Low-temperature thermochronology of the Izu collision zone, central Japan:
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DroCesses

Key points 2. T-chron analyses & results

- Low-temperature thermochronology in an active arc-arc collision zone Rapid cooling episodes in the last few Myr were identified inside
- Rapid cooling/exhumation events coeval with collision event and plate motion change the collision zone, i.e., in Minobu Mts. (SFM17-K03) and Kanto

. . . : Mts. (K11, K12.5, K15, K18). In contrast, samples K24 and
- Mountain formation controlled by collision events and plate motions Sori06 outside the collision zone yielded gradual and constant

cooling in the last few 10 Myr.

Table 2: Summary of apatite fission-track data.

Age parameters Length parameters

1. Introduction & setting
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2010). We performed low-T thermochronometries to reveal the mountain formation o ey 2008 B esxe 0

processes and their relations to the collision evetns. Apatite FT and U-Th/He methods were e
performed to reconstruct the exhuamation histories at the uppermost crust, whereas zircon

U-Pb method was used to determine the crystallization ages of the plutons (Table 1).
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Table 1: Sample list and dating methods applied.

Location (WGS84) Dating method
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 Rejected data
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Figure 3: Charts of low-temperature
thermochronologic data. (a) AHe grain
age vs. eU. The error bars denote a range
of + 20. Data marked by crosses and
orange error bars are outliers identified by
IsoplotR (Vermeesch, 2018), which were
excluded from the weighted mean
calculation. The red lines indicate the
range of the weighted mean AHe ages
+95% CI. n: number of accepted grains
per total number of dated grains, MSWD:
mean square of weighted deviates value
for age homogeneity, p(x?): 95% of x?
distribution with one degree of freedom .
Figure 1: Index maps of study area. (a) Tectonic map in and around the Fossa Magna region. (b) Geologic map of the South Fossa (b) AFT length histograms. The lengths
Magna region (simplified after Wakita et al., 2009). The sampling localities in this study are indicated by the double squares, and those in are not projected onto the crystallographic e ] | ] 7 sE
previous studies are marked by the double circles (see Sueoka and Tagami, 2019 and references therein); the colors of the inner and c-axis. n: number of measured FTs, L: L f ST (ains4ss)

outer circles/squares denote the AHe and AFT ages, respectively. The crustal blocks of the Izu-Bonin Arc are designated by mean FT length +1 standard deviation. (c) . T Tk
abbreviations, with the approximate age of the collision event in light blue. KSG: Kushigatayama Block, MSK: Misaka Block, TNZ: Thermal history inversion modeling SiD < 020
Tanzawa Block, 1ZU: Izu Block, Sd.: sediments or sedimentary rocks, Vic.: volcanic rocks, PIt.: plutonic rocks, Acc.: accretionary results. The inverse calculations were )
(2019). 2012) based on the AFT and AHe data. e B par e S e A i B
eU [ppm] AFT Length [um] Time [Ma]
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complexes. *Committee for Catalog of Quaternary VVolcanoes in Japan (1999), **Nakata and Imaizumi (2002). ***Sueoka and Tagami performed using QTQt v. 5.8.0 (Gallagher, J

3 Tectonic/geologic implica tions 3-2. Tectonic histories of the Izu collision zone (synthesis)

. . . Middle-late Miocene: collisions of KSG and MSK blocks,; northward warping of the Izu collision
3-1. Uplitt/denudation pattern of the Kanto Mountains zone (Kano, 2002); clockwise rotation of Kanto Mts. (Takahashi & Saito, 1997).

Timing of cooling gets younger to the center in the Kanto Early Pliocene: collision of TNZ block; domal uplift of Kanto Mts. (this study)
Mts (Fig. 3). This can be explained by assuming domal uplift

rather than pop-up uplift (Fig. 4a). Domal uplift results in
greater and later exhumation in the central part of the
mountain, in contrast to pop-up uplift (Fig. 4b).

a) Pop-up uplift ] b) domal uplift

Late Pliocene: motional change of PHS plate from N to NW; initiation of E-W compression in the
Japanese Islands (Takahashi, 2006); southward migration of the plate boundary (Hirata+2010),
uplift of N-Akaishi Range by faulting of ISTL (Sueoka+2017); uplift of Minobu Mts. (this study)

Quaternary: collision of [ZU block; uplift of S-Akaishi Range?? (Sueoka+2017)
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Horizontal deformation predominated during the earlier stage of the arc-arc collision, but

Py vertical movements developed at a later stage. This might indicate that the horizontal

~ P shortening and thickening of the crust and the resulting buoyancy play an important role in
the vertical movements in the arc-arc collision zone.
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Figure 4: Modeled exhumation histories in two types of mountains. The temporal changes [ViSa kR N Y FOE)
of topography and total amount of denudation are computed using two types of uplift { TN ) i T
patterns and the 2D mathematical model of slope development by Hirano (1972), which is | F
based on the convection-diffusion equation (see also Sueoka et al., 2012). N j Y . j a >
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and b are positive constants known as subduing coefficient and recessional coefficient, gm)
respectively. Note that the parameters are normalized. The lower plots show time-depth
curves, i.e., exhumation histories, of rocks exposed at the surface att = 1.0. The plots are Figure 5: Tectonic history of South Fossa Magna region (base map modified from Taira et al. (1998)). The red (light gray) lines denote active
obtained at x = 8, 12, and 15, as shown by the inverted triangles in the (inactive) plate boundaries and tectonic lines. The dark brown areas are Neogene volcanic rocks (accreted [zu-Bonin Arc rocks), indicating an
distance-denudation plots. approximate range of the crustal blocks of the Izu-Bonin Arc. The green areas represent uplifted or deformed mountains.
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