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Key points: 25 

1. CAM6 and AM4 simulate observed cloud properties and compositions fairly well 26 

within the variability of observations. 27 

2. CAM6 clouds are “too frequent, too bright”; AM4 clouds are “too few, too 28 

bright”.  29 

3. Cloud droplet number concentration in CAM6 is typically too low; AM4 clouds 30 

include too much small ice and too little snow. 31 

 32 

 33 

Abstract 34 

 35 

This study uses cloud and radiative properties collected from in-situ and remote sensing 36 

instruments during two coordinated campaigns over the Southern Ocean between 37 

Tasmania and Antarctica in January-February 2018 to evaluate the simulations of clouds 38 

and precipitation in nudged-meteorology simulations with the CAM6 and AM4 global 39 

climate models sampled at the times and locations of the observations.  Fifteen 40 

SOCRATES research flights sampled cloud water content, cloud droplet number 41 

concentration, and particle size distributions in mixed-phase boundary-layer clouds at 42 

temperatures down to -25 C.  The six-week CAPRICORN2 research cruise encountered 43 

all cloud regimes across the region. Data from vertically-pointing 94 GHz radars 44 

deployed was compared with radar-simulator output from both models. Satellite data was 45 

compared with simulated top-of-atmosphere (TOA) radiative fluxes. 46 

 47 
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Both models simulate observed cloud properties fairly well within the variability of 48 

observations. Cloud base and top in both models are generally biased low. CAM6 49 

overestimates cloud occurrence and optical thickness while cloud droplet number 50 

concentrations are biased low, leading to excessive TOA reflected shortwave radiation. In 51 

general, low clouds in CAM6 precipitate at the same frequency but are more 52 

homogeneous compared to observations. Deep clouds are better simulated but produce 53 

snow too frequently. 54 

 55 

AM4 underestimates cloud occurrence but overestimates cloud optical thickness even 56 

more than CAM6, causing excessive outgoing longwave radiation fluxes but comparable 57 

reflected shortwave radiation. AM4 cloud droplet number concentrations match 58 

observations better than CAM6. Precipitating low and deep clouds in AM4 have too little 59 

snow.  Further investigation of these microphysical biases is needed for both models. 60 

 61 

1. Introduction 62 

General circulation models (GCMs) are challenged by uncertainties and biases in 63 

the simulation of Southern Ocean clouds, aerosols, and precipitation, and these 64 

uncertainties affect simulated global cloud feedback on climate change. The clouds 65 

simulated by GCMs participating in the third and fifth Coupled Model Intercomparison 66 

Projects (CMIP3 & CMIP5; Meehl et al., 2005) mostly reflected too little sunlight back 67 

to space over the Southern Ocean (45º-65ºS) (Trenberth and Fasullo, 2010; Ceppi et al., 68 

2012; Williams et al., 2013).  Bodas-Salcedo et al. (2014) and others identified 69 

insufficient low cloud cover and insufficient supercooled liquid water in the cold sector 70 



 4 

of frontal cyclonic system as likely causes of this bias. Trenberth and Fasullo (2010) 71 

suggested that too little low cloud in the current climate might cause an underestimation 72 

of positive low cloud feedback on future climate change over this region.  Models which 73 

glaciate mixed phase clouds at overly warm temperatures also have a spuriously negative 74 

high-latitude cloud optical depth feedback, driven by a simulated warming-induced 75 

transition from ice-dominated to liquid-dominated low clouds, while satellite 76 

observations suggest these clouds are already liquid-dominated (Cordon and Klein 2014; 77 

McCoy et al., 2016; Terai et al., 2016; Tan et al., 2016). Improved simulation of Southern 78 

Ocean clouds in climate models will help us to better simulate the radiative energy 79 

budget in the current climate and to make more reliable future projections of Earth’s 80 

climate.  81 

Several recent GCM sensitivity studies have shown that the SO cloud bias can be 82 

substantially reduced by inhibiting several uncertain stratiform and convective cloud 83 

microphysical processes that can glaciate mixed-phase Southern Ocean clouds (Kay et al. 84 

2016, Bodas-Salcedo et al., 2019; Gettelman et al., 2019). This may have led the Coupled 85 

Model Intercomparison Project phase 6 (CMIP6) versions of several GCMs (Eyring et 86 

al., 2016) with revised treatments of mixed-phase clouds to have more positive global 87 

cloud feedback than in their CMIP5 counterparts (Gettelman et al., 2019, Bodas-Salcedo 88 

et al., 2019, Zelinka et al., 2020).  89 

Until recently, there were very few in-situ observations available to test and 90 

constrain such modeling choices.  Satellite observations from active and passive sensors 91 

are an invaluable resource, but they have interpretational uncertainties that need to be 92 

anchored by in-situ measurements. An evaluation of the CMIP6 GCM simulations of SO 93 
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clouds and precipitation based on in-situ observations coordinated with collocated active 94 

remote sensing is a key step for future improvement of cloud representations in the 95 

models.  96 

Motivated by this, two coordinated field studies were conducted over the sector of 97 

the Southern Ocean between Tasmania and the Antarctic sea ice edge in Jan.- Feb. 2018:  98 

1) a U. S. aircraft study based in Hobart, Tasmania, the Southern Ocean Clouds, 99 

Radiation, Aerosol Transport Experimental Study (SOCRATES), and 2) an Australian 100 

ship-based study, the second Clouds, Aerosols, Precipitation, Radiation, and atmospheric 101 

Composition Over the southeRn ocean field study (CAPRICORN2).  These two studies 102 

used complementary sampling strategies.  The research flights targeted weather regimes 103 

with low-lying clouds at altitudes below 4 km during daytime, providing detailed 104 

multivariate spatial cross-sections through complex cloud fields but no temporal 105 

continuity.  The ship sampled all weather regimes and times of day, but its only in-situ 106 

measurements above the surface were twice-daily radiosondes. Both platforms had 107 

vertically-pointing cloud radar and lidar. The data from these two studies pair well 108 

because they test different aspects of GCM simulations.  109 

In this paper, we use this data together with satellite measurements to characterize 110 

Southern Ocean cloud morphology, cloud and precipitation occurrence and frequency, 111 

cloud droplet number concentration (Nd), hydrometeor size distribution, and shortwave 112 

(SW) and longwave (LW) radiative effects at the top of atmosphere (TOA). Radiosondes 113 

launched on the ship and dropsondes from the aircraft map out the troposphere relative 114 

humidity field. We use these uniquely comprehensive observations of cloud and radiative 115 

properties to evaluate the atmospheric components of two state-of-the-art CMIP6 GCMs. 116 
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The Community Atmosphere Model version 6 (CAM6, Bogenschutz et al., 2018) is the 117 

atmospheric component of version 2 of the Community Earth System Model (CESM2), 118 

developed by the National Center for Atmospheric Research (NCAR) and many other 119 

partners.  The Atmosphere Model version 4 (AM4, Zhao et al. 2018) is part of the CM4 120 

climate model (Held et al. 2019) and ESM4 (Dunne et al. 2019) earth system model 121 

developed by the Geophysical Fluid Dynamics Laboratory (GFDL).  122 

A centerpiece of our approach for comparing GCMs with observations is the use 123 

of nudged-meteorology simulations in which the GCM winds and temperature field are 124 

lightly nudged with a 24-hour timescale toward reanalysis, while other simulated fields 125 

(e. g. humidity, clouds, aerosols and precipitation) are not nudged and freely evolve.  126 

This allows us to focus on model errors in water processes that are probably derived from 127 

the local action of physical parameterizations rather than an incorrect synoptic 128 

environment.   129 

The models are sampled along the same paths followed by the plane and the ship, 130 

so that every observation can be meaningfully compared with model output at the same 131 

simulated time and place, without need for compositing or other statistical averaging, 132 

similar to Wu et al. (2017) and Bretherton et al. (2019). The nudged-meteorology 133 

approach is particularly useful around the rapidly evolving storm systems of the SO.     134 

Recently Gettelman et al. (2020) used SOCRATES and satellite measurements to 135 

look at cloud location, cloud phase, and boundary layer structure in CAM6 simulations, 136 

and evaluate the improvement of CAM6 simulations compared to CAM5 using monthly 137 

averaged satellite retrievals. Our paper complements Gettelman et al., (2020) by 138 

assessing cloud and precipitation occurrence and its radiative impacts from a more 139 
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statistical perspective, and combines unique CAPRICORN2 data and radar simulators for 140 

a comprehensive assessment.  141 

The remainder of this paper is organized as follows. Section 2 describes our 142 

observations and models, including more detail on the nudged-meteorology approach 143 

taken here.  Section 3 evaluates the representation of low cloud and precipitation in 144 

CAM6 and AM4 during the SOCRATES campaign, including cloud and precipitation 145 

occurrence and frequency, hydrometeor size distributions, cloud water content and cloud 146 

droplet number concentration. Section 4 discusses low and deep clouds in the models 147 

during the CAPRICORN2 campaign, using radar data and simulators and satellite-148 

derived TOA radiative fluxes. Section 5 presents conclusions.  149 

 150 

2. Description of observations, models, and radar simulator 151 

2.1. SOCRATES measurements 152 

 153 

During the SOCRATES campaign, 15 research flights of the U. S. National 154 

Science Foundation Gulfstream V (GV) research aircraft (EOL 2005) were conducted 155 

from Hobart, Tasmania (42ºS, 147ºE) out over the Southern Ocean between 15 January-156 

24 February 2018. The GV aircraft flew roughly southward at its ferry altitude of 6 km to 157 

a southernmost waypoint, typically near 58-62°S, chosen to optimize sampling of cold-158 

sector boundary-layer stratocumulus and cumulus. The GV then descended to conduct 159 

standardized sampling modules during the generally northbound return legs. Each 45-50 160 

minute module, spanning 400-500 km, was made up of 10-minute above-cloud, in-cloud, 161 

and below-cloud (150-200 m altitude) legs, and a sawtooth leg consisting of an ascent to 162 
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600 m above cloud top, a descent to 150 m above sea surface, and another ascent above 163 

the cloud top. A comprehensive suite of instrumentation for sampling mixed-phase cloud, 164 

aerosols, and turbulence was deployed (https://www.eol.ucar.edu/content/socrates-165 

aircraft-payload), as well as a vertically-pointing cloud radar and lidar and dropsondes.  166 

The primary in-situ instruments used in the current study are the Vertical-Cavity 167 

Surface-Emitting Laser (VCSEL; EOL 2008), the Cloud Droplet Probe (CDP), and the 168 

Two-Dimensional Stereo probe (2DS; Wu and McFarquhar, 2019). The VCSEL reported 169 

relative humidity (RH), derived as the ratio of measured water vapor concentration and 170 

saturated vapor pressure over liquid water at the ambient temperature (per Wexler's 171 

formula; Wexler 1976) at a 25 Hz temporal resolution. HARCO heated total air 172 

temperature sensors were used for measurement of temperature (T) every 25 Hz.  173 

We use GV remote sensing measurements from the 94 GHz (W-band) HIAPER 174 

cloud radar (HCR; EOL 2014) and the high spectral resolution lidar (HSRL; EOL 2010), 175 

The radar and HSRL operated at a 2 Hz temporal resolution and could be manually 176 

switched to point up or down. The goal was generally to point toward the nearest clouds. 177 

Both instruments have a minimum range or ‘dead zone’ of 150-200 m from the plane, but 178 

this was rarely an issue unless the aircraft was flying within a thin cloud layer.   Past its 179 

dead zone, the HSRL could detect essentially all clouds (with attenuation for thicker 180 

clouds), even when the aircraft was flying at its ferry altitude of 6 km. Thus, in this study 181 

the combination of the HSRL and the in-situ aircraft cloud probes were used to determine 182 

lower-tropospheric cloud occurrence.  183 

The CDP measured liquid water content and cloud droplet size distribution from 184 

1-50 µm at a sampling rate of 10 Hz. The 2DS provided hydrometeor images, from which 185 

https://www.eol.ucar.edu/content/socrates-aircraft-payload
https://www.eol.ucar.edu/content/socrates-aircraft-payload
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data processing software synthesized cloud and precipitation size distributions from 10-186 

1028 µm radius.   187 

 188 

2.2:  CAPRICORN2 measurements 189 

The CAPRICORN2 cruise of Australia’s Research Vessel (RV) Investigator 190 

spanned Jan. 10-Feb. 21, 2018.  It was a sequel to earlier voyages in 20-29 March 2015, 191 

and March-April 2016 described in Protat et al., 2017 and Mace et al. 2018. We use radar 192 

reflectivity profiles collected by an onboard calibrated 95 GHz W-band vertically 193 

pointing cloud radar (see Mace et al. 2018 for more details). The radar reflectivity has 194 

been corrected for wet radome attenuation.  We also use twice-daily radiosondes from the 195 

cruise. 196 

 197 

2.3 Satellite measurements 198 

To assess the GCM-simulated top-of-atmosphere (TOA) radiative fluxes, we use 199 

edition 4A of National Aeronautics and Space Administration (NASA) Clouds and the 200 

Earth’s Radiant Energy System (CERES; Wielicki et al., 1996) synoptic (SYN) cloud and 201 

radiation products (Doelling et al., 2013; Rutan et al., 2015). We use the hourly TOA  202 

fluxes of reflected shortwave radiation (RSW) and outgoing longwave radiation (OLR). 203 

The CERES SYN data is available on a 1ºx1º grid 204 

(https://ceres.larc.nasa.gov/products.php?product=SYN1deg). We extract the nearest grid 205 

points to the contemporaneous aircraft and ship locations for comparison with models.  206 

  207 

2.4 CAM6 model description 208 
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CAM6 was comprehensively described in Bogenschutz et al., (2018) and 209 

Gettelman et al. (2019). This section summarizes key features of CAM6 for this study. 210 

CAM6 implements the Cloud Layers Unified by Bi-normals (CLUBB, Golaz et al. 211 

(2002), Larson et al. (2002)) parameterization to replace the planetary boundary layer, 212 

shallow convection, and cloud macrophysical parameterization schemes used in CAM5. 213 

The unified CLUBB scheme bypasses the complexity of interactions between schemes to 214 

improve performance for the simulation of boundary layer clouds, especially of 215 

intermediate types of regimes such as the stratocumulus to cumulus transition 216 

(Bogenschutz et al., 2013; Guo et al., 2015).  CAM6 retains the deep convection scheme 217 

of Zhang and McFarlane (1995) used in CAM4 and CAM5. The precipitation from the 218 

CLUBB and deep convection schemes is referred as large-scale (stratiform) and 219 

convective precipitation respectively. CLUBB diagnoses cloud fraction and cloud liquid 220 

water from a joint double-Gaussian probability density function (PDF). Ice and liquid 221 

cloud fractions in CLUBB are the same and are analytically diagnosed by integrating 222 

over saturated portions of the joint PDF (Guo et al., 2014). The total cloud fraction in 223 

CAM6 combines CLUBB and deep convective cloud cover fractions, and an ice cloud 224 

fraction assuming maximum overlap.  225 

The CAM6 microphysics package incorporates a two-moment scheme for 4 226 

classes (liquid, ice, and large scale rain and snow) with updated ice nucleation 227 

parameterization, MG2 (Gettelman and Morrison, 2015). MG2 is coupled to a physically 228 

based mixed phase ice nucleation scheme (Hoose et al 2010) implemented in CAM6 with 229 

modifications for a PDF of contact angle by Wang et al (2014). MG2 accounts for 230 

preexisting ice during cirrus ice nucleation (Shi et al 2015).  231 
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Aerosols are predicted by a four-mode version of the Modal Aerosol Module 232 

(MAM4) (Liu et al., 2016), initialized based on climatological profiles in year 2000 from 233 

CMIP6 emissions inventory. The activation of aerosols into cloud droplets in CAM6 is 234 

diagnosed as a function of the modeled sub-grid scale updraft velocity and aerosol 235 

compositions and size distribution (Abdul-Razzak and Ghan 2000).  236 

The CAM6 simulations in this paper are run with prescribed sea surface 237 

temperature. A Finite-Volume (FV) dynamical core of 0.9º longitude x 1.25º latitude 238 

resolution is used with 32 vertical levels and a model time step of 30 minutes. To 239 

facilitate model evaluation against observations, CAM6 was run in a nudged 240 

configuration (Lamarque, 2011) using the NASA Modern-Era Retrospective analysis for 241 

Research and Applications version 2 (MERRA-2; Rienecker et al., 2011; Molod et al., 242 

2015) horizontal winds, temperature, and monthly mean sea surface temperature (SST) 243 

with a relaxation timescale of 24 hours. MERRA-2 nudging fields are interpolated to the 244 

CAM6 vertical levels before nudging. The CAM6 simulation is performed starting on 245 

January 1
st
 2017, to ensure proper spin-up of aerosol and land-surface fields well before 246 

any observational comparisons.  Model outputs along the tracks of the aircraft and ship 247 

(specifically, from the nearest model grid points to the current ship and aircraft locations) 248 

are calculated in-line and output at time steps of 1 minute and 10 minutes respectively.  249 

 250 

            2.5 AM4 model description 251 

AM4 was comprehensively described by Zhao et al. (2018).  Here we summarize 252 

those physical parameterizations from the model that are particularly relevant to its 253 

simulation of Southern Ocean clouds and aerosols.  AM4 uses a double plume shallow 254 
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convection scheme adapted from Bretherton et al., (2004), and a deep convection scheme 255 

based on a cloud work function relaxation closure (Zhao et al., 2018). The macrophysical 256 

scheme of large-scale clouds in AM4 follows Tiedtke (1993). Cloud water content and 257 

fractional cloud cover are described prognostically by large-scale budget equations. The 258 

increase in cloud cover is determined by the fraction of the cloud-free area exceeding 259 

saturation. AM4 implements a one-moment microphysics scheme for liquid water 260 

following Rotstayn (1977) and Rotstayn et al., (2000) with an inclusion of a prognostic 261 

scheme for cloud droplet number concentration (Ming et al., 2007), as in AM3. A rain 262 

profile is diagnosed at each time from the cloud properties (Rotstayn et al., 1997).  263 

Ice is predicted from water vapor diffusion at the expense of liquid water (the 264 

Wegener-Bergeron-Findeisen process) and homogeneous freezing of liquid water at 265 

temperatures colder than -40ºC. Ice melts to form liquid water at temperatures warmer 266 

than 0ºC. In AM4, there is no distinction between falling ice, snowflakes and graupel. All 267 

forms of atmospheric ice are represented by a single variable. The ice particles fall with a 268 

mass-weighted mean velocity calculated assuming fall speed is proportional to the 0.16 269 

power of particle diameter. Falling ice particles are approximated by a negative 270 

exponential distribution with effective radius determined by temperature that ranges from 271 

15 – 100 µm (Donner et al., 1997).  272 

Aerosols in AM4 are predicted based on climatological sources in year 2016 from 273 

the CMIP6 emissions inventory; only the mass is prognosed for each aerosol type with a 274 

fixed assumed size distribution (Zhao et al., 2018). The activation of aerosols into 275 

droplets uses the parameterization of Ming et al. (2006).  276 
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AM4 uses the GFDL Finite-Volume Cubed-Sphere dynamical core (FV
3
; Harris 277 

and Lin, 2013; Putman and Lin, 2007) with a grid of approximately 100 km horizontal 278 

resolution and 33 vertical levels.  For the simulations presented here, AM4 was run in a 279 

nudged configuration (Jeuken et al., 1996) similar to that used for CAM6, with the same 280 

24 hour nudging timescale, but instead nudged to the fifth generation of the European 281 

Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis of the 282 

global climate (ERA5; Hersbach and Dee, 2016) horizontal winds, temperature, and 283 

surface pressure with a relaxation time of 24 hours. Like CAM6, the AM4 simulation 284 

starts on January 1
st
 2017. Data is output every 3 hours for radiation fields and 1 hour for 285 

other quantities. The nearest model grid points to the ship and aircraft locations were 286 

extracted from the AM4 simulations by linearly interpolating to the observation point for 287 

comparison with observations and CAM6.  288 

 289 

2.7 COSP radar simulator 290 

 291 

Within each grid column, the profiles of cloud and precipitation are converted to 292 

profiles of synthetic radar reflectivity using implementations of the Cloud Feedback 293 

Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP; Bodas-294 

Salcedo et al., 2011) in the two GCMs. CAM6 and AM4 use COSP version 2.1 and 1.4.1 295 

respectively (Bodas-Salcedo et al., 2011; Swales et al., 2018), but there is no crucial 296 

scientific difference between COSP versions. In this study, we focus on use of the 297 

CloudSat simulator within COSP. It provides synthetic radar reflectivity at a frequency of 298 

94 GHz and can be compared with the observed W-band reflectivity.  299 
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The implementation of COSP in a GCM usually makes some additional model-300 

specific assumptions that are not part of the GCM, are not necessarily well documented, 301 

and which may impact the synthetic radar reflectivity. For example, the hydrometeor size 302 

distribution assumptions can be slightly different between COSP and the parent GCM 303 

microphysics scheme. In the CAM6 COSP, all hydrometeors are described with modified 304 

gamma distributions. In the CAM6 microphysics scheme, cloud drops are described with 305 

a gamma distribution while ice, rain, and snow are assumed to have exponential 306 

distributions (gamma with m=0).  307 

The AM4 microphysics scheme has a single ice category that includes both cloud ice and 308 

snow and has an aggregate fall speed. In this sense, snow is simply falling ice. AM4 309 

treats the total ice and snow concentration as cloud ice in COSP, which is assigned to 310 

have the temperature-determined effective radii of cloud ice particles in AM4. 311 

Furthermore, the clear-sky ice flux (flux of ice outside of cloud entering the unsaturated 312 

portion of the grid box from above) is used for snow in COSP with effective radii 313 

computed internally in COSP.  Snow inside clouds is not accounted for explicitly.  The 314 

impact on the synthetic radar reflectivity of these differences in the assumptions made 315 

between COSP and the GCM microphysics scheme is discussed in Appendix B.  316 

The COSP interface varies between host models. CAM6 uses COSP’s default -317 

column generator to produce 10 homogenous sub-columns, while AM4 treats the sub-318 

grid cloud and precipitation fields from the radiation scheme as the COSP sub-columns, 319 

rather than using the default COSP sub-column generator. We observed little difference 320 

between the sub-columns. The insufficient sub-column variability in COSP’s default sub-321 
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column generator may lead to overestimated radar reflectivity and probability of 322 

precipitation compared to the satellite observations (Song et al., 2018).  323 

 324 

 325 

3. Low clouds and precipitation in CAM6 and AM4 simulations during 326 

SOCRATES  327 

 328 

In this section, we will use in-situ and remote sensing observations from SOCRATES 329 

to evaluate the macrophysical and microphysical properties of clouds and precipitation in 330 

CAM6 and AM4. SOCRATES sampling focused on low clouds with cloud top height 331 

lower than 4 km and little or no precipitation falling from any overlying clouds through 332 

the 4 km level. We select RF09 (a case of cumulus rising into stratocumulus) and RF12 333 

(a stratocumulus case) as two examples to demonstrate single-flight comparisons of 334 

observations and GCM simulations of shallow cumulus and stratocumulus regions, 335 

followed by cloud-related statistics across the whole campaign.  336 

 337 

3.1 RF09 temperature, relative humidity, cloud and precipitation comparisons 338 

Fig. 1 shows time-height plots of T, RH, in-cloud cloud water content (CWC), 339 

and precipitating particle number density (NLarge, described below) along Flight RF09 340 

(inside the black channel) overlying the corresponding fields simulated by CAM6 and 341 

AM4 respectively.  The microphysical fields are only plotted over the 0-4 km altitude 342 

range to highlight low clouds and their environment, while the thermodynamic fields are 343 
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plotted from 0-8 km altitude to encompass the ferry leg and provide synoptic-scale 344 

context.  345 

RF09 targeted an extensive deck of cold, low-level cloud in the cold sector of a 346 

mid-latitude cyclone south and east of Tasmania. Two sampling modules were completed 347 

in the cold sector regions south of 50ºS. As seen in Figs. 1a and 1e, the boundary-layer 348 

cloud tops, at a height of 2.5 km, have a cloud top temperature near -15ºC. The 349 

temperature in the two nudged GCM simulations agrees with the in-situ observations to 350 

within 1-2 C. Since temperature is a nudged field, this indicates that the nudged-351 

meteorology approach is working as hoped.  352 

Relative humidity (Fig. 1b) is important for producing clouds.  It is a more 353 

challenging test for the nudged GCM simulations, since their humidity fields are not 354 

constrained with reanalysis data. For both observations and models, the RH in this paper 355 

is computed based on liquid saturation. In RF09, the high-RH boundary layer is capped 356 

by dry, low-RH, subsiding air above 2.5 km. The free-tropospheric RH is fairly well 357 

simulated by both models. Inside the boundary layer, the observed RH is horizontally 358 

variable, and is relatively low in the ascent portion of a cloud-free sawtooth near 57ºS in 359 

the return leg of RF09. This is suggestive of shallow cumulus rising into a broken 360 

stratocumulus layer, a common cold-sector cloud type. As seen in Figs. 1b and 1c, both 361 

models capture the boundary layer depth qualitatively well except that they underestimate 362 

RH at the top of the boundary layer. The boundary-layer RH in CAM6 is comparable to 363 

observations (Fig. 1b), but the AM4 boundary layer is drier than observed (Fig. 1c). 364 

Figs. 1c and 1g show the observed and modeled in-cloud water content (CWC) 365 

during RF09. This is an even more challenging comparison for the models because it 366 
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requires the models to have both accurate cloud placement and cloud microphysics. The 367 

observed CWC is taken from the GV CDP and is plotted when its value exceeds 0.01 g 368 

m
-3

. CWC less than 0.01 g m
-3

 is masked in gray. For the GCMs, the cloud-containing 369 

grid cells are distinguished from clear-sky grid cells by having nonzero cloud water 370 

mixing ratio and the in-cloud water content is calculated by dividing grid-mean cloud 371 

water content by simulated cloud fraction. To be consistent with observations, the GCM 372 

CWC is plotted when its value exceeds 0.01 g m
-3

.  373 

To shed light on the representation of precipitation in the GCMs, we compute in-374 

cloud NLarge (Fig. 1d). NLarge is computed from 2DS particle size distributions (PSD) 375 

as the concentration of large precipitating particles with radius greater than 100 microns. 376 

The observed NLarge is compared against the CAM6 counterpart along the flight track 377 

computed in the same way as in observations based on the model PSD of fraction mean 378 

cloud and precipitation. The `fraction-mean’ cloud and precipitation are calculated by 379 

dividing grid-mean cloud and precipitation quantities by simulated cloud and 380 

precipitation fraction respectively. The CAM6 precipitation fraction is set to be the same 381 

as the cloud fraction in each cloud-containing grid cell and to the cloud fraction of the 382 

lowest cloud-containing grid cell below cloud. Because precipitation in AM4 is treated 383 

diagnostically, NLarge is not computed by AM4. 384 

 The RF09 sawtooth legs sampled a broken cloud field with intermittent CWC 385 

(Fig. 1c).  CAM6 generally underestimates its cloud water content (Fig. 1c) but 386 

overestimates NLarge (Fig. 1d). The CWC in AM4 in RF09 agrees better with 387 

observations than CAM6, but the AM4 clouds have lower cloud base heights compared 388 

to observations, a bias seen in many cases during the SOCRATES campaign. 389 



 18 

  390 

3.2 RF12 temperature, relative humidity, cloud and precipitation comparisons 391 

Fig. 2 compares observations and simulations for an extensive stratocumulus case 392 

sampled during RF12 in two modules south of 55ºS. The stratocumulus deck topped a 393 

fairly well-mixed 1500 m deep boundary layer, with a cloud top temperature around -9ºC 394 

capped by a 5ºC temperature inversion. The cloud deck was in the cold sector of a weak 395 

cyclone. Figs. 2a and 2b confirm that the temperature in the nudged models is consistent 396 

with the observations for RF12, like in RF09. Both CAM6 and AM4 clearly show low 397 

RH at the top of the boundary layer, suggesting biased low boundary layers in these 398 

GCMs. As one might expect, the CAM6 CWC and NLarge in the comparatively 399 

horizontally homogeneous stratocumulus decks of RF12 agree better with observations 400 

than these quantities in the more heterogeneous cumulus regions of RF09. However, 401 

CAM6 also tends to miss the light precipitation and spatially intermittent snow that 402 

formed in the thicker centers of mesoscale closed cells during RF12 (e.g., -58ºN and -403 

56ºN in the return flight in Fig. 2d). CAM6 and especially AM4 simulate a cloud base 404 

height that is too low compared to the approximately 1 km base observed in RF12 (Figs. 405 

2c and 2g). In AM4, the simulated clouds extend down to the ground level. 406 

 407 

3.3 Statistical all-flight comparisons of temperature, relative humidity, cloud and 408 

precipitation 409 

In order to test the accuracy of the large-scale meteorology in the GCMs, the root 410 

mean square (RMS) error was calculated between the observations and GCMs. Across all 411 

campaign flights, observed temperature and humidity along the flight track were 412 
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averaged over 50 m bins in altitude during each 2 minute time interval.  The two nudged 413 

GCMs were similarly sampled.  CAM6 and AM4 had RMS temperature errors of 1.3 K 414 

and 1.4 K, remarkably small considering the remote sampling region and large synoptic 415 

variability.  This is mostly a testament to the accuracy of the reanalysis to which the 416 

GCMs were being nudged (which match the observations within even smaller RMS 417 

errors of less than 1 K).  However, it also shows both GCMs are very good short-term 418 

weather forecast models that are able to retain this level of accuracy for at least a day (the 419 

nudging timescale). 420 

 Humidity is highly variable and was not nudged, so it is a much more challenging 421 

comparison for the models.  We use RH as a measure of humidity, since it has 422 

comparable variability across RMS errors across the whole range of sampled heights.  423 

Across all flight samples, the RMS error of RH is 23% and 22% for CAM6 and AM4 424 

respectively.  For comparison, the ERA5 and MERRA-2 reanalysis had slightly smaller 425 

RMS RH errors of 17% and 19%.  Such errors are large enough to affect the existence 426 

and placement of cloud layers, even in a GCM with perfect microphysics.  427 

Cloud placement errors reduce the value of a point-by-point comparison of GCM 428 

vs. observed cloud properties.  It is more illuminating to make a statistical comparison of 429 

mean biases in GCM vs the observed CWC at the same overall region, altitude range, and 430 

time.  We bin the observed and simulated CWC for the 15 SOCRATES flights into boxes 431 

of 500 m in altitude and 25 minutes (equivalent to 210 km at a typical flight speed of 140 432 

m s
-1

) in time along the flight track.  This binning box is chosen to be big enough to 433 

reduce sampling noise but small enough to still represent the local CWC. Boxes in which 434 

the binned average CWC < 0.01 g m
-3 

for either the models or the observations are 435 
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excluded from the statistics. Boxes with less than ten observed samples are screened out. 436 

This leaves 133 binned samples, most of which are in altitudes below 3 km.  Fig. 3 437 

presents the bin-mean and range of CWC over all time bins within each altitude band.  438 

The model and observed CWC interquartile ranges generally agree with each other 439 

between 1.5~2 km (although with large spread). CWC is clearly overestimated, especially 440 

by AM4, below 1 km, an indication that the simulated cloud base is systematically too 441 

low as in the RF09 and RF12 examples. On the other hand, in-cloud CWC for both 442 

GCMs, especially AM4, is biased low above 2.5 km compared to observations, 443 

suggesting that the GCM clouds tend to have a slightly lower cloud top height. This is 444 

consistent with the low RH bias at the top of the boundary layer seen for RF12 in Figs. 2b 445 

(CAM6) and more prominently in Fig. 2f (AM4). 446 

 447 

3.4 Low cloud occurrence 448 

Occurrence of low clouds with tops below 4 km in CAM6 and AM4 columns cannot 449 

be evaluated using the in-situ observations, since they targeted cloud layers.  Instead, it is 450 

evaluated in this section using a column cloud fraction based on combining a HSRL 451 

backscatter threshold to detect cloud above or below the aircraft and the GV CDP liquid 452 

water content to detect cloud at the aircraft level which may not extend outside the 150 m 453 

lidar dead zone, or which may attenuate the lidar beam before it reaches the cloud edges. 454 

Within a lidar sampling time of 0.5 s, low cloud is flagged if any of the 10 Hz CDP liquid 455 

water content measurements exceeds 10
-4

 kg m
-3 

below 4 km, or if the maximum HSRL 456 

backscatter below 4 km altitude exceeds a threshold of 3x10
-5

 m
-1

 sr
-1

. This backscatter 457 
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threshold effectively separates cloud echoes from those of aerosols, as documented in 458 

Appendix A.  459 

Examples of the lidar backscatter for RF09 and RF12 are shown in Figs. 4a and 4e, 460 

where cloud boundaries (i.e., cloud tops when the aircraft was above and cloud bases 461 

when below) are well captured by HSRL as seen from the strong lidar backscatter near 1 462 

to 2 km. The observed upper cloud boundaries (cloud tops) are slightly higher than those 463 

implied by the GCM cloud fraction maps.   464 

We define the observed low cloud fraction as the fraction of low cloud flags during 465 

every 10 minutes (equivalent to ~1 degree at a typical flight speed of 200 m s
-1

). We 466 

compare this with the corresponding low cloud fraction averaged over the same time 467 

periods when there is observational data in CAM6 and AM4 (e.g., Figs., 4b, c, f, and g). 468 

The low cloud fraction for each GCM is computed following that GCM’s vertical cloud 469 

overlap assumptions (maximum-random overlap for CAM6 and exponentially decaying 470 

overlap for AM2 with a length scale of 2 km (Zhao et al., 2018)). The regions outside of 471 

the HSRL view zone (i.e., regions above/below the aircraft when the HSRL pointed 472 

down/up) are masked out before computing GCM low cloud fraction (grey shading in 473 

Fig. 4).  474 

The low cloud fraction comparisons for RF09 and RF12 are shown in Figs. 4d and 475 

4h. As suggested by the lidar backscatter profiles in Fig. 4a and 4e, the observed low 476 

cloud fraction in the cumulus regions in RF09 is smaller than that in the stratocumulus 477 

regions in RF12. In both flights, CAM6 typically simulates a low cloud fraction that is 478 

too large, whereas that in AM4 is too small.  479 
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Similar low cloud fraction biases are present across the 15 SOCRATES flights. Fig. 5a 480 

shows an all-flight histogram of 10-minute average low cloud fraction. Low clouds, 481 

either alone or co-occurring with cloud layers aloft, are observed in 96% of the 10-minute 482 

intervals during SOCRATES. About half of the intervals have a low cloud fraction 483 

greater than 80%. Only ~10% of the intervals have a low cloud fraction less than 20%. In 484 

CAM6, intervals of nearly complete low cloud cover (greater than 90%) occur 60% of 485 

the time vs. ~30% of the time in AM4 and 45% in the observations. Over half of the 486 

intervals including low clouds in AM4 are characterized by a low cloud fraction smaller 487 

than 50%, about twice as frequent as CAM6 and observations.  488 

Another way to present this data is by binning the 10-minute intervals by the 489 

observed low cloud fraction, and testing how well the models replicate the low cloud 490 

fraction within each bin (Fig. 5b).  Ideally, a model would lie on the 1:1 line with no 491 

scatter about the observations in this box-whisker plot, but from our other comparisons 492 

we expect both large scatter (a large interquartile range of simulated cloud fraction for a 493 

given observed cloud fraction) and bias.  Indeed, the scatter is large, and the interquartile 494 

ranges show that in most bins, about 75% of the CAM6 samples lie above the observed 495 

cloud fraction, while about 60% of the AM4 samples lie below the observed cloud 496 

fraction. One exception for AM4 is that it produces too much cloud when the observed 497 

cloud fraction is less than 10%. This could be due to geographical misplacement of 498 

scattered cloud rather than parameterization biases given its agreement with observations 499 

for the 10-20% low cloud fraction bin. In summary, CAM6 overestimates and AM4 500 

underestimates low cloud fraction in the cold-sector low cloud regimes sampled by 501 

SOCRATES. 502 
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 503 

3.5 TOA upwelling SW and OLR  504 

Biases in CWC and low cloud fraction contributes to radiative biases in the GCMs. A 505 

conventional way to evaluate the impact of cloud on radiation is to compute cloud 506 

radiative forcing, defined as the difference of net downward radiative fluxes at TOA with 507 

and without cloud. However, since the retrieval of clear-sky radiation from satellite 508 

observations inevitably involves uncertainty, in this study we instead compare observed 509 

and simulated TOA reflected shortwave and outgoing longwave radiative fluxes  as more 510 

reliably observed proxies for cloud effects on radiation.  We recognize that they may also 511 

incorporate biases not related to cloud, e. g. in humidity or surface properties. The 512 

radiative flux estimates are matched to the same locations and times as the low cloud 513 

fraction estimates.   514 

Fig. 6 shows the TOA RSW and OLR fluxes along the flight tracks from CERES 515 

SYN (Section 2.3) and from the two models, binned by observed low cloud fraction. 516 

Consistent with the overestimated cloud fraction in CAM6, the RSW in CAM6 is biased 517 

high for all bins of observed low cloud fraction. This high bias remains significant even 518 

when the observed low cloud fraction is 90-100%, suggesting that the low clouds in 519 

CAM6 are not only too frequent, but also too bright. As a result, the average RSW in 520 

CAM6 over the entire SOCRATES field campaign is about 20% higher than observed. 521 

The overestimate of low cloud cover in CAM6 also leads to underestimated OLR in bins 522 

with 50% or less observed low cloud cover. Since the CAM6 cloud tops are at altitudes 523 

comparable to observed, although slightly low-biased, they appear not to have large 524 

cloud-top temperature biases.  Thus, when the observed and CAM6 cloud fractions are 525 
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near to 100%, the average OLR of CAM6 is similar to observed. The radiation bias of 526 

CAM6 (‘too frequent, too bright’) is consistent with the climatological cloud radiative 527 

effect shown in Gettelman et al. (2020). 528 

 In contrast, the underestimated low cloud fraction in AM4 allows for more OLR 529 

originating from the sea surface to escape to space, contributing to a sizable high OLR 530 

bias in all cloud fraction bins. Surprisingly, the AM4 TOA upwelling SW is comparable 531 

to observations in all observed cloud fraction bins. This implies the clouds are optically 532 

thicker than observed, i. e. AM4 has a ‘too few, too bright’ bias for SO low clouds, which 533 

is common in CMIP5 models (Nam et al., 2012; Engstrom et al., 2015).  534 

 535 

3.6 Microphysics in precipitating and non-precipitating low clouds 536 

We now investigate some underlying model-observation discrepancies in 537 

microphysics that may contribute to the radiation biases in models associated with 538 

Southern Ocean low clouds. 539 

We quantify the occurrence of precipitating and non-precipitating low clouds in 540 

observations and CAM6 along the flight track sorted by ambient temperature (Fig. 7a). 541 

An observed or CAM6 low cloud is classified as precipitating if NLarge (defined in 542 

Section 3.1 as the concentration of cloud particles with radius bigger than 100 m; recall 543 

also that this cannot be computed for the simpler AM4 microphysics) is greater than 1 x 544 

10
-4

 m
-3

 in observations or CAM6 simulations.
 
The occurrence is computed in cloud 545 

regions where CDP CWC exceeds 0.01 g m
-3

. Eighty-five percent of the SOCRATES 546 

samples were collected in cold clouds (at temperatures below freezing), of which only 547 

~10% were precipitating. This is partly because the GV intentionally avoided long flight 548 
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legs in drizzling supercooled clouds for safety. Repeating the analysis based on the 549 

nearest CAM6 grid cells along all 15 SOCRATES flight tracks (Fig. 7b), we find that the 550 

CAM6 clouds span a generally similar temperature with comparable precipitation 551 

occurrence, although precipitation occurrence in CAM6 clouds does not agree that well 552 

with observed clouds during individual flights (e.g., precipitation is overestimated in 553 

RF09 but underestimated in RF12 in CAM6; Figs. 1d and 2d). The imperfect match 554 

during individual flights might be because the deficient representation of the cloud 555 

intermittency in CAM6.   556 

We compared the hydrometeor size distributions observed from the CDP and 2DS 557 

averaged over the nonprecipitating and precipitating clouds with those inferred along the 558 

flight tracks from CAM6 (Fig. 8), summed over cloud, rain, ice and snow. As seen in Fig. 559 

8a, nonprecipitating clouds display a unimodal distribution with a peak around 10 m 560 

radius. This unimodal distribution is well represented in CAM6 and is dominated by 561 

liquid. CAM6 underestimates the number of cloud droplets with radii less than 20 m, 562 

which dominate the overall cloud droplet number concentration. This bias is larger for the 563 

precipitating clouds (Fig. 8b).  564 

By definition, the observed number of particles with radius > 50 m is larger for 565 

precipitating clouds, leading to a shoulder in the observed droplet size distribution seen in 566 

Fig. 8b. The CAM6 simulations have a comparable increase in rain (blue dash) at 50-300 567 

m radii and in snow (red dash) at radii exceeding 300 m, suggesting that there is 568 

slightly more snow on average in CAM6 than in observations. The model PSDs should 569 

not be expected to agree perfectly well with observations on the large-radius tail, given a 570 

simple bulk two-moment scheme in CAM6. Note that the PSD in this study is computed 571 
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from in-cloud legs defined as CWC > 0.01 g m
-3

. CAM6 is found to have more rain than 572 

observations if a less strict in-cloud threshold is used (Gettelman et al., 2020).  573 

 574 

3.7 Phase partitioning 575 

The supercooled boundary-layer clouds sampled by the GV at temperatures of -5 576 

to -25ºC were a mix of small liquid drops that dominate the cloud optical depth and 577 

(when precipitating) larger ice and snow particles. This conclusion is based on several 578 

complementary lines of evidence. 579 

We visually inspected representative images from the 2DS and the PHIPS HALO 580 

(Schnaiter, 2018), a new imaging instrument deployed on the GV for SOCRATES that is 581 

optimized to detect ice particles with radii between 20-300 m and liquid drops with radii 582 

of 60-300 m (Abdelmotaleb et al., 2016; Schnaiter et al., 2018). These images suggest 583 

that in the precipitating boundary-layer clouds sampled by the GV at temperatures of -5 584 

to -25ºC, most of the larger particles (radius > 100 m) are aspherical frozen 585 

hydrometeors.  586 

The SOCRATES 2DS data have insufficient spatial resolution to clearly 587 

discriminate the phase of small particles with radii less than 100 m. We instead used a 588 

comparison between the liquid water content inferred from the CDP and from a CSIRO 589 

(The Commonwealth Scientific and Industrial Research Organization) King hotwire 590 

probe to test for the presence of small ice particles of radius less than 25 um, the size 591 

range dominating the cloud droplet number concentration and thus optical depth.  Such 592 

particles would be detected by the CDP but the data processing algorithm would treat 593 

them as liquid water droplets, which introduces a high bias in CDP-inferred cloud water 594 
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content due to their lower density.  Small ice particles should affect the CSIRO King 595 

probe's LWC measurement rather differently.  For instance, ice might partly bounce off 596 

the hot wire causing the King probe to underestimate the cloud ice contribution to the 597 

cloud water content. Hence a comparison of the LWC inferred from the two instruments 598 

can test the presence of cloud ice.  Fig. 9 shows a two-dimensional histogram of the two 599 

LWC measurements over all SOCRATES low cloud sampling at temperatures -5 to -600 

25ºC, presented as a two-dimensional histogram.  The strong concentration of data along 601 

the 1:1 line is evidence that small particles (radius < 25 um) are predominantly 602 

supercooled liquid droplets.  603 

Mace et al., 2018 reports that the light scattering from supercooled Southern 604 

Ocean boundary layer stratocumulus clouds mostly comes from liquid droplets, based on 605 

an analysis of ship-borne lidar depolarization ratios during CAPRICORN.  Our visual 606 

inspection of plots of HSRL depolarization ratios from boundary-layer cloud tops 607 

observed during SOCRATES supports this conclusion.   608 

The hydrometeor PSDs in CAM6 (Fig. 8) are also dominated by supercooled 609 

liquid droplets at small sizes. 610 

 611 

3.8 Cloud droplet number concentration (Nd) 612 

We compare observed in-cloud Nd, computed as the summation of cloud droplets 613 

measured by the CDP when the CDP CWC > 0.01 g m
-3

, with the GCM-simulated in-614 

cloud Nd. Fig. 10 shows the RF09 and RF12 examples.  AM4 Nd is comparable to 615 

observations, but CAM6 significantly underestimates Nd.  616 



 28 

These flights are representative of SOCRATES as a whole. Fig. 11 shows 617 

interquartile range boxes of observed and GCM in-cloud Nd measured across all 15 618 

SOCRATES flights and binned similarly to the in-cloud CWC described in Section 3.1. 619 

Points where binned average Nd <1 cm
-3 

for either the models or the observations are 620 

excluded from the statistics. Fig. 11 shows that the observed Nd clusters around 25-150 621 

cm
-3

 with the highest Nd (> 100 cm
-3

) occurring mostly near 0.5-1.5 km. CAM6 shows a 622 

low bias in Nd above 500 m which amplifies with height.  AM4 simulates more high Nd 623 

outliers than observed for clouds above 2 km, and does not simulate the relatively 624 

uncommon occurrences of observed Nd lower than 40 cm
-3

. On average, however, AM4 625 

produces a mean Nd at all altitudes much closer to observations than CAM6. 626 

 CAM6’s low Nd bias could be due to insufficient CCN production or too small a 627 

fraction of aerosol activated in the model. McCoy et al., (2020b, in prep) finds that 628 

CAM6 simulates CCN concentrations fairly well during SOCRATES with no significant 629 

low bias. We find that there is no significant statistical bias in precipitation scavenging of 630 

CCN in CAM6 when all cases are considered. Atlas et al. (2020) finds CAM6 simulates 631 

too little cloud-layer turbulence in stable and neutral boundary layers, which could lead to 632 

an under activation of CCN.  However, CAM6 also underestimates Nd in unstable 633 

boundary layers for which its simulated turbulence is on average consistent with 634 

observations. This suggest that there may be multiple competing biases in the model. 635 

Disentangling these compounding influences will be necessary to understand the cause of 636 

Nd bias in CAM6 and should be the topic of future investigations. 637 

 638 
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4. Clouds and precipitation in CAM6 and AM4 simulations during the 639 

CAPRICORN2 campaign 640 

The upward-pointing 94 GHz shipborne radar deployed on the R/V Investigator 641 

during CAPRICORN2 sampled whatever clouds were overhead, including many periods 642 

of deep clouds with cloud tops above 4 km that were not targeted in SOCRATES. We use 643 

this unique radar dataset to evaluate the representation of both deep and low clouds in the 644 

GCMs.  645 

 646 

4.1 Relative humidity, cloud morphology, and TOA radiative fluxes 647 

We use the 1
-
15 February, 2018 period of the CAPRICORN2 campaign to 648 

illustrate typical model biases. Fig.12a shows a time-height section of radar reflectivity 649 

during this period. Low clouds with cloud tops below 4 km were regularly observed 650 

while deep cloud layers reaching above 6 km were also frequent. The deep clouds are 651 

often associated with significant precipitation indicated by strong reflectivity (>0 dBZ) 652 

near the surface, which also often attenuates the W-band radar echo below detectability 653 

above 6 km.   The precipitation from the thin low clouds is much weaker. As one would 654 

expect, the cloudy, precipitating regions are collocated with high relative humidity in a 655 

time-height section created from the twice-daily ship-launched radiosondes (Fig. 12b). 656 

The RH (computed based on liquid saturation) is shown in Fig. 10c and 10d for CAM6 657 

and AM4. Both models qualitatively reproduce the RH profiles for low cloud regimes 658 

sampled along the ship track. CAM6 slightly overestimates the observed RH in regions of 659 

deep cloud while AM4 substantially underestimates RH in those regions and also 660 
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simulates a shallower cloudy boundary layer than observed, as we also saw in the 661 

SOCRATES airborne data (Figs. 1b-f, 2b-f).  662 

Fig. 13 compares TOA RSW (a) and OLR (b) from CERES SYN observations 663 

with the two models for the same period during CAPRICORN2. The deep clouds in 664 

CAM6 tend to reflect more shortwave radiation (are ’brighter’) than observed, leading to 665 

a 10% high bias in the mean reflected SW over the whole period. The CAM6 OLR has a 666 

time-mean comparable to the observations but has a low bias in the deep cloud regions 667 

(e.g., Feb. 1-3, 11). In AM4 the RSW is comparable to CERES with intermittent high 668 

biases, while the OLR is typically slightly high. Overall, these biases are similar to those 669 

discussed in Section 3.3 for low clouds observed in SOCRATES.  They imply that deep 670 

clouds, like low clouds, are in general too bright in both CAM6 and AM4, and are too 671 

frequent in CAM6 but too broken in AM4.  672 

 673 

4.2 Comparison of observed and simulated radar reflectivities 674 
 675 
Fig. 14 shows reflectivities from the CAM6 and AM4 COSP simulators for the 676 

CAPRICORN2 campaign. For this study, CAM6 COSP provided reflectivity with and 677 

without hydrometeor and gas attenuation as viewed from the ground (Figs. 14a and 14b), 678 

while AM4 COSP only output attenuated reflectivity as viewed from space (Fig. 14c). As 679 

seen by comparing Figs. 14a and 14b, the inclusion of attenuation can reduce the 680 

reflectivity by several dB for deep precipitating clouds, but it has no significant impact on 681 

cloud morphology and low cloud reflectivity. Since AM4 COSP reflectivity is 682 

significantly weaker than that of CAM6 COSP (Fig. 14c), the hydrometeor attenuation is 683 

of only minor importance. As such, we expect the space-based attenuated reflectivity of 684 
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AM4 COSP to be qualitatively comparable to its ground-based counterpart. In the rest of 685 

the study, unless otherwise mentioned, we will compare attenuated CAM6 and AM4 686 

COSP reflectivity with observations.  687 

CAM6 COSP reflectivity (Fig. 14b) agrees fairly well with the ship-observed 688 

reflectivity (Figs. 12a), but has longer and less interrupted periods of deep cloud 689 

occurrence (e.g., Feb. 1-3; Feb. 11-13). The AM4 COSP reflectivity is significantly too 690 

weak in the deep clouds, indicating underestimation of snow (Fig. 14c), for reasons to be 691 

discussed in Section 4.3. An abrupt change in reflectivity occurs at the freezing level at 1-692 

2 km, below which the AM4 COSP reflectivity matches the observations better.      693 

 694 

 695 

      4.3 Low and deep clouds  696 

 For a quantitative statistical comparison of observed and modeled reflectivity, we 697 

construct Contoured Frequency by Altitude Diagrams (CFADs, Yuter and Houze, 1995) 698 

of observed and COSP reflectivity along the entire ship track during the CAPRICORN2 699 

campaign (Fig. 15). The joint histograms are created for every 2 hours with a 100 m 700 

vertical resolution and 2 dBZ increments from -40 dBZ to 10 dBZ in the horizontal, then 701 

conditionally averaged over the desired cloud regimes.  Unlike in some studies of deep 702 

convection (e.g., Houze et al., 2007), our CFADs are not normalized to exclude regions 703 

with no detectable reflectivity.   704 

The CFAD averaged over all CAPRICORN2 observations (Fig. 15a) shows a 705 

shadowy boomerang shape with a horizontal arm due to low clouds below 4 km and a 706 

diagonal arm due to deep convective clouds that extend beyond 6 km. The CAM6 COSP 707 
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CFAD (Fig. 15b) displays a shape analogous to observations but with much higher 708 

occurrence of reflectivities exceeding -10 dBZ. The upper arm of the AM4 COSP 709 

reflectivity CFAD is strongly shifted by ~25 dBZ toward reflectivities lower than 710 

observed (Fig. 15c).  711 

Fig. 15 also shows separate CFADs for low vs.  deep cloud columns, which are 712 

defined as having a maximum reflectivity above 4 km less (vs. greater) than -40 dBZ. 713 

The observed low-cloud CFAD (Fig. 15d) has a mode between -10 and 0 dBZ between 0-714 

1 km in altitude associated with lightly precipitating cloud, with a lower tail extending to 715 

-40 dBZ contributed by low-level non-precipitating clouds.  The CAM6 low-cloud CFAD 716 

(Fig. 15e) shows a comparable histogram of reflectivities, but with the maximum 717 

occurrence frequency at a slightly lower reflectivity near -10 dBZ and no tail of 718 

reflectivities below -20 dBZ and 1 km altitude. The AM4 low-cloud CFAD (Fig. 15f) is 719 

fairly similar to observations below 1 km altitude but underestimates reflectivities above 720 

1 km altitude. 721 

The observed deep-cloud CFAD (Fig. 15g) constitutes the broader upper arm of 722 

the boomerang, with typical reflectivities clustering around 0 dBZ below 4 km and 723 

decreasing to ~ -20 dBZ at ~6 km (Fig. 15g). The CAM6 deep clouds (Fig. 15h) cluster at 724 

a comparable reflectivity range but occur more frequently than observed. Larger 725 

reflectivities are maintained at a much higher altitude in CAM6 as well. The AM4 deep 726 

clouds (Fig. 15i) have a -15 dBZ low bias in reflectivity except near the surface, where 727 

they are comparable in frequency and magnitude to observations.  728 

 729 

4.4 Hydrometer microphysics inferred from COSP reflectivity decomposition 730 
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4.4.1  CAM6 731 

To better understand the contributions of different hydrometeors in CAM6 to 732 

reflectivity, we partition the non-attenuated COSP synthetic reflectivity into contributions 733 

from cloud liquid, cloud ice, rain and snow. Here we only consider large-scale 734 

precipitation, since convective precipitation rarely occurs in CAM6 along the ship track. 735 

The synthetic reflectivities of liquid, ice and rain are calculated from their respective grid 736 

mean number concentrations and effective radii following the formulas in COSP. The 737 

synthetic snow reflectivity is computed as the residual of the total nonattenuated COSP 738 

reflectivity and the sum of synthetic reflectivities from the other three hydrometers.  AM4 739 

only outputs an attenuated reflectivity which cannot be exactly partitioned in this way. 740 

We decompose the CAPRICORN2 CAM6 CFADs into cloud liquid, cloud ice, 741 

rain, and snow for all clouds (Fig. 16 a-d), low clouds (Fig. 16 e-h), and deep clouds (Fig. 742 

16 i-l). In all cases, stronger reflectivities are dominated by snow.  CAM6 also simulates 743 

a substantial amount of cloud liquid with reflectivity below -20 dBZ and drizzle with 744 

reflectivity below -20 dBZ at altitudes below 2 km (Fig. 16a, e, i). Above 2 km, cloud ice 745 

becomes more prevalent in CAM6 but has low reflectivity below -10 dBZ. However, 746 

such low reflectivity is missing in the non-partitioned reflectivity (Figs. 15b, e, and h) 747 

suggesting that snow is more frequent in CAM6 than in the observations. The missing tail 748 

of low reflectivities might be also partly due to the insufficient sub-grid variability of 749 

cloud and precipitation in CAM6 COSP such that almost all simulated clouds have 750 

precipitation dominating their reflectivity.  751 

The snow mass or size in CAM6 low clouds appears underestimated since its 752 

maximum frequency (Fig. 16h) is located at a lower reflectivity than the observations 753 
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(Fig. 15d). This indicates that snow in CAM6 low clouds is more homogeneous but less 754 

intense compared to the observations. For deep clouds, the frequency of occurrence of 755 

snow (Fig. 16l) is much higher than observations, while the grid average reflectivity is 756 

similar to observed at ~ 0dBZ. This implies that the snow in CAM6 deep clouds is 757 

similarly homogeneous and moderate. Note that the high snow occurrence could partially 758 

be attributed to the insufficient sub-grid variability of cloud and precipitation in CAM6 759 

COSP as mentioned earlier.  760 

 761 

4.4.2  AM4 762 

To better understand the representation of hydrometeors in AM4, we compare 763 

time-height sections of grid mean liquid water and ice mixing ratios and precipitation 764 

fluxes from CAM6 and AM4 (Fig. 17). Normally AM4 shows substentially more cloud 765 

ice compared to CAM6 (Fig. 17f compared to b). The reason is that its microphysics 766 

scheme does not distinguish snow from ice and the cloud ice in AM4 is the sum of ice 767 

and snow. The AM4 downward ice flux is vertically continuous with the rain flux (Fig. 768 

17 g to c), confirming that above the freezing level the AM4 precipitation from deep and 769 

shallow clouds is in the form of sedimenting cloud ice particles. The snow flux 770 

approximated from the clear-sky ice flux as used in AM4 COSP (Fig. 17h) is less 771 

frequent and intense compared to the snow flux in CAM6 (Fig. 17d). AM4 has less 772 

supercooled liquid water above 2 km than CAM6 (Fig. 17 e to a), but our CAPRICORN2 773 

and SOCRATES observational analyses cannot as yet clearly test which model is closer 774 

to the truth. 775 
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To evaluate the snow intensity in AM4, we compare the hydrometeor PSDs in 776 

AM4 COSP with CAM6 COSP (Fig. 18).  Here the PSDs are computed from area-777 

weighted mean cloud liquid, cloud ice, rain and snow. AM4 has greater ice with much 778 

less rain and snow. Compared with CAM6 COSP snow PSDs, AM4 COSP significantly 779 

underestimates large snow particles with radius greater than 100 microns, leading to 780 

lower reflectivities. The AM4 COSP snow PSD is not taken from the AM4 microphysics, 781 

which would give no separate snow contribution to the PSD and worsen the AM4 782 

underestimate of reflectivity. 783 

 784 

5. Summary  785 

Observations of cloud properties from sophisticated in-situ and ship-based remote and 786 

in-situ sensors over the Southern Ocean during airborne (SOCRATES) and ship-based 787 

(CAPRICORN2) measurement campaigns during Jan.-Feb. 2018 are used to evaluate two 788 

state of the art atmospheric general circulation models (GCMs): CAM6 and AM4. These 789 

GCMs were nudged to reanalysis wind and temperature fields to minimize differences 790 

between modeled and observed synoptic conditions.  791 

These measurements, together with collocated CERES TOA radiative flux estimates, 792 

provide a valuable dataset for evaluating simulations of cloud and precipitation in CAM6 793 

and AM4 and to understand their radiation biases The major conclusions and implications 794 

are:  795 

1. The nudged-meteorology simulation method facilitates detailed comparison of 796 

measured and simulated cloud properties from a limited set of observations in a 797 

synoptically variable environment. 798 
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2. Both GCMs correctly simulate that Southern Ocean supercooled boundary-layer  799 

clouds in that they reproduce observed compositions (i.e. they are mostly 800 

composed of small cloud droplets and larger precipitating ice particles).  801 

3. CAM6 has too much cloud and that cloud is too bright (“too frequent, too 802 

bright”). 803 

4. Cloud droplet number concentration in CAM6 is typically too low. 804 

5. Precipitation in CAM6 is too frequent and too homogeneous. 805 

6. AM4 has too little cloud occurrence, but the clouds are too bright (“too few, too 806 

bright”). 807 

7. AM4 clouds include too much small ice and too little snow. 808 

 809 

The low bias in cloud droplet number concentration in CAM6 is consistent with 810 

discrepancies seen between other state of the art models and satellite observations of 811 

Southern Ocean cloud droplet number concentrations in summertime low clouds (McCoy 812 

et al. 2020a in review, Revell et al. 2019). This low bias is a widespread issue remaining 813 

in GCMs that presumably contributes to TOA SW bias for low-lying liquid clouds over 814 

the Southern Ocean. 815 

 Both CAM6 COSP and AM4 COSP make assumptions about microphysics, size 816 

distributions, and horizontal homogeneity that are not fully consistent with their host 817 

GCM. Ideally such assumptions should be minimized, but at a minimum they must be 818 

kept in mind when comparing cloud radar data with COSP output.  CAM6 COSP seems 819 

to simulate too large an area fraction of snow.  AM4 simulates snow as a tail of the cloud 820 

ice distribution, while COSP expects a separate snow category.  With or without COSP, 821 
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this results in AM4 simulating snow crystals that are too small and have far too little 822 

radar reflectivity.    823 

 The biggest challenge is still ahead – how to use the insights from this 824 

comprehensive analysis to improve the participating GCMs and their COSP simulators.  825 

We hope that the approach presented here will prove beneficial in testing other GCMs 826 

and developing improvements for future GCM versions. 827 

 828 

 829 

 830 

Appendix A: HSRL backscatter coefficient threshold in determining cloud 831 

occurrence 832 

HSRL obtains the lidar return signal with high spectral resolution (<75 MHz laser 833 

bandwidth), which enables the separation of aerosol and cloud returns from molecular 834 

returns. Here we further separate cloud from aerosol returns by use of calibrated HSRL 835 

aerosol and cloud backscatter coefficient.  836 

 837 

Examining the probability density function of HSRL cloud and aerosol 838 

backscatter coefficient for all 15 flights during SOCRATES (Fig. A1), we find a tri-839 

modal distribution with three peaks locating near 10
-7

, 10
-6

, and 10
-3

 m
-1

sr
-1

 840 

respectively. Through inspection of HSRL lidar backscatter profiles (e.g., Figs. 4a 841 

and 4b), we interpret the two left modes as being contributed by the aerosols within 842 

and outside of the boundary layer, which are associated with lower backscatter 843 

coefficient than the rightmost cloud mode. We determine 3x10
-5

 m
-1

sr
-1 

as a HSRL 844 
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backscatter coefficient threshold separating the cloud mode from the two aerosol 845 

modes (the blue line in Fig. A1). This threshold was determined by a sensitivity test 846 

where we compare the HCR and HSRL cloud detection using different HSRL 847 

backscatter thresholds ranging from 10
-5

 to 10
-4

 m
-1

sr
-1

. We find that the frequency of 848 

cloud occurrence as detected by HSRL is not sensitive to the threshold, but reduces 849 

quickly once the threshold increases beyond 3x10
-5

 m
-1

sr
-1

.  850 

 851 

Appendix B: Droplet size distribution in CAM6 microphysics scheme and CAM6 852 

COSP  853 

        854 

Use of CFADs as an observational constraint on GCM snowfall rate is complicated 855 

because the hydrometeor size distributions assumed in COSP do not match the internal 856 

distributions within the GCM microphysics. Here we compare CAM6 and CAM6 COSP 857 

DSDs for low clouds during CAPRICORN2 based on their respective hydrometeor size 858 

distribution assumptions described in Section 2.7 (Fig. 18). The hydrometeor PSDs are 859 

computed from their fraction mean masses and effective radii. Here we compare CAM6 860 

microphysics and CAM6 COSP here, since AM4 COSP snow is not taken from the AM4 861 

microphysics.  862 

 863 

Rain and snow DSDs are represented well in CAM6 COSP. COSP slightly 864 

underestimates cloud liquid and overestimates ice particles, which leads to an 865 

underestimation (overestimation) in liquid (ice) reflectivities. However, this bias is not 866 

expected to significantly alter the net synthetic reflectivities in the frequently 867 
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precipitating CAM6 mixed–phased low clouds during CAPRICORN2 where snow 868 

dominates the reflectivity. A discrepancy is found for snow DSDs between CAM6 and 869 

CAM6 COSP, where CAM6 COSP has a greater concentration of small snowflakes (Fig. 870 

18d). We note that this discrepancy is caused by the inconsistency in snow densities 871 

assumed in CAM6 and CAM6 COSP.  CAM6 COSP assumes a snow density of 100 872 

kg/m
3
, but the effective radius used by CAM6 COSP is computed in CAM6 by assuming 873 

a snow density of 250 kg/m
3
. The bigger snow density leads to a smaller effective radius, 874 

and therefore more small snowflakes and less big ones. Such discrepancy vanishes when 875 

the snow effective radius input into COSP is computed using a snow density of 100 876 

kg/m
3 
(not shown). The density inconsistency barely affects the large particle number and 877 

has little impact on reflectivity.   878 

 879 

It is reasonable to assume that the snow size distributions during CAPRICORN2 are 880 

similar to that during SOCRATES. Comparing Figs. 8 and 18 suggests that the mean 881 

snow PSD in CAM6 including all cloud types in SOCRATES is on average qualitatively 882 

consistent with the mean SOCRATES-observed DSD for precipitating low clouds, 883 

although the frequency of occurrence of snow is much higher. 884 
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 52 

Fig. 1. SOCRATES flight RF09 observed (a) ambient temperature, (b) relative humidity, 1203 

(c) liquid cloud water content from CDP, and (d) large particle number density NLarge (a 1204 

precipitation indicator described in the text), shown as shading within black channels, 1205 

overlying the corresponding CAM6 model output. (e)-(g): same as (a)-(c) but overlying 1206 

profiles in AM4. NLarge cannot be computed from AM4 outputs. Gray shading denotes 1207 

data that falls below the trusted value range. Missing data is shown either as gaps in the 1208 

observation channel or in white. 1209 

 1210 

 1211 

 1212 

Fig. 2. Same as Fig. 1 but for flight RF12.  1213 
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  1214 

Fig. 3. Inter-quartile range boxes of observed and GCM in-cloud water content at 1215 

different heights below 3 km for 15 flights during the SOCRATES campaign. Data is 1216 

binned into boxes of 500 m in altitude and 25 minutes in time (dots) before range boxes 1217 

are calculated. The orange bar inside the box indicates a median value for each bin and 1218 

the whiskers indicate a range of 5-95%.  1219 
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 1220 

Fig. 4. (a) HSRL lidar backscatter coefficient, (b) CAM6 cloud fraction, (c) AM4 cloud 1221 

fraction, and (d) ) cloud occurrence below 4 km from observations, in CAM6, and AM4 1222 

for SOCRATES flight RF09. Red dashed lines indicate the position of the GV aircraft. 1223 

Gray shading indicates the area of no observations. HSRL backscatter within the dead 1224 

zone extending 150 m from the aircraft is masked white. (e)-(h), same as (a)-(d) but for 1225 

RF12.  1226 
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 1227 

Fig. 5. (a) Frequency of occurrence of low clouds (below 4 km) from observations 1228 

(black), CAM6 (red), and AM4 (green), and (b) inter-quartile range boxes of CAM6 and 1229 

AM4 low cloud occurrence binned to 0.1 of observed low cloud fraction during 1230 

SOCRATES. The orange bar inside each box indicates the bin-median.  1231 
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 1232 

Fig. 6. Inter-quartile range boxes of observation matched CERES SYN (black), CAM6 1233 

(red), and AM4 (green) TOA (a) RSW scaled to insolation at solar noon and (b) OLR, 1234 

averaged over bins of observed low cloud occurrence during SOCRATES. The orange 1235 

bar inside the box indicates a bin-median.  1236 

 1237 



 57 

Fig. 7. Stacked histogram of occurrence frequency of (a) observed, and (b) CAM6 1238 

nonprecipitating and precipitating low clouds along the SOCRATES flight tracks, sorted 1239 

by ambient temperature.  1240 

 1241 

 1242 

Fig. 8. Particle size distributions averaged across SOCRATES for CDP and 2DS 1243 

observations (black lines) and CAM6 (colored lines) in (a) nonprecipitating low clouds, 1244 

and (b) precipitating low clouds.  1245 
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 1246 

Fig. 9 2D histogram of condensed water content for cloud droplet probe and CSIRO 1247 

King Probe for low clouds at temperature between -5 ºC and -25ºC.  1248 

 1249 
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Fig. 10 In-cloud CDP-derived droplet number concentration for SOCRATES flight RF09 1250 

and RF12 (shades inside black channels) overlying the corresponding variable profiles in 1251 

CAM6 and AM4 as in Fig . 1 and 2.  1252 

   1253 

Fig. 11 Inter-quartile range boxes of observed and modeled in-cloud droplet number 1254 

concentration binned into boxes of 500 m in altitude and 25 minutes in time (dots) before 1255 

range boxes are calculated (as in Fig. 3). All in-cloud data (CWC>0.01 g m
-3

) up to 3 km 1256 

across all 15 SOCRATES flights is included in the bin mean calculation. Only average 1257 

Nd ≥1 cm
-3

 is used in calculating the range boxes. The orange bar inside the box indicates 1258 

a bin-median and the whiskers indicate the 5-95% range.  1259 
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 1260 

Fig. 12 (a) Ship-based upward-pointing W-band radar reflectivity, and relative humidity 1261 

profiles from (b) radiosondes, (c) CAM6, and (d) AM4 during the 1-15 February 2018 1262 

period of CAPRICORN2. 1263 

 1264 



 61 

Fig. 13 TOA (a) RSW and (b) OLR from CERES SYN observations (black), CAM6 1265 

(red), and AM4 (green) during the 1-15 February 2018 period of the CAPRICORN2 1266 

campaign.  1267 

 1268 

Fig. 14 (a) CAM6 COSP unattenuated reflectivity, (b) CAM6 COSP attenuated 1269 

reflectivity as viewed from the ground, and (c) AM4 attenuated reflectivity as viewed 1270 

from space, during the 1-15 February 2018 period of CAPRICORN2.  1271 
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 1272 

Fig. 15 Contoured frequency by altitude diagrams (CFADs; see text for details) 1273 

encompassing the entire CAPRICORN2 campaign of (a) W band radar reflectivity 1274 

observations, (b) CAM6 COSP attenuated reflectivity as viewed from the ground, (c) 1275 

AM4 COSP attenuated reflectivity as viewed from space. (d)-(f), same as (a)-(c) but for 1276 

low cloud columns (maximum reflectivity above 4 km ≤ -40 dBZ). (g)-(i), same as (a)-(c) 1277 

but for deep cloud columns (maximum reflectivity above 4 km ≥ -40 dBZ).  1278 
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 1279 

 1280 

Fig. 16 CFAD for the entire CAPRICORN2 campaign of CAM6 COSP unattenuated 1281 

reflectivity of (a) liquid, (b) ice, (c) rain, and (d) snow. (e)-(h), same as (a)-(d) but for low 1282 

cloud columns. (i)-(l), same as (a)-(d) but for deep cloud columns.  1283 

 1284 
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Fig. 17 (a) CAM6 liquid water mixing ratio, (b) CAM6 ice mixing ratio, (c) CAM6 rain 1285 

flux, (d) CAM6 snow flux, (e) AM4 liquid water mixing ratio, (f) AM4 ice mixing ratio, 1286 

(g) AM4 rain flux, and (h) AM4 snow flux during the 1-15 February 2018 period of 1287 

CAPRICORN2.  1288 

 1289 

Fig. 18 Particle size distributions for low clouds in CAM6, CAM6 COSP, and AM4 1290 

COSP during CAPRICORN campaign.  1291 
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 1292 

Fig. A1 Probability density function of HSRL backscatter coefficient for 15 flights during 1293 

SOCRATES 1294 

 1295 

 1296 


