SC scheme in making inversion models. To make an inversion 

model used in SC scheme, we usually need to collect in-situ samples, and then establish, calibrate 

and validate a model based on these samples, and finally applied the model to satellite images. From 

the perspective of statistics, the collected water samples were only the statistical samples, while the 

water pixels in an image is the statistical population. Without knowing the population, the sample-
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based models are likely to make large errors for those pixels out of the sampled water. DD scheme 

can provide the information of the population, so that we can adjust inversion models 

correspondingly. For example, if we made a simple exponential inversion model such as x = ayb+c, 

where x is chlorophyll concentration, y is a band-ratio, and a, b, and c are model coefficients and 

determined by fitting the field measured samples. This model may work well for the field sampled 

data, in which y was in the range of, say, 0.2-0.3. If this model was applied to the whole image, then 

in case the image-derived y might be in the range of 0.01-3, the estimated x might be enlarged to the 

unreasonable number, meaning that the coefficients a, b, c, and even the model itself are not accurate 

or at least with the limited efficiency. So, if we have the DD scheme to tell us the possible range of 

x and y, then we can test and adjust the inversion model to make sure that its input and output 

variables, x and y, will fall in appropriate ranges. 

Another benefit of using DD scheme is that we can directly take SPDs as the optical properties 

or environmental indicators of a water area. It means that we even do not need to infer any statistical 

distribution for a specific ocean color component, but directly link SPDs to other natural phenomena 

and properties of the aquatic environment, for example, the water depth, salinity, watershed area, 

LULC (land uses and land cover), NDWI (normalized difference water index), and algal bloom that 

would have influences on water IOPs and consequently change the observed SPDs. 

From the above introduction we can see that DD scheme has many advantages and application 

potentials for remote sensing of ocean color and aquatic environment. This study consists of three 

main sections: (1) extracting SPDs from hundreds of global waters, and describing and analyzing 

their statistical features, (2) based on radiative transfer theory as well as the Monte-Carlo/Hydrolight 

simulations, exploring statistical relationships and parameter transfer among the possibility 

distributions of in-water components, intermediate optical variables, and above-surface spectra, and 

(3) following DD scheme to propose a statistical method to infer the distribution of an color 

component. Based on our data, we particularly focused on the lacustrine yellow substance, i.e. 

CDOM, which is an important ocean color component, with high environmental significance, and 

has many indicator effects. More introduction of CDOM can be seen in reference (Zhu et al., 2013a, 

2014; Chen et al., 2017). 

2. Landsat-8’s observation on SPDs of the global closed connected water 

2.1 Study water 

In theory, DD scheme can be used to any water in an image, provided it contains enough water 

pixels as study samples, but in practice, it is usually applicable for those waters with clear boundaries, 

such as lakes and reservoirs. We call such water the closed connected water. The term ‘closed 

connected’ is the similar one used in mathematics and geometrical topology, meaning an object or 

a polygon has a boundary and in which any two points are connected. If any open water has no clear 

boundary, e.g., Yellow Sea in China, then the image pixels used to determine its SPDs cannot be 

explicitly identified. On the other side, if any water area is not connected, then they are actually two 

areas rather than a single water area. Obviously, mixing two areas into one area may lead their SPDs 

to be distorted and meaningless. Lakes, reservoirs, and lagoons are typical closed connected water, 

while bays, estuaries, inlets, and a segment of river channel can be also taken as the closed connected 

water as long as they are approximately closed, and connected to the outside water with narrow 

outlets, making their water cannot be rapidly and massively exchanged.   
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In this study, we selected 688 waters, covering almost the entire Earth, see Fig. 2. Most of these 

waters are lakes and reservoirs, including some famous lakes, such as the Dead Sea, West Lake, 

Yellowstone Lake, and Lake Geneva. A few bays, lagoons, estuarine regions, and riverine segments 

were also studied, including the San Francisco Bay, Tokyo Bay, Hudson River Estuary, and Indian 

River Lagoon. Since the Landsat-8 images were used in this study, we only focused on those closed 

connected waters which can be entirely observed in the scene of a Landsat-8 image. 

 

 

Figure 2. The study site map of the closed connected water in the world. 

 

2.2 Data processing and statistics 

Many types of spectral variables, in different levels, can be obtained from a satellite image, for 

example, the DN (digital number), radiance of TOA (top of atmosphere), atmospherically corrected 

surface reflectance (Ref), and remote sensing reflectance (Rrs), which is widely used in ocean color 

remote sensing. Therefore, here comes a problem that which variable should be used for SPD 

analysis? Certainly, Rrs is the best since it only carries the spectral information of the below-surface 

water itself, while the others may carry the useless non-water information contributed by air-water 

interface and the atmosphere. However, processing an image for Rrs may not be necessary if the 

DN-based SPD, for example, can still be used for DD scheme without significant errors. Like in 

image classification, we often do not need to make an atmospheric correction. We would like to 

remain this problem for the future work. In this study, Rrs was used for SPD analysis and it can be 

directly obtained from Landsat-8 images using the ACOLITE, an atmospheric correction model 

developed for aquatic applications of Landsat data (Vanhellemont & Ruddick, 2014, 2018). 

The output Rrs of ACOLITE has already masked the non-water pixels and the negative values. 

The other pixels outside the study water should be further manually masked by setting the ROI 

(region of interest). Once the ROI of the study water has been determined, Rrs in the ROI at five 

bands (443, 483, 551, 665, and 865 nm of Landsat-8) were extracted and their SPDs can be 

represented by their respective histograms, see Fig. 3. The 2% minimum and 2% maximum Rrs were 

excluded from the SPD, because there were still possibly image processing errors and some 

unavoidable contaminated pixels induced by such as the shallow bottoms, whitecaps, and glints. 

To consistently compare SPD characteristics of different waters, their Rrs histograms can be 

further normalized into the range 0-1, using the formula 
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𝑅 _ = _

_ _
        (1) 

where the Rrs_norm is the normalized Rrs, and Rrs_min and Rrs_max are the minimum (2%th) and 

maximum (98%th) values in the ROI, respectively.  

Another issue of a SPD histogram is determining the number of bins. It is known that there is 

no the ‘best’ number of bins, since different bin number can reveal different data features. Many 

rules and formulas have been proposed for this issue, such as the square-root choice, Sturges’ 

formula, and Freedman-Diaconis rule (Sturges, 1926; Scott, 1992). In this study, the number of bins 

was determined by the Sturges’ formula 

𝑘 = 1 + 3.32log (𝑁)        (2) 

where k is the number of bins and N is the number of samples, namely, the number of image 

pixels within the study water. In the 688 study waters, the N ranges from tens of thousands to over 

four million, and hence k ranges from 15 to 23, so we simply set k = 20 for all water images. 

Moreover, to consistently compare the Rrs’s possibility in different water, the bin’s height was also 

normalized to the possibility = n/N instead of the count n. 

2.3 Statistic and analysis of the observed SPDs 

By observing the resultant SPDs of the 688 closed connected water, we found that although 

their SPDs have shown the diversity in shapes and magnitudes, many of them were still share the 

same or similar features. Fig. 3 shows the selected typical SPDs of the study water, including 

freshwater/saltwater natural lakes, man-made reservoirs, estuaries, and swamps under different 

geographical and environmental conditions, see details in Table 1. In this preliminary study, we only 

focused on their statistical distribution properties that can be characterized by three aspects:  

(1) What are their likely pdfs (possibility distribution functions)? 

Many SPDs are highly and approximately similar to the known common distributions such as 

the normal, lognormal, exponential, or uniform. For example, the SPDs of Dead Sea and Garza-

Little Elm Reservoir (Fig. 3a) shown the smoothed normal or lognormal distributions, SPD at 865 

nm in Yishan Lake (Fig. 3c) and 655 nm in Lake Rotorua (Fig. 3q) shown the likely exponential 

distributions, and some bands in Lake Novosibirsk (Fig. 3j) and Lake Tahoe (Fig. 3t) shown the 

approximately uniform distributions. However, many SPDs were still with uncommon distributions 

such as the bimodal shown in Lake Kakhovske (Fig. 3d), small narrow peaks in Lake Cuitzeo (Fig. 

3p), small flat peaks in Lake Duoergaicuo (Fig. 3n), small zigzags in Sandy Lake at 483 nm (Fig. 

3s), and the irregular cases in Hudson River estuarine region (Fig. 3u). In addition, some common 

distributions were not so ideal in their statistical parameters – some were not smoothed, some were 

shifted, and some were skewed. In particular, the shifting and skewing from the standard 

distributions were often occurred in many water, making their SPDs looked symmetric with each 

other. For example, the exponential distributions in Yishan Lake (right shifted and left skewed, Fig. 

3c) vs. Bahi Swamp (left shifted and right skewed, Fig. 3e), and the normal/lognormal distributions 

in Lake Eucumbene (right shifted and left skewed, Fig. 3h) vs. in Lac Maunoir (left shifted and right 

skewed, Fig. 3i). 

Note that here we only gave a descriptive observation on their SPDs, more details of skewness 

and other distribution parameters were analyzed in next subsections of this study, while the even 
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more insight exploration on SPD’s real pdfs remains for the future work, by using the more accurate 

statistical methods such as the parametric tests. 

 
 

Figure 3. The Landsat-8 observed typical SPDs of 21 closed connected water: (a) Dead Sea, 

(b) Utah Lake, (c) Yishan Lake, (d) Kakhovka, (e) Bahi Swamp, (f) Cardiel Lake, (g) Lake 

Argentino, (h) Lake Eucumbene, (i) Lac Maunoir, (j) Novosibirsk, (k) Lake Ross, (l) Lake Griffin, 

(m) Pongolapoort, (n) Duoergaicuo, (o) Garza-Little Elm, (p) Lake Cuitzeo, (q) Lake Rotorua, (r) 

Lake Tarawera, (s) Sandy Lake, (t) Lake Tahoe, and (u) Hudson River Estuary. The detailed 

information of these lakes is shown in Table 1. 

(2) What are the statistical features (mean, variance, skewness, etc.) of their SPDs? 

Without knowing the exact pdf form of a given SPD, we may, nevertheless, calculate some 

well-known key statistical parameters, such as the mean, standard deviation (SD), and moments 

(skewness, kurtosis, etc.), to illustrate a general overview of samples or populations. The Fig. 4 

shows the distributions of the mean, SD, skewness, and kurtosis of the 688 study water at 5 Landsat-

8 bands. We can see that they have different trends: from 443 nm to 865 nm, the mean decreased 

(Fig. 4c), skewness and kurtosis increased (Fig. 4a and 4b), while SD kept almost unchanged (Fig. 
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4d). Mean values < 0.5 (Fig. 4c) indicates that more SPDs were shifted right with positive (left) 

skewness (mean > 0.2, Fig. 4a). The mean of 688 mean values at 865 nm is 0.24, indicating they 

were highly shifted and concentrated in the half (left) part of the SPDs, (see Fig. 3, all SPDs at 865 

nm were left skewed except Fig. 3e and 3p) and consequently making they were with the larger 

kurtosis (mean 4.8, Fig. 4b). Unlike the other three parameters, SD were always around the 0.2 for 

all 5 bands. 

 

Table 1. The geographical information and the observed typical SPD features (shown in Fig. 3) of 

the selected waters 

Fig. Water Water/Geo. Geo. location Region, Obs. Date SPD features 
No. Name Feature Lat. Lon. Nation Y/M/D pdf SK BR type 
(a) Dead Sea s.w. lake, endorheic 31.54N 35.48E Jordan 19/7/12 NL RM U-B-RGN 
(b) Utah Lake f.w., slightly saline 40.22N 111.82W UT, USA 17/5/3 NL’ RML U-B-GRN 
(c) Yishan Lake f.w., no-man’s-land  35.24N 90.92E QH, China 14/10/22 E R U-B-G-R-N 
(d) Kakhovka f.w., reservoir 47.49N 34.25E Ukraine 18/5/27 Irr RL U-B-G-R-N 
(e) Bahi Swamp f.w., wetland 6.09S 35.18E Tanzania 16/6/23 E’L’ L U-B-G-R-N 
(f) Cardiel Lake f.w., partly alkaline 48.92S 71.20W Argentina 15/9/20 NLL’ RML UBGRN 
(g) Lake Argentino f.w., subalpine 50.22S 72.45W Argentina 18/3/27 NLEE’ RML U-BGR-N 
(h) Lake Eucumbene f.w. reservoir, alpine 36.05S 148.71E Australia 19/2/21 NL ML U-GBR-N 
(i) Lac Maunoir f.w. lake, arctic 67.49N 124.98W Canada 15/6/29 LL’ RML UBG-RN 
(j) Novosibirsk f.w. reservoir 54.74N 82.85E Russia 17/6/14 EU R U-B-G-RN 
(k) Lake Ross f.w., water supply 19.44N 146.76E Australia 17/5/28 LL’E’ RL U-B-G-RN 
(l) Lake Griffin f.w., chain lakes 28.88N 81.84W FL, USA 18/3/9 LL’ RL UBGRN 

(m) Pongolapoort f.w. reservoir, dam 27.41S 31.96E South Africa 17/6/28 LL’ RL U-BGRN 
(n) Duoergaicuo f.w. lake, plateau 35.21N 92.17E Tibet, China 17/10/7 Irr RML U-B-GRN 
(o) Garza-Little Elm  f.w. reservoir, rural 33.10N 96.97W TX, USA 18/3/22 NL RM U-BGRN 
(p) Lake Cuitzeo f.w. lake, astatic 19.94N 101.21W Mexico 19/4/10 Irr ML U-B-G-RN 
(q) Lake Rotorua f.w. lake, volcano 38.07S 176.27E New Zealand 14/3/6 LE R UB-NG-R 
(r) Lake Tarawera f.w. lake, volcano 38.20S 176.43E New Zealand 14/3/6 NL RM U-BG-RN 
(s) Sandy Lake f.w. lake, natural 67.81N 132.25W Canada 14/9/8 NL RM U-BG-R-N 
(t) Lake Tahoe f.w. lake, resort 39.10N 120.05W CA, USA 17/9/27 NLEU RM UBGRN 
(u) Hudson River f.w. estuary, urban 41.04N 73.89W NY, USA 16/3/30 Irr ML UBGRN 

 

Notations for symbols and abbreviations: s.w. (saltwater), f.w. (freshwater); in pdf column, N 

(normal), L (lognormal), L’ (negative lognormal), E (exponential), E’ (negative exponential), U 

(uniform), Irr (irregular); in SK (skewness) column: L (left), M (middle), R (right); in BR (band 

relationship) type column: U (443 nm), B (483 nm), G (551 nm), R (655 nm), N (865 nm). 

 

Fig. 5 shows the correlations between two statistical parameters at 551 nm, and the correlations 

at other wavelengths were similar with those at 551 nm. We can see the similar relations above-

mentioned and observed from Fig. 4. There is no significant correlations (R = 0.29) between mean 

and SD (Fig. 5a), but there are good correlations between skewness and mean/kurtosis (Fig. 5b and 

5d). Their strong correlations make sense because the closer the mean is to 0.5, the closer the 

skewness is to 0 as well as the lower the kurtosis. As the mean turns to the maximum 1, the skewness 

becomes lower and lower in negative, and as the mean turns to the minimum 0, the skewness 

becomes higher and higher in positive (Fig. 5b). Similarly, when skewness turns to greater either in 

negative or positive, the SPDs are more likely to be squeezed in half left or right regions, and then 

the curves turn to be sharper and sharper, making kurtosis to be larger and larger (Fig. 5d). The 

larger kurtosis means that more values were concentrated in a narrower area near the mean value, 
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and hence reducing the SD – such kurtosis-SD relationship can be seen in Fig. 5c, where they do 

demonstrate a good negative correlation (R = 0.71). 

 

Figure 4. The distributions of four SPD statistical parameters of 688 study waters at five 

wavelengths: (a) skewness, (b) kurtosis, (c) mean, and (d) SD. The boxes and whiskers indicate 

the locations of 5%, 25%, 50%, 75%, and 95%, and the oblique cross symbols mark the locations 

of the outliers >95% and <5%. 

 

Figure 5. The correlations between two statistical parameters of 688 SPDs at 551 nm: (a) mean 

vs. SD, (b) mean vs. skewness, (c) kurtosis vs. SD, and (d) kurtosis vs. skewness.  
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(3) What are the SPD’s band relationships? 

From Fig. 3 we can see that, at a given water, SPD curves at different wavelengths are various. 

In some water, their five SPDs were quite similar (e.g., Fig. 3c, 3e, and 3d), but in other water, they 

looked partly different or entirely distinct from each other (e.g., Fig. 3b, 3f, and 3o). In this study, 

we analyzed the similarity between the SPDs of two bands by using the Jensen-Shannon divergence 

(JSd) (Lin, 1991; Ôsterreicher & Vajda, 2003). In statistics, the JSd is usually used to measure the 

similarity between two probability distributions, and it is calculated by 

𝐽𝑆𝑑(𝑃 ∥ 𝑄) = 𝐾𝐿𝑑 𝑃 ∥ (𝑃 + 𝑄) + 𝐾𝐿𝑑 𝑄 ∥ (𝑃 + 𝑄)      (3) 

where P, Q are two probability distributions and KLd(P||Q) is the Kullback-Leibler divergence 

(Kullback & Leibler, 1951) between P and Q, and calculated by 

𝐾𝐿𝑑(𝑃 ∥ 𝑄) = ∑ 𝑃(𝑥)𝑙𝑜𝑔 ( )

( )∈        (4) 

The JSd(P||Q) always falls within the range (0, 1), and JSd = 0 means P and Q are equal almost 

everywhere, while JSd = 1 means they are with the least similarity. 

The distributions of the JSd of the study water were shown in Fig. 6, which were calculated 

from the 10 band pairs of 5 Landsat-8 bands. Fig. 6 shows that the higher similarity occurred when 

the two bands are closer, e.g., JSd(1,2)mean = 0.0089, JSd(2,3)mean = 0.026, and JSd(3,4)mean = 0.031, 

see Fig. 6(a). The further the distance between the two bands, the less similarity they have, and the 

band 5 (865 nm) seems having the least similarity with all the other four bands.  

To classify the SPD band relationships shown in Fig. 3, we take JSd = 0.04 as a threshold so 

that if JSd < 0.04, then the two SPDs were treated as the similar and set their JSd level (JSdL) = 1, 

otherwise, they were dissimilar with JSdL = 0. As the results, the 688 waters can be classified into 

152 types in terms of their JSdLs between 10 band pairs, see Fig. 6b. The water’s JSdLs can be 

represented by a mathematical graph, called SPD graph, shown in Fig. 6c, in which each vertex 

represents a band, and if the band-pair’s JSdL = 1, then they were connected by an edge, and if JSdL 

= 0, they were disconnected. Furthermore, a SPD graph can be simplified by a text notation using 

letters U, B, G, R, and N to represent 5 bands respectively, and if two SPDs are similar, then they 

are connected by a hyphen ‘-’, otherwise, we do not insert the hyphen. Therefore, if SPDs at all 5 

bands were dissimilar, then the water has a SPD graph such as the Fig. 6c(1), with SPD band 

relationship type (BR-type) UBGRN, whereas if they were all similar, then its SPD graph seems as 

the Fig. 6c(2), with BR-type U-B-G-R-N.  

Among the 688 waters, 23 have the BR-type U-B-G-R-N, e.g. Lake Kakhovska (Fig. 3d) and 

Yellowstone Lake (44.47N, 110.36W), and 11 have the BR-type UBGRN, e.g. Cardiel Lake (Fig. 

3f) and Great Salt Lake (41.28N, 112.73W). The most common BR-type is U-B-G-RN, see 6c(3), 

and in Fig. 6b, they have the code 1110110100, and 104 waters were with the type, e.g. Bahi Swamp 

(Fig. 3e), Lake Ross (Fig. 3k), and Saldanha Bay (33.05S, 11.02E). The second large water group 

were with the type U-B-GRN, and their amount is 62 (Fig. 6c(4)), e.g. Utah Lake (Fig. 3b) and 

Mono Lake (33.02N, 118.98W). There were 29 waters having the type U-BG-RN (Fig. 6c(5)), e.g. 

Lake Tarawera (Fig. 3r) and Oyster Harbor (34.97S, 117.96E), and 33 having the type U-BGRN 

(Fig. 6c(6)) e.g. Lake Griffin (Fig. 3l), Lake Argentino (Fig. 3g), and Mtera Reservoir (7.05S, 

35.83E) – these BR-types were also frequently observed among the 688 waters.   



11 
 

We have noticed that in some waters, the SPDs at one or more bands were significantly isolated 

from the SPDs at the other bands, for example, the green band of Lake Argentino (Fig. 3g), the red 

band of Utah Lake (Fig. 3b), and the blue bands (443 and 483 nm) of Lac Maunoir (Fig. 3i). The 

occurrence of these ungrouped SPDs may indicate some special water cases such that, for example, 

the algal blooms led the SPDs of the green band deviated from the other bands. 

 

 

 

Figure 6. SPD band relationships observed in 688 study waters: (a) the distributions of the JSd 

between 10 band pairs, (b) the JSd-based SPD band connection table to classify a water into its 

SPD band type, with threshold JSd = 0.04, and (c) the common SPD band relationship graphs and 

their notations. 

Since sometimes the typical histograms or pdf curves shown in Fig. 3 are not easy to discern, 

we therefore represent the SPD of a given water by using a so-called SPD diagram, see Fig. 7. The 

x-axis of a SPD diagram represents the normalized Rrs, the number in y-axis corresponds to each 

wavelength, and the color in the diagram represents the possibility at the given wavelength and for 

the given normalized Rrs. Note that, in this study, we only have the five bands used in Landsat-8, 

(a) 

(b) 

(c) 
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the SPDs of the other wavelengths were interpolated from the known values at the five Landsat-8 

bands. The above-mentioned as well as some new SPD features can be clearly observed in SPD 

diagrams, for example, the skewness in Fig. 7b and 7c. Fig. 7g shows there was a highland in the 

range of the red wavelength, indicating that the SPDs of the red band was distinct from the other 

SPDs. We can also see that the SPD diagrams of Lake Tahoe and Lake Griffin are approximately 

symmetric to each other (Fig. 7h and 7i). 

 

Figure 7. SPD diagrams of 9 closed connected waters: (a) Dead Sea, (b) Yishan Lake, (c) Bahi 

Swamp, (d) Lake Argentino, (e) Hudson River Estuary, (f) Kakhovka, (g) Utah Lake, (h) Lake 

Tahoe, and (i) Lake Griffin. The number in color bars shows the possibilities of SPD, and the 

negative values can be ignored or treated as nearly zero because they were caused by the spline 

interpolation. 

 

In this section we only gave a tentative and qualitative analysis on the characteristics of the 

observed SPDs. Due to the lack of the detailed geophysical, biochemical, optical, and environmental 

properties of many study waters, how these properties were related to their SPDs has not been fully 

explored. We expect to give more exhaustive and quantitative studies on water’s SPDs in future. 

3. Forward DD process: theory and simulation 

We all know that in classic aquatic optics, water’s AOPs are determined by its IOPs, so do the 

SPDs. Because many variables, such as in-water components, underwater light field, and surface 
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conditions, are involved in the process of the radiative transfer from IOPs to AOPs, the possibility 

distribution of each variable may have impact on the remote sensing observed spectra as well as 

their SPDs. In this section, we made a simplified theoretical calculation and some simulations on 

this forward DD process. 

3.1 A semi-analytical forward DD process for lognormal distributed ocean color components 

In this study, we focused only on a 4-component water model (the classic case-2 model used 

in Hydrolight), which contains pure freshwater as the baseline, plus three ocean color components, 

chlorophyll (CHL), CDOM, and mineral (or non-algal particles, NAP). Note that we only 

considered the cases that the three components are independent with each other, but in real water, 

sometimes two or three of them might be correlated, particularly in those water without input from 

terrigenous sources, such as the open sea water. However, most of the closed connected water are 

inland or coastal water, and their components can be approximately taken as the independent random 

variables. 

Assuming the concentrations of three components are lognormal distributed random variables, 

with their respective parameters μ and variances σ2, that is, 

𝐶 ~𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 , 𝜎 )        (4) 

𝑎 (𝜆 )~𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 , 𝜎 )       (5) 

𝐶 ~𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 , 𝜎 )        (6) 

where Cchl and Cnap denote the concentrations of the CHL and NAP, and they are usually in 

units of weight of mass in unit volumes, i.e., mg/m3 or μg/L, while the concentration of CDOM is 

often represented by its absorption coefficients (in unit m-1) at a typical reference wavelength 0 = 

440 m.  

Because there are good and inherent correlations between physical concentrations and optical 

concentrations of CHL/NAP, such as the CHL-based mode for case-1 water and the power law 

Loisel-Morel or Gordon-Morel near surface models used in Hydrolight, then we can obtain the IOPs, 

i.e., the absorption and backscattering coefficients of CHL, NAP, and CDOM at different 

wavelengths, using the below models,  

𝑎 (𝜆) = 𝑡𝑎∗ (𝜆)[𝐶 ]         (7) 

𝑏 (𝜆) = 𝑔[𝐶 ] (𝜆 /𝜆)          (8) 

𝑏𝑏 (𝜆) = 𝑏 (𝜆) × 𝑟         (9) 

𝑎 (𝜆) = 𝑎 (𝜆 ) × exp (𝑆(𝜆 − 𝜆 ))       (10) 

where a, b, and bb denote the absorption, scattering, and backscattering coefficients of the 

respective components, variables t, k, g, n, m, and r are model parameters, and S is the slope 

indicating acdom’s decay from the short wavelengths to long wavelengths. Note that the NAP has the 

same models as the CHL’s Eq. (7)-(9), but with the different parameters tnap, knap, gnap, nnap, mnap, 

and rnap. 

Based on the known statistical properties of lognormal distribution, the possibility 

distributions of the above optical properties (absorption and backscattering coefficients) can be 

obtained in forms 
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𝑎 (𝜆)~lognormal(𝑘 𝜇 + ln (𝑡 𝑎∗ (𝜆)), 𝑘 𝜎 )     (11) 

𝑎 (𝜆)~lognormal(𝜇 + 𝑆𝜆 − 𝑆𝜆 _ , 𝜎 )     (12) 

𝑎 (𝜆)~lognormal(𝑘 𝜇 + ln (𝑡 𝑎∗ (𝜆)), 𝑘 𝜎 )    (13) 

𝑏𝑏 (𝜆)~lognormal 𝑛 𝜇 + 𝑚 ln 𝑔 𝜆 _ /𝜆 + ln (𝑟 ), 𝑛 𝜎    (14) 

𝑏𝑏 (𝜆)~lognormal 𝑛 𝜇 + 𝑚 ln 𝑔 𝜆 _ /𝜆 + ln (𝑟 ), 𝑛 𝜎   (15) 

CDOM usually has no scattering effect because of its dissolved status, thus the sums of the 

absorption and backscattering coefficients of three or two components are 

𝑎 (𝜆) = 𝑎 (𝜆) + 𝑎 (𝜆) + 𝑎 (𝜆)       (16) 

𝑏𝑏 (𝜆) = 𝑏𝑏 (𝜆) + 𝑏𝑏 (𝜆)        (17) 

It is known that the additive distributions of a series of lognormal distributions have no closed-

form expressions, but still can be reasonably approximated by other lognormal distributions, so the 

distributions of a3com and bb2com can be expressed by  

𝑎 (𝜆)~lognormal(𝜇 , 𝜎 )       (18) 

𝑏𝑏 (𝜆)~lognormal(𝜇 , 𝜎 )       (19) 

where 

𝜎 = ln
∑ , , ( )

∑ exp /, ,

+ 1     (20) 

𝜎 = ln
∑ , ( )

∑ exp /,

+ 1     (21) 

𝜇 = ln ∑ exp 𝜇 + 𝜎 /2, , −     (22) 

𝜇 = ln ∑ exp 𝜇 + 𝜎 /2, −     (23) 

To calculate the water’s total absorption and backscattering coefficients, the absorption and 

backscattering coefficients of the pure water should be added, that is, 

𝑎 (𝜆) = 𝑎 (𝜆) + 𝑎 (𝜆)         (24) 

𝑏𝑏 (𝜆) = 𝑏𝑏 (𝜆) + 𝑏𝑏 (𝜆)        (25) 

Since aw and bbw are constants at a given wavelength , so the at and bbt should turn to the 3-

parameter lognormal distributions such that 

𝑎 (𝜆)~𝐿𝑁3(𝑎 , 𝜇 , 𝜎 )        (26) 

𝑏𝑏 (𝜆)~𝐿𝑁3(𝑏𝑏 , 𝜇 , 𝜎 )        (27) 

Next, we can use the well-known QAA (Quasi-Analytical Algorithm) model (citation) to 

further calculate Rrs, namely, 

𝑢 =           (28) 
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𝑟 = 𝑔 𝑢 + 𝑔 𝑢          (29) 

𝑅 =          (30) 

However, these variables, u, rrs, and Rrs, are based on the addition, multiplication, reciprocal, 

power, and other operations of two or more 3-parameter lognormal distributions, and so far, one do 

not know whether the resultant distributions of these operations are still the 3-parameters lognormal. 

Let us ignore the intermediate variables u and rrs, and guess the Rrs’s distribution is still a 3-

parameter lognormal such that 

𝑅 (𝜆)~𝐿𝑁3(𝛾 , 𝜇 , 𝜎 )        (31) 

So we can use some suggested numerical methods to estimate the parameters γRrs, μRrs, and 

σ2
Rrs, but the procedures might be too complicated. In this study, we made a simplification that only 

focused on the parameter bbt/at, which could be regarded as the approximation of surface reflectance 

R. Then we have 

𝑅 ∝ = =      (32) 

If we further neglected the bbw that is relatively tiny to the other parameters, then the Eq. (32) 

is simplified to 

≈ = 𝑅         (33) 

Let 𝑉 =  ,  𝑉 =  , and 𝑉 = 𝑉 + 𝑉  , then V1, V2, and V3 should be lognormal 

distributions with parameters 

𝜇 = 𝜇 − 𝜇         (34) 

𝜎 = 𝜎 + 𝜎         (35) 

𝜇 = ln(𝑎 ) − 𝜇         (36) 

𝜎 = 𝜎          (37) 

𝜎 = ln
∑ ( ),

∑
/

,

+ 1        (38) 

𝜇 = ln ∑ 𝑒 /
, −        (39) 

Then the variable Rsp should be a lognormal distribution such that 

𝑅 ~lognormal(−𝜇 , 𝜎 ).         (40) 

The above equations tell how to theoretically calculate distribution parameters μ and σ2 of each 

optical variable, while we can also use Monte-Carlo method to simulate these variables, and with 

assuming that they were lognormal distributions, their μ and σ2 can be calculated from the simulated 

samples by using 
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𝜇 = ln 
( )

( ) ( ) )
        (41) 

𝜎 = ln 1 + 
( )

( )
        (42) 

where E(X) and Var(X) are the expectation (mean) and variance of the random variable X. 

Therefore, we could compare the theoretically calculated and the Monte-Carlo simulated 

parameters μ and σ2 that were used to characterize the lognormal distributions of ax, bbx, and Rsp. 

The results of these comparisons, see Table 2, show that the most of relative errors between the 

theoretical and simulated parameters were very small (< 2%), and many of them were smaller than 

0.5% or even 0.1% for parameter μ. The relative errors of the parameter σ2 were slightly larger than 

those of μ. However, there were also relatively larger errors (30%-55%) between the σ2s of the 

theoretical Rsp and simulated Rsp, particularly within the visible bands (Fig. 8b), while the relative 

errors of Rsp’s μ still remained very small (Fig. 8a). The large errors of Rsp’s σ2 were possibly caused 

by the errors of the variable V1 = a3com/bb2com. Because the distributions of a3com and bb2com are both 

formed by the additions of the other three or two lognormal distributions, while the results of these 

additions are only the approximation of the lognormal distribution, and hence the division of two 

approximations may bring more errors into the next result. We also noticed that for some variables, 

such as the bb2com and the ax and/or bbx of CHL, CDOM and NAP, their σ2s are independent of the 

wavelength, making their errors are the same at all bands.    

 

 

Figure 8. The comparisons between the Monte-Carlo simulated and the theoretically calculated 

statistical parameters μ and σ2 for Rsp, which is assumed to be with an approximate lognormal 

distribution. 

 

Table 2. The relative errors (%) between the Monte-Carlo simulated and the theoretically 

calculated statistical parameters at 5 wavelengths for the lognormal distributed variables used in a 

simplified 3-component radiative transfer. 

 440 nm 480 nm 550 nm 655 nm 865 nm 
variable μ σ2 μ σ2 μ σ2 μ σ2 μ σ2 

achl 1.32 1.57 0.92 1.57 0.45 1.57 0.47 1.57 0.09 1.57 
bbchl 0.54 1.50 0.51 1.50 0.47 1.50 0.43 1.50 0.38 1.50 
anap 0.11 1.96 0.10 1.96 0.09 1.96 0.09 1.96 0.10 1.96 

bbnap 0.10 1.90 0.09 1.90 0.09 1.90 0.09 1.90 0.08 1.90 
acdom 5.17 1.51 1.12 1.51 0.36 1.51 0.18 1.51 0.09 1.51 
a3com 0.01 0.65 0.55 0.53 0.18 0.44 0.39 1.21 0.09 1.32 

bb2com 0.49 1.80 0.46 1.80 0.42 1.80 0.38 1.80 0.33 1.80 
Rsp 0.74 48.03 0.83 54.95 1.91 52.90 2.35 30.25 0.21 2.96 
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Through the above study we can see that there are possibly the theoretical connections between 

the observed parameters of SPD and the distribution parameters of the underlying components as 

well as the intermediate variables. Following the radiative transfer of the light, these distribution 

parameters also experience a series of transfer. Despite many approximation and simplification 

being made, their theoretical connections may still be very complicated. Nevertheless, if these 

connections can be approximately established for at least some particular cases, for example, all 

three components are with lognormal distributions, then their statistical parameters might be 

analytically calculated via some inverse mathematics, such as the MIM (matrix inversion method) 

used in the traditional ocean color remote sensing inversion. 

3.2 Forward DD process observed from Hydrolight simulation 

The above Monte-Carlo simulation was based on the simplified radiative transfer model QAA 

or only calculating Rsp, the more accurate approach is using the Hydrolight, a well-known radiative 

transfer model widely used in ocean color remote sensing community. By using Hydrolight, here 

we studied 9 cases of different distribution combinations of three components, including the uniform, 

lognormal, exponential, see Table 3. We particularly paid attention to the CDOM, so in the first 

three cases, we let CHL and NAP’s concentrations to be the constants, and then we were able to 

observe how CDOM’s distribution change AOP’s distribution. The datasets of the three components 

were produced by the MATLAB’s random functions, in which the used parameters and the mean 

and SD of each resultant component dataset were also shown in Table 3. Each case contains three 

component datasets, and each dataset contains 10,000 samples, that is, each case contains 10,000 

water samples in which CHL, CDOM, and NAP had different possibility distributions. Then these 

water samples were put into the Hydrolight to obtain its outcomes, namely, the simulated Rrs. The 

other input models, parameters, constants, and coefficients used by the Hydrolight were set by their 

defaults. 

Table 3. Study cases with different distributions of three ocean color components for Hydrolight 

simulation 

 
Cases CHL (mg/m3) CDOM (m-1) NAP (mg/L) 

 pdf & para. mean SD pdf & para. mean SD pdf & para. mean SD 
1 Const(20) 20 0 Unif(0.2,2) 1.10 0.52 Const(10) 10 0 
2 Const(20) 20 0 LN(0.1,0.5) 1.26 0.67 Const(10) 10 0 
3 Const(20) 20 0 Exp(1) 1.00 0.99 Const(10) 10 0 
4 Unif(5,50) 27.55 12.95 Unif(0.2,2) 1.10 0.52 Unif(2,20) 11.03 5.17 
5 Unif(5,50) 27.40 13.05 LN(0.1,0.5) 1.24 0.65 Unif(2,20) 10.00 5.18 
6 Unif(5,50) 27.47 13.02 Exp(1) 0.98 0.99 Unif(2,20) 11.00 5.18 
7 Exp(30) 30.05 30.19 LN(0.1,0.5) 1.25 0.66 Exp(20) 20.23 20.10 
8 LN(3.5,0.5) 37.30 19.98 LN(0.1,0.5) 1.25 0.66 LN(2.5,0.5) 13.92 7.49 
9 LN(3.5,0.5) 37.34 19.94 Exp(1) 1.01 1.00 LN(2.5,0.5) 13.92 7.38 

 

Note: Const(c) denotes the optical property is a constant c, Unif(a,b) denotes a uniform 

distribution between a and b, Exp() denotes an exponential distribution with a parameter , and 

LN(μ,σ) denotes a lognormal distribution with its parameters  and  used for MATLAB’s random 

number function lognrnd(μ,σ2). The mean and SD were calculated from their respective simulation 

results.  
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The Hydrolight-simulated results are shown in Fig. 9. Due to the high computation cost of the 

simulation, we only simulated the output Rrs at the Landsat-8 bands B2-B5. Given the CHL and 

NAP concentrations were constants, we can see that the Rrs’s distributions were consistent with the 

CDOM’s distributions, that is, if CDOM was with uniform, lognormal, and exponential distributions, 

then the Rrs, at all four bands, was also with uniform, lognormal, and exponential distributions, 

respectively, see cases 1-3 in Fig. 9. If the three components were all with uniform distributions, 

then the Rrs’s distributions seemed to be normal or lognormal, see case-4 in Fig. 9. If CDOM was 

with either lognormal or exponential distributions, while the CHL and NAP were with one of the 

uniform, lognormal and exponential distributions, then the Rrs’s distributions seemed to be always 

the lognormal, but with different parameters such as the SD and kurtosis, see cases 5-9 in Fig. 9. It 

is also easy to see that in all cases, except the case-1, SPDs had the negative skewness, and moreover, 

their SPDs looked all similar at the four bands. Although such scenarios, i.e., negative skewness and 

all-band similarity, were indeed frequently found in real water (see examples introduced in Section 

2.3), there were also many other scenarios happened in nature (such as the diverse SPDs shown in 

Fig. 3) but not observed in the simulated results. Why there were so many various SPDs in real 

water and how to form them using simulation are still unknown. 

 

Figure 9. The Hydrolight simulated SPDs at 4 Landsat-8 bands for 9 cases listed in Table 3. 

 

4. Backward DD scheme: statistical inference 

The backward DD (bDD) scheme is of the most importance for the DD scheme, and is also the 

useful tool for ocean color remote sensing applications. Basically, there are two types of bDD 

scenarios when it is used for the image-based statistical inference: (1) with field measured data, and 
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(2) without field measured data. Here we only study the scenario that we have the field measured 

data, which contain the samples obtained from their population. Based on the measured samples, 

what we need to do is establishing a statistical inference model to estimate CDOM’s possibility 

distribution from the SPDs observed in an image scene. 

4.1 Bootstrap method and data process 

Many statistical inference techniques may be used in bDD scheme, but in this study, we only 

used a bootstrap-based redistribution/resample method. Given a field measured dataset D, see Fig. 

10, we first resample a series of subset (d1, d2, …, di), and in each subset, CDOM and SPDs may 

have different distributions. Then from each subset of d1, d2, …, di, we calculate CDOM’s statistical 

parameters Spcdom_1, Spcdom_2, …, Spcdom_k as well as the SPD’s statistical parameters Spspec_11, 

Spspec_12, …, Spspec_21, Spspec_22,…, Spspec_mn at a single band or some band-combinations, and hence 

to have a series of CDOM parameter subsets C1, C2, …, Ci, and their corresponding SPD parameter 

subsets S1, S2, …, Si. These statistical parameters could be the mean, SD, skewness, and other 

parameters used for describing a possibility distribution, and the band-combinations could be two 

band ratios or other forms with more bands combined. Next, from C1, C2, …, Ci, we extract the 

parameter Spcdom_1 such as CDOMmean or CDOMSD, and from S1, S2, …, Si, we extract the SPD 

parameters such as Rrs_mean and Rrs_SD, and then we can establish the statistical inference or simply 

the fitting model between, for example, CDOMmean and Rrs_mean. Other CDOM’s distribution 

parameters can be obtained using the similar way, and the more parameters we get, the more accurate 

we know its distribution. 

 

 

Figure 10. The bootstrap process of making a statistical inference model for one statistical 

parameter (e.g., the mean or SD) of CDOM distribution. Other parameters can follow the similar 

process to make their models.  
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We tested the bootstrap-based method by using 11 datasets, in which ten sets are Hydrolight-

simulated datasets and one set is a field-measured dataset (QDH) from Qiandaohu Lake. Among the 

ten simulated datasets, nine sets are the cases listed in Table 3, and the one is the IOCCG 

(International Ocean-Color Coordinating Group) synthetic dataset (IOCCG, 2006), which contains 

500 samples and is used for ocean color algorithm tests and validation, and its data can be 

downloaded from and more information can be referred to IOCCG’s website. 

The Qiandaohu Lake (29.57N, 118.94E), with water area 580 km2, is a water-supply reservoir 

in Zhejiang Province, east of China, see the study map and sampling locations in Fig. 11a. More 

details of the lake and our field/lab measurements can be found in reference (Zhu et al., 2020). Note 

that the QDH samples were evenly distributed over the lake but they were collected from five field 

trips at different dates in April and September of 2018 and 2019. 

 

   

Figure 11. (a) The study site map and sampling locations in Qiandaohu Lake, and (b) the 

histogram of the measured CDOM concentrations in five field trips, which collected 100 samples 

in total (QDHall), and by excluding 40 samples, it was redistributed to a new dataset QDHrd, 

containing 60 sample, and these samples form a better exponential possibility distribution than the 

original 100 samples in QDHall do.  

In this study, we only focused on two widely-used statistical parameters, mean and SD, which 

are the key variables to indicate a possibility distribution. The bootstrap processing used for 

simulated datasets and field-measured datasets were slighted different. For the simulated datasets, 

we treated them as the population samples, that is, which can be regarded as the samples covering 

the entire enclosed water. Therefore, we first randomly selected a subset from the population set, 

simulating the process that we go to the field and sample water from an interested lake. For the 

field-measured dataset QDH, it is already a subset of the population samples, so it is no need to 

make a subset resampling as we did for the simulated datasets. 

Each of case 1-9 datasets contains npop = 10,000 samples, so we made a start subset containing 

nstart = 1,000 random selected samples for each case. The IOCCG dataset contains npop = 500 samples, 

and we made a subset containing nstart = 100 samples. The QDH dataset contains nstart = 100 samples, 

but we also test a QDH’s subset containing nstart = 60 samples. Note that the 60 samples were not 

randomly selected from the all 100 QDH samples. Instead, they were the artificially selected in 

order to make a neat distribution which would be likely to represent the true distribution of the 
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whole lacustrine CDOM. Thereafter we denote the dataset containing all 100 samples QDHall, and 

its redistributed subset QDHrd. 

The processing of the bootstrap-based statistical inference followed the Fig. 10 as the below 

steps: 

(1) Resampling a test subset from the start simulated/measured set/subset, and the test subset 

contains ntest = 100, 20, 50, 30, for Case1-9, IOCCG, QDHall, and QDHrd datasets, 

respectively. 

(2) For each test subset, calculating its mean and SD values for CDOM concentration (acdom 

at 440 nm) and Rrs of a single band or band-combinations. In this study we used four 

Landsat-8 bands B1-B4 and their six band-ratios B1/B2, B1/B3, B1/B4, B2/B3, B2/B4, 

and B3/B4 for the datasets IOCCG and QDH, but used the bands B2-B5 and their six band-

ratios B2/B3, B2/B4, B2/B5, B3/B4, B3/B5, and B4/B5 for the datasets Cases 1-9. Note 

that in these calculations, Rrs should use their original values in unit sr-1, rather than those 

normalized Rrs used for representing and comparing SPDs. 

(3) Repeating the above steps (1) and (2) k = 1,000 times, and then we obtained the datasets 

containing 1,000 samples which can be used for modeling the relationships between the 

CDOM’s mean\SD and SPD’s mean\SD. 

(4) Making a simple linear regression using the data acquired by the Step (3), and the regressed 

equations can be used for validating and further inference on new datasets. 

4.2 Inference results and discussion 

The results of inference modeling for CDOM’s mean and SD are shown in Table 4 and Fig. 12. 

We can see that there are good correlations between CDOM’s mean/SD and SPD’s mean/SD. The 

best correlations occurred in Case 1-3, showing that if the concentrations of the other two 

components CHL and NAP were exactly the constants, that is, the Rrs was only determined by the 

CDOM, then CDOM’s mean and SD were highly correlated with SPDs (R2 > 0.95), and the high 

correlations occurred for almost all single bands or band-ratios. However, the constant concentration 

of an ocean color component is almost impossible to happen in real water, if CHL and NAP were 

both variables, such as in Case 4-9, then their correlations were about R2
mean = 0.35-0.85 and R2

SD 

= 0.02-0.75%. Except the Case 7, all other Cases had the R2
mean > 0.85 and except Case 4 and Case 

7, all other Cases had the R2
SD > 0.58. 

For the IOCCG dataset, the mean and SD inference models were both accurate with R2
mean = 

0.85 and R2
SD = 0.81, while for the QDH datasets, the SD models become even worse with R2

SD = 

0.05 for QDHall and R2
SD = 0.12 for QDHrd, meaning that these models were actually failed for the 

expected statistical inference. How to further improve SD inference model for field measured data 

remains for the future work.  

Unlike the SD models, the performance of the mean models based on QDHall and QDHrd were 

significantly different. If directly using all data, the best R2
mean was only 0.10, as poor as the SD 

model. The reason is that all field measured data may not be a real random sampling to represent 

the true SPD of the given water. For example, the samples’ spatial and temporal intervals were not 

equal, and sometimes samples were collected at different dates. The changes of the flow velocity, 

vessel speed, plus that the weather may bring uncertainties to the field measurement. Therefore, it 
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is important to screen the raw samples to redistribute them as a possible or hypothesized possibility 

distribution. In this study, we can see that CDOM’s distribution of all samples did not match any 

known distribution - it looks like an exponential distribution, but within some bins, samples were 

possibly either missing or redundant (Fig. 11b). Because we cannot make up those missing samples, 

we had to remove some redundant samples to let the distribution neat and clear. Thus, we randomly 

excluded 1-13 samples from each bin, and in total 40 samples were removed from the QDHall, and 

the rest samples QDHrd were redistributed into a good exponential distribution, see Fig. 11b. As the 

result, see Table 4 and Fig. 12i and 12j, the mean inference model based on QDHrd was much better 

(R2
mean = 0.36) than the model based on QDHall (R2

mean = 0.10), which was actually a failed model. 

Below we listed some inference functions.  

For the Case-8 dataset (see Fig. 12a and 12b), 

𝑎 (440) = −33.2697 ×
( )

( )
+ 39.1417    (43) 

𝑎 (440) = 26.1672 ×
( )

( )
+ 0.1611     (44) 

For IOCCG dataset (see Fig. 12e and 12f),  

𝑎 (440) = 0.0214 ×
( )

( )
+ 0.022     (45) 

𝑎 (440) = 0.0133 ×
( )

( )
+ 0.0013     (46) 

For Qiandaohu Lake (see Fig. 12j), 

𝑎 (440) = 1.536 ×
( )

( )
− 1.0312     (47) 

The above inference models Eq. (43)-(47) were validated using the datasets resampled from 

the population datasets, and hence part of their data were never used for inference modeling. For 

Case-8, IOCCG, and QDHrd datasets, each one was resampled 500 times that makes 500 validation 

subsets, and in each validation subset, sample number was randomly set but within the ranges 100-

5,000, 20-500, and 10-50 for each dataset, respectively. The validation results were shown in Fig. 

12c, d, g, h, and k. For the Case-8 dataset, the MAPEmean = 0.77% (MAPE, Mean absolute 

percentage error), RMSEmean = 0.010 m-1 (RMSE, root mean square error), MAPESD = 2.00%, 

RMSESD = 0.017 m-1; for IOCCG dataset, the MAPEmean = 2.45%, RMSEmean = 0.00014 m-1, 

MAPEmean = 2.63%, RMSESD = 0.00013 m-1, and for QDHrd dataset, the MAPEmean = 7.25%, 

RMSESD = 0.023 m-1. We can see that even for the field measured QDHrd dataset with only 60 

samples, the inference model still achieved the excellent accuracy that the relative error on CDOM’s 

inferred mean was less than 8%. 

The results of inference modeling and validation also show that the accuracy of inferring the 

parameter mean was always better than that of inferring the parameter SD, indicating that the mean 

is a more sensitive and easy-inferred parameter than the SD. See Table 4, except the Cases 1-3, the 

best R2
SD was only 0.75 in the Case-9, while, except the Case-7, the worst R2

mean was still 0.84 in 

the Case-6. 
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The Case-7 seems to be a difficult case for which the mean and SD inference models both 

performed not well: R2
mean = 0.35 and R2

SD = 0.02. So far, we do not know the real reasons that led 

the inference’s difficulty. We believe it could be caused by the specific distributions of CHL 

(exponential), CDOM (lognormal), and NAP (exponential).  

Table 4. The R-squared values for modeling the distribution parameters between CDOM and 

bands/band-ratios for the datasets Case 1-9, IOCCG, QDHall, and QDHrd. The underlined number 

are the best three results for each dataset. 

(a) For CDOM’s mean 

Dataset B2 B3 B4 B5 B2/B3 B2/B4 B2/B5 B3/B4 B3/B5 B4/B5 
Cases 1 1.00 1.00 0.99 0.94 0.99 0.97 1.00 0.74 1.00 0.98 
Cases 2 1.00 1.00 0.99 0.96 0.99 0.97 1.00 0.82 1.00 0.99 
Cases 3 1.00 1.00 0.99 0.98 0.99 0.98 1.00 0.89 1.00 0.99 
Cases 4 0.67 0.67 0.61 0.02 0.51 0.69 0.83 0.55 0.85 0.85 
Cases 5 0.73 0.74 0.69 0.08 0.59 0.74 0.85 0.67 0.88 0.87 
Cases 6 0.82 0.81 0.78 0.10 0.76 0.83 0.86 0.72 0.84 0.84 
Cases 7 0.14 0.12 0.11 0.00 0.11 0.11 0.33 0.04 0.35 0.48 
Cases 8 0.80 0.79 0.75 0.10 0.66 0.79 0.88 0.67 0.91 0.89 
Cases 9 0.89 0.87 0.86 0.16 0.84 0.89 0.92 0.75 0.91 0.92 

 B1 B2 B3 B4 B1/B2 B1/B3 B1/B4 B2/B3 B2/B4 B3/B4 
IOCCG 0.79 0.07 0.21 0.30 0.72 0.37 0.73 0.41 0.85 0.03 
QDHrd 0.20 0.09 0.08 0.13 0.36 0.05 0.00 0.01 0.09 0.07 
QDHall 0.09 0.05 0.05 0.06 0.10 0.01 0.01 0.00 0.00 0.01 

(b) For CDOM’s SD 

Dataset B2 B3 B4 B5 B2/B3 B2/B4 B2/B5 B3/B4 B3/B5 B4/B5 
Cases 1 1.00 1.00 0.94 0.79 0.96 0.84 0.99 0.32 0.99 0.92 
Cases 2 0.99 1.00 0.99 0.98 0.99 0.98 0.99 0.85 1.00 0.99 
Cases 3 0.99 1.00 1.00 0.99 0.99 0.98 0.99 0.89 1.00 0.99 
Cases 4 0.14 0.15 0.10 0.00 0.07 0.18 0.34 0.11 0.34 0.37 
Cases 5 0.40 0.42 0.36 0.00 0.33 0.45 0.56 0.54 0.62 0.60 
Cases 6 0.48 0.49 0.44 0.02 0.39 0.51 0.56 0.55 0.58 0.56 
Cases 7 0.01 0.01 0.01 0.00 0.00 0.00 0.02 0.00 0.02 0.09 
Cases 8 0.54 0.55 0.51 0.05 0.47 0.57 0.66 0.62 0.71 0.70 
Cases 9 0.67 0.68 0.66 0.02 0.60 0.67 0.72 0.70 0.75 0.74 

 B1 B2 B3 B4 B1/B2 B1/B3 B1/B4 B2/B3 B2/B4 B3/B4 
IOCCG 0.50 0.02 0.00 0.00 0.42 0.14 0.70 0.12 0.81 0.02 
QDHrd 0.00 0.02 0.01 0.00 0.00 0.12 0.00 0.07 0.02 0.06 
QDHall 0.04 0.05 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.00 

 

We have also tested for using different sample number in the start and test subsets, i.e., 

changing nstart and ntest, as well as the bootstrap number k and the sample number of the validation 

subset. We found that, by changing these variables, the accuracies of inference modeling and 

validation did not have significant changes, meaning that these variables would not have great 

impact on SPD statistical inference, provided they were reasonably and appropriately configured. 

Bands or band combinations also play an important role in statistical inference. For all datasets 

used in this study, the models based on simple band-ratios performed always better than or nearly 

equal to those models based on a single band. This is reasonable because in traditional ocean color 

remote sensing inversion, the algorithms based on multiple bands are usually better than those single 

band ones. According to the results shown in Table 4, the best three band ratios for CDOM’s 

mean/SD inference are B3/B5, B4/B5, and B2/B5 for the Case 1-9; for the IOCCG dataset, the best 

three are B2/B4, B1/B4, and B1; but for QDH data, the best one is B1/B2 for mean’s inference. The 
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band changes in different datasets may be caused by their different CDOM levels. The similar 

scenarios also occurred in SC scheme – our previous study found that for high-CDOM water, the 

best Landsat-8 inversion model used the band ratio B3/B4, while for low-CDOM water, the best 

ratio was shifted to B2/B4 (Chen et al., 2017; Chen et al., 2019). In this study, CDOM concentration 

level in IOCCG dataset were as very low as those in open seas, so its best inference model using 

B2/B4 is consistent with the previous results. In addition, the relationships between CDOM 

mean/SD and spectral mean/SD were regressed using the linear functions. We would like to remain 

for the future work to explore whether the more complicated band combinations and regression 

functions would be more suitable for CDOM's statistical inference.  

 

 

Figure 12. Statistical inference modeling and validating for CDOM’s distribution parameters 

mean and SD using different datasets: (a) Case 8, modeling mean, (b) Case 8, modeling SD, (c) 

Case 8, validating mean, (d) Case 8, validating SD, (e) IOCCG, modeling mean, (f) IOCCG, 

modeling SD, (g) IOCCG, validating mean, (h) IOCCG, validating SD, (i) QDHall, modeling 

mean for all data, (j) QDHrd, modeling mean for the redistributed data, (k) QDHrd, validating 

mean.  

 

5. Conclusion and future work 

This study suggested a new topic for ocean color and aquatic remote sensing which explores 

the relationship between the possibility distributions of IOPs and AOPs. This topic is still on its 

early stage and many concepts, methods, observations, and conclusions might be tentative. Here we 
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particularly listed a few notes and conclusions deserving more attentions and future work.    

The Landsat-8 observed SPDs from 688 global waters show that many of them were normal, 

lognormal, and exponential distributions, but also with different mean, SD, skewness, and kurtosis. 

The similarity and diversity observed among these SPDs indicate that SPDs are very likely the 

response to the optical properties of the in-water components and hence the features of aquatic 

environment – more studies should be conducted on this work.   

In this study, we have not analyzed the SPD’s temporal variations on a given water area, that 

would be an interest topic for the future work. We have made a tentative analysis on the SPD 

diagrams, which we think can be taken as the spectral ‘face’ of a lake at a moment. Given the 

hyperspectral images are more and more available, the SPD diagrams will be expected to have 

higher spectral resolutions, and then more advanced analytical techniques, such as the artificial 

intelligence and machine learning, can be used to recognize the patterns in SPDs and reveal their 

relationships to the other natural properties of water and aquatic environment. In addition, although 

the band-combinations were used in statistical inference, the SPDs of band-combinations of the real 

water have not been extracted and analyzed yet. We expect the band-combination-based SPDs may 

be more closely associated to the possibility distributions of the in-water components. 

The results of the forward DD analysis have demonstrated that the IOP’s distributions do have 

the impacts on the observed SPDs. If the distributions of the three components are lognormal, then 

the corresponding SPDs are also with the lognormal-like distributions. The results of the image 

observation and Hydrolight simulation both show that the lognormal distribution is widely occurred, 

and we may pay more attention on it. 

Our study shows that based on the bootstrap method, the mean and SD of CDOM’s distribution 

can be accurately inferred, simply using some linear functions and band ratios. Compared to the 

mean’s inferring model, the SD’s performed relatively poor, probably because, as a distribution 

parameter, SD is not sensitive to the observed SPDs. Whether there are more appropriate parameters 

as well as other statistical inference techniques can be used in SPD’s analysis can be further explored. 

At last, we would like to emphasize that due to the extreme complexity of the radiative transfer, 

light-water interaction, and ambient uncertainties, the process of how the AOP’s SPD responds to 

component or IOP’s possibility distributions might be also extremely complex, and hence making 

the inversed statistical inference from AOP  to components or IOP is even more complex. We are 

looking forward to more theoretical and practical future studies on all relevant topics of SPD-water 

relations and remote sensing statistical inference principles and methods. 
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