Declaration
Conflict of interest: The author declares that there is no conflict of interest.
Consent to participate and for publication : Not applicable
Research involving human and animal rights: Human and animal experiment were not involved in the study.
Funding: Not applicable.
Reference
Abate-Shen, C., Shen, M.M., 2002. Mouse models of prostate carcinogenesis. Trends Genet. 18. https://doi.org/10.1016/S0168-9525(02)02683-5
Andreotti, P.E., Hartmann, D.M., Linder, D., Harel, G., Gleiberman, I., Caruso, P.A., Ricks, S.H., Cree, I.A., Kurbacher, C.M., Untch, M., Sartori, C., Bruckner, H.W., 1995. Chemosensitivity Testing of Human Tumors Using a Microplate Adenosine Triphosphate Luminescence Assay: Clinical Correlation for Cisplatin Resistance of Ovarian Carcinoma. Cancer Res. 55, 5276–5282.
Ansar Ahmed, S., Gogal, R.M., Walsh, J.E., 1994. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J. Immunol. Methods 170, 211–224. https://doi.org/10.1016/0022-1759(94)90396-4
Aslantürk, Ö., Çelik, T., Karabey, B., Karabey, F., 2017. Active Phytochemical Detecting, Antioxidant, Cytotoxic, Apoptotic Activities of Ethyl Acetate and Methanol Extracts of Galium aparine L. Br. J. Pharm. Res. 15, 1–16. https://doi.org/10.9734/bjpr/2017/32762
Ave, F., York, N., 1964. Y. 10003, 1964. 1, 10003.
Bahramsoltani, M., Plendl, J., Janczyk, P., Custodis, P., Kaessmeyer, S., 2009. Quantitation of angiogenesis and antiangiogenesis in vivo, ex vivo and in vitro - An overview. ALTEX 26, 95–107. https://doi.org/10.14573/altex.2009.2.95
Bayless, K.J., Davis, G.E., 2003. Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem. Biophys. Res. Commun. 312, 903–913. https://doi.org/10.1016/j.bbrc.2003.11.017
Berg, K., Zhai, L., Chen, M., Kharazmi, A., Owen, T.C., 1994. The use of a water-soluble formazan complex to quantitate the cell number and mitochondrial function of Leishmania major promastigotes. Parasitol. Res. 80, 235–239. https://doi.org/10.1007/BF00932680
Brigelius-Flohé, R., Flohé, L., 2020. Regulatory Phenomena in the Glutathione Peroxidase Superfamily. Antioxidants Redox Signal. 33, 498–516. https://doi.org/10.1089/ars.2019.7905
Carmeliet, P., 2005. Angiogenesis in life, disease and medicine. Nature 438, 932–936. https://doi.org/10.1038/nature04478
Davis, G.E., Senger, D.R., 2005. Endothelial extracellular matrix: Biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97, 1093–1107. https://doi.org/10.1161/01.RES.0000191547.64391.e3
Deroanne, C.F., Colige, A.C., Nusgens, B. V., Lapiere, C.M., 1996. Modulation of expression and assembly of vinculin during in vitro fibrillar collagen-induced angiogenesis and its reversal. Exp. Cell Res. 224, 215–223. https://doi.org/10.1006/excr.1996.0131
DeVita, V.T., Chu, E., 2008. A history of cancer chemotherapy. Cancer Res. 68, 8643–8653. https://doi.org/10.1158/0008-5472.CAN-07-6611
Fahim, F.A., Esmat, A.Y., Mady, E.A., Ibrahim, E.K., 2003. Antitumor activities of iodoacetate and dimethylsulphoxide against solid Ehrlich carcinoma growth in mice. Biol. Res. 36, 253–262. https://doi.org/10.4067/S0716-97602003000200015
Fargiano, A.A., Desai, K. V., Green, J.E., 2003. Interrogating mouse mammary cancer models: Insights from gene expression profiling. J. Mammary Gland Biol. Neoplasia 8, 321–334. https://doi.org/10.1023/B:JOMG.0000010032.05234.6f
Feoktistova, M., Geserick, P., Kellert, B., Dimitrova, D.P., Langlais, C., Hupe, M., Cain, K., MacFarlane, M., Häcker, G., Leverkus, M., 2011. CIAPs Block Ripoptosome Formation, a RIP1/Caspase-8 Containing Intracellular Cell Death Complex Differentially Regulated by cFLIP Isoforms. Mol. Cell 43, 449–463. https://doi.org/10.1016/j.molcel.2011.06.011
Feoktistova, M., Geserick, P., Leverkus, M., 2016. Crystal violet assay for determining viability of cultured cells. Cold Spring Harb. Protoc. 2016, 343–346. https://doi.org/10.1101/pdb.prot087379
Fidler, I.J., 1986. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev. 5, 29–49. https://doi.org/10.1007/BF00049529
Fischer, K.R., Durrans, A., Lee, S., Sheng, J., Li, F., Wong, S.T.C., Choi, H., El Rayes, T., Ryu, S., Troeger, J., Schwabe, R.F., Vahdat, L.T., Altorki, N.K., Mittal, V., Gao, D., 2015. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476. https://doi.org/10.1038/nature15748
Folkman, J., 2007. Angiogenesis: An organizing principle for drug discovery? Nat. Rev. Drug Discov. 6, 273–286. https://doi.org/10.1038/nrd2115
Fotakis, G., Timbrell, J.A., 2006. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 160, 171–177. https://doi.org/10.1016/j.toxlet.2005.07.001
Friess, T., Scheuer, W., Hasmann, M., 2005. Combination treatment with erlotinib and pertuzumab against human tumor xenografts is superior to monotherapy. Clin. Cancer Res. 11, 5300–5309. https://doi.org/10.1158/1078-0432.CCR-04-2642
Gali-muhtasib, H.U., Yamout, S.Z., Sidani, M.M., Gali-muhtasib, H.U., Yamout, S.Z., Sidani, M.M., 2009. Tannins Protect Against Skin Tumor Promotion Induced by Ultraviolet-B Radiation in Hairless Mice Tannins Protect Against Skin Tumor Promotion Induced by Ultraviolet-B Radiation in Hairless Mice 37–41.
Geserick, P., Hupe, M., Moulin, M., Wong, W.W.L., Feoktistova, M., Kellert, B., Gollnick, H., Silke, J., Leverkus, M., 2009. Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J. Cell Biol. 187, 1037–1054. https://doi.org/10.1083/jcb.200904158
Ghajar, C.M., Chen, X., Harris, J.W., Suresh, V., Hughes, C.C.W., Jeon, N.L., Putnam, A.J., George, S.C., 2008. The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys. J. 94, 1930–1941. https://doi.org/10.1529/biophysj.107.120774
Gomes, Antony, Bhattacharjee, P., Mishra, R., Biswas, A.K., Dasgupta, S.C., Giri, B., Debnath, A., Gupta, S. Das, Das, T., Gomes, Aparna, 2010. Anticancer potential of animal venoms and toxins. Indian J. Exp. Biol. 48, 93–103.
Homburger, F., Russfield, A.B., Baker, J.R., Tregier, A., 1962. Experimental Chemotherapy in Chemically Induced Mouse Tumors and Their Transplants *.
Hong, J.T., Kim, E.J., Ahn, K.S., Jung, K.M., Yun, Y.P., Park, Y.K., Lee, S.H., 2001. Inhibitory Effect of Glycolic Acid on Ultraviolet-Induced Skin Tumorigenesis in SKH-1 Hairless Mice and Its Mechanism of Action 160, 152–160.
Hursting, S.D., Nunez, N.P., Patel, A.C., Perkins, S.N., Lubet, R.A., Barrett, J.C., 2005. The utility of genetically altered mouse models for nutrition and cancer chemoprevention research. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 576, 80–92. https://doi.org/10.1016/j.mrfmmm.2004.11.019
Iwahana, M., Nakayama, Y., Tanaka, N.G., Goryo, M., Okada, K., 1996. Quantification of tumour-induced angiogenesis by image analysis. Int. J. Exp. Pathol. 77, 109–114. https://doi.org/10.1046/j.1365-2613.1996.00970.x
Johnston, G., 2010. Automated handheld instrument improves counting precision across multiple cell lines. Biotechniques 48, 325–327. https://doi.org/10.2144/000113407
Jong, B.K., 2005. Three-dimensional tissue culture models in cancer biology. Semin. Cancer Biol. 15, 365–377. https://doi.org/10.1016/j.semcancer.2005.05.002
Kang, H., Bayless, K.J., Kaunas, R., 2008. Fluid shear stress modulates endothelial cell invasion into three-dimensional collagen matrices. Am. J. Physiol. - Hear. Circ. Physiol. 295. https://doi.org/10.1152/ajpheart.00281.2008
Khan, T., Ali, M., Khan, A., Nisar, P., Jan, S.A., Afridi, S., Shinwari, Z.K., 2020. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules 10. https://doi.org/10.3390/biom10010047
Khanna, C., Hunter, K., 2005. Modeling metastasis in vivo. Carcinogenesis 26, 513–523. https://doi.org/10.1093/carcin/bgh261
Kim, S.I., Kim, H.J., Lee, H.J., Lee, K., Hong, D., Lim, H., Cho, K., Jung, N., Yi, Y.W., 2016. Application of a non-hazardous vital dye for cell counting with automated cell counters. Anal. Biochem. 492, 8–12. https://doi.org/10.1016/j.ab.2015.09.010
Kniazeva, E., Putnam, A.J., 2009. Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am. J. Physiol. - Cell Physiol. 297, 179–188. https://doi.org/10.1152/ajpcell.00018.2009
Kntayya, S.B., Ibrahim, M.D., Ain, N.M., Iori, R., Ioannides, C., Abdull Razis, A.F., 2018. Induction of apoptosis and cytotoxicity by isothiocyanate sulforaphene in human hepatocarcinoma HepG2 cells. Nutrients 10, 1–15. https://doi.org/10.3390/nu10060718
Krause, A.W., Carley, W.W., Webb, W.W., 1984. Fluorescent erythrosin B is preferable to trypan blue as a vital exclusion dye for mammalian cells in monolayer culture. J. Histochem. Cytochem. 32, 1084–1090. https://doi.org/10.1177/32.10.6090533
Lippman, M.E., 1983. Comparison of dye exclusion assays with a clonogenic assay in the determination of drug-Induced cytotoxicity. Cancer Res. 43, 258–264.
Lung, H., Cells, L.C., 2020. Anticancer Activity of Novel Plant Extracts and.
Maehara, Y., Anai, H., Tamada, R., Sugimachi, K., 1987. The ATP assay is more sensitive than the succinate dehydrogenase inhibition test for predicting cell viability. Eur. J. Cancer Clin. Oncol. 23, 273–276. https://doi.org/10.1016/0277-5379(87)90070-8
Manglani, N., Vaishnava, S., Dhamodaran, P., Sawarkar, H., 2014. In vitro and in vivo anti-cancer activity of leaf extract of Barleria grandiflora. Int. J. Pharm. Pharm. Sci. 6, 70–72.
Marmion, D., Updated by Staff, 2012. Colorants for Foods, Drugs, and Cosmetics. Kirk-Othmer Encycl. Chem. Technol. https://doi.org/10.1002/0471238961.0315121513011813.a01.pub3
Mueller, H., Kassack, M.U., Wiese, M., 2004. Comparison of the usefulness of the MTT, ATP, and calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines. J. Biomol. Screen. 9, 506–515. https://doi.org/10.1177/1087057104265386
Naher, S., Aziz, A., Akter, M.I., Rahman, S.M.M., Sajon, S.R., Mazumder, K., 2019. Anti-diarrheal activity and brine shrimp lethality bioassay of methanolic extract of Cordyline fruticosa ( L .) A . Chev . leaves 4–9.
Nakatsu, M.N., Hughes, C.C.W., 2008. Chapter 4 An Optimized Three-Dimensional In Vitro Model for the Analysis of Angiogenesis. Methods Enzymol. 443, 65–82. https://doi.org/10.1016/S0076-6879(08)02004-1
Navale, A.M., 2013. ANIMAL MODELS OF CANCER: A REVIEW Archana M. Navale Department of Pharmacology, Parul Institute of Pharmacy, Limda, Waghodia, Gujarat, India 4, 19–28.
Nehls, V., Drenckhahn, D., 1995. A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc. Res. https://doi.org/10.1006/mvre.1995.1061
Nicol, C.J., Yoon, M., Ward, J.M., Yamashita, M., Fukamachi, K., Peters, J.M., Gonzalez, F.J., 2004. PPARγ influences susceptibility to DMBA-induced mammary, ovarian and skin carcinogenesis. Carcinogenesis 25, 1747–1755. https://doi.org/10.1093/carcin/bgh160
Niles, A.L., Moravec, R.A., Riss, T.L., 2009. In vitro viability and cytotoxicity testing and same-well multi-parametric combinations for high throughput screening. Curr. Chem. Genomics 3, 33–41. https://doi.org/10.2174/1875397300903010033
Nounou, M.I., Elamrawy, F., Ahmed, N., Abdelraouf, K., Goda, S., Syed-Sha-Qhattal, H., 2015. Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies supplementary issue: Targeted therapies in breast cancer treatment. Breast Cancer Basic Clin. Res. 9, 17–34. https://doi.org/10.4137/BCBCR.S29420
O’Brien, J., Wilson, I., Orton, T., Pognan, F., 2000. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 267, 5421–5426. https://doi.org/10.1046/j.1432-1327.2000.01606.x
O’Reilly, M.S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R.A., Moses, M., Lane, W.S., Cao, Y., Sage, E.H., Folkman, J., 1994. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a lewis lung carcinoma. Cell 79, 315–328. https://doi.org/10.1016/0092-8674(94)90200-3
Özlem Sultan, A., 2012. In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. Genotoxicity - A Predict. Risk to Our Actual World 1, 38–55.
Page, B., Page, M., Noel, C., 1993. A new fluorometric assay for cytotoxicity measurements in vitro. Int. J. Oncol. 3, 473–476. https://doi.org/10.3892/ijo.3.3.473
Phillips, H.J., 1973. Dye Exclusion Tests for Cell Viability, Tissue Culture. ACADEMIC PRESS, INC. https://doi.org/10.1016/b978-0-12-427150-0.50101-7
Poonam, S., Chandana, M., 2015. A review on anticancer natural drugs. Int. J. PharmTech Res. 8, 131–141.
Rashidi, B., Yang, M., Jiang, P., Baranov, E., An, Z., Wang, X., Moossa, A.R., Hoffman, R.M., 2000. A highly metastatic Lewis lung carcinoma orthotopic green fluorescent protein model. Clin. Exp. Metastasis 18, 57–60. https://doi.org/10.1023/A:1026596131504
Riss, T.L., Moravec, R.A., Niles, A.L., Duellman, S., Benink, H.A., Worzella, T.J., Minor, L., 2004. Cell Viability Assays. Assay Guid. Man. 1–25.
Rygaard, J., Povlsen, C.O., 1969. Heterotransplantation of a human malignant tumour to “Nude” mice. Acta Pathol. Microbiol. Scand. 77, 758–760. https://doi.org/10.1111/j.1699-0463.1969.tb04520.x
Saini, A., Kumar, M., Bhatt, S., Saini, V., 2020. INTRODUCTION : Cancer : Cancer is a disorder. Int. J. Pharm. Sci. Res. 11, 3121–3134. https://doi.org/10.13040/IJPSR.0975-8232.11(7).3121-34
Schins, R.P.F., Duffin, R., Höhr, D., Knaapen, A.M., Shi, T., Weishaupt, C., Stone, V., Donaldson, K., Borm, P.J.A., 2002. Surface modification of quartz inhibits toxicity, particle uptake, and oxidative DNA damage in human lung epithelial cells. Chem. Res. Toxicol. 15, 1166–1173. https://doi.org/10.1021/tx025558u
Senger, D.R., Davis, G.E., 2011. Angiogenesis 1–20.
Shapiro, W.R., Basler, G.A., Chernik, N.L., Posner, J.B., 1979. Human brain tumor transplantation into nude mice. J. Natl. Cancer Inst. 62, 447–453. https://doi.org/10.1093/jnci/62.3.447
Skehan, P., Storeng, R., Scudiero, D., Monks, A., Mcmahon, J., Vistica, D., Warren, J.T., Bokesch, H., Kenney, S., Boyd, M.R., 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82, 1107–1112. https://doi.org/10.1093/jnci/82.13.1107
Staton, C.A., Reed, M.W.R., Brown, N.J., 2009. A critical analysis of current in vitro and in vivo angiogenesis assays. Int. J. Exp. Pathol. 90, 195–221. https://doi.org/10.1111/j.1365-2613.2008.00633.x
Stone, V., Johnston, H., Schins, R.P.F., 2009. Development of in vitro systems for nanotoxicology: Methodological considerations in vitro methods for nanotoxicology Vicki Stone et al. Crit. Rev. Toxicol. 39, 613–626. https://doi.org/10.1080/10408440903120975
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F., 2021. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 71, 209–249. https://doi.org/10.3322/caac.21660
Van Moorst, M., Dass, C.R., 2011. Methods for co-culturing tumour and endothelial cells: Systems and their applications. J. Pharm. Pharmacol. 63, 1513–1521. https://doi.org/10.1111/j.2042-7158.2011.01352.x
Vollmer, G., 2003. Endometrial cancer : experimental models useful for studies on molecular aspects of endometrial cancer and carcinogenesis 23–42.
Voskoglou-Nomikos, T., Pater, J.L., Seymour, L., 2003. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin. Cancer Res. 9, 4227–4239.
Wiley, M.M., 2005. Diagnosis Related Groups (DRGs): Measuring Hospital Case Mix. Encycl. Biostat. https://doi.org/10.1002/0470011815.b2a4a007
Wong, M.K.K., Gotlieb, A.I., n.d. I . Characterization of Dense Peripheral Band of Microfilaments.
Yip, D.K., Auersperg, N., 1972. The dye-exclusion test for cell viability: Persistence of differential staining following fixation. Vitr. J. Tissue Cult. Assoc. 7, 323–329. https://doi.org/10.1007/BF02618887