Declaration
Conflict of interest: The author declares that there is no
conflict of interest.
Consent to participate and for publication : Not applicable
Research involving human and animal rights: Human and animal
experiment were not involved in the study.
Funding: Not applicable.
Reference
Abate-Shen, C., Shen, M.M., 2002. Mouse models of prostate
carcinogenesis. Trends Genet. 18.
https://doi.org/10.1016/S0168-9525(02)02683-5
Andreotti, P.E., Hartmann, D.M., Linder, D., Harel, G., Gleiberman, I.,
Caruso, P.A., Ricks, S.H., Cree, I.A., Kurbacher, C.M., Untch, M.,
Sartori, C., Bruckner, H.W., 1995. Chemosensitivity Testing of Human
Tumors Using a Microplate Adenosine Triphosphate Luminescence Assay:
Clinical Correlation for Cisplatin Resistance of Ovarian Carcinoma.
Cancer Res. 55, 5276–5282.
Ansar Ahmed, S., Gogal, R.M., Walsh, J.E., 1994. A new rapid and simple
non-radioactive assay to monitor and determine the proliferation of
lymphocytes: an alternative to [3H]thymidine incorporation assay. J.
Immunol. Methods 170, 211–224.
https://doi.org/10.1016/0022-1759(94)90396-4
Aslantürk, Ö., Çelik, T., Karabey, B., Karabey, F., 2017. Active
Phytochemical Detecting, Antioxidant, Cytotoxic, Apoptotic Activities of
Ethyl Acetate and Methanol Extracts of Galium aparine L. Br. J. Pharm.
Res. 15, 1–16. https://doi.org/10.9734/bjpr/2017/32762
Ave, F., York, N., 1964. Y. 10003, 1964. 1, 10003.
Bahramsoltani, M., Plendl, J., Janczyk, P., Custodis, P., Kaessmeyer,
S., 2009. Quantitation of angiogenesis and antiangiogenesis in vivo, ex
vivo and in vitro - An overview. ALTEX 26, 95–107.
https://doi.org/10.14573/altex.2009.2.95
Bayless, K.J., Davis, G.E., 2003. Sphingosine-1-phosphate markedly
induces matrix metalloproteinase and integrin-dependent human
endothelial cell invasion and lumen formation in three-dimensional
collagen and fibrin matrices. Biochem. Biophys. Res. Commun. 312,
903–913. https://doi.org/10.1016/j.bbrc.2003.11.017
Berg, K., Zhai, L., Chen, M., Kharazmi, A., Owen, T.C., 1994. The use of
a water-soluble formazan complex to quantitate the cell number and
mitochondrial function of Leishmania major promastigotes. Parasitol.
Res. 80, 235–239. https://doi.org/10.1007/BF00932680
Brigelius-Flohé, R., Flohé, L., 2020. Regulatory Phenomena in the
Glutathione Peroxidase Superfamily. Antioxidants Redox Signal. 33,
498–516. https://doi.org/10.1089/ars.2019.7905
Carmeliet, P., 2005. Angiogenesis in life, disease and medicine. Nature
438, 932–936. https://doi.org/10.1038/nature04478
Davis, G.E., Senger, D.R., 2005. Endothelial extracellular matrix:
Biosynthesis, remodeling, and functions during vascular morphogenesis
and neovessel stabilization. Circ. Res. 97, 1093–1107.
https://doi.org/10.1161/01.RES.0000191547.64391.e3
Deroanne, C.F., Colige, A.C., Nusgens, B. V., Lapiere, C.M., 1996.
Modulation of expression and assembly of vinculin during in vitro
fibrillar collagen-induced angiogenesis and its reversal. Exp. Cell Res.
224, 215–223. https://doi.org/10.1006/excr.1996.0131
DeVita, V.T., Chu, E., 2008. A history of cancer chemotherapy. Cancer
Res. 68, 8643–8653. https://doi.org/10.1158/0008-5472.CAN-07-6611
Fahim, F.A., Esmat, A.Y., Mady, E.A., Ibrahim, E.K., 2003. Antitumor
activities of iodoacetate and dimethylsulphoxide against solid Ehrlich
carcinoma growth in mice. Biol. Res. 36, 253–262.
https://doi.org/10.4067/S0716-97602003000200015
Fargiano, A.A., Desai, K. V., Green, J.E., 2003. Interrogating mouse
mammary cancer models: Insights from gene expression profiling. J.
Mammary Gland Biol. Neoplasia 8, 321–334.
https://doi.org/10.1023/B:JOMG.0000010032.05234.6f
Feoktistova, M., Geserick, P., Kellert, B., Dimitrova, D.P., Langlais,
C., Hupe, M., Cain, K., MacFarlane, M., Häcker, G., Leverkus, M., 2011.
CIAPs Block Ripoptosome Formation, a RIP1/Caspase-8 Containing
Intracellular Cell Death Complex Differentially Regulated by cFLIP
Isoforms. Mol. Cell 43, 449–463.
https://doi.org/10.1016/j.molcel.2011.06.011
Feoktistova, M., Geserick, P., Leverkus, M., 2016. Crystal violet assay
for determining viability of cultured cells. Cold Spring Harb. Protoc.
2016, 343–346. https://doi.org/10.1101/pdb.prot087379
Fidler, I.J., 1986. Rationale and methods for the use of nude mice to
study the biology and therapy of human cancer metastasis. Cancer
Metastasis Rev. 5, 29–49. https://doi.org/10.1007/BF00049529
Fischer, K.R., Durrans, A., Lee, S., Sheng, J., Li, F., Wong, S.T.C.,
Choi, H., El Rayes, T., Ryu, S., Troeger, J., Schwabe, R.F., Vahdat,
L.T., Altorki, N.K., Mittal, V., Gao, D., 2015.
Epithelial-to-mesenchymal transition is not required for lung metastasis
but contributes to chemoresistance. Nature 527, 472–476.
https://doi.org/10.1038/nature15748
Folkman, J., 2007. Angiogenesis: An organizing principle for drug
discovery? Nat. Rev. Drug Discov. 6, 273–286.
https://doi.org/10.1038/nrd2115
Fotakis, G., Timbrell, J.A., 2006. In vitro cytotoxicity assays:
Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell
lines following exposure to cadmium chloride. Toxicol. Lett. 160,
171–177. https://doi.org/10.1016/j.toxlet.2005.07.001
Friess, T., Scheuer, W., Hasmann, M., 2005. Combination treatment with
erlotinib and pertuzumab against human tumor xenografts is superior to
monotherapy. Clin. Cancer Res. 11, 5300–5309.
https://doi.org/10.1158/1078-0432.CCR-04-2642
Gali-muhtasib, H.U., Yamout, S.Z., Sidani, M.M., Gali-muhtasib, H.U.,
Yamout, S.Z., Sidani, M.M., 2009. Tannins Protect Against Skin Tumor
Promotion Induced by Ultraviolet-B Radiation in Hairless Mice Tannins
Protect Against Skin Tumor Promotion Induced by Ultraviolet-B Radiation
in Hairless Mice 37–41.
Geserick, P., Hupe, M., Moulin, M., Wong, W.W.L., Feoktistova, M.,
Kellert, B., Gollnick, H., Silke, J., Leverkus, M., 2009. Cellular IAPs
inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase
recruitment. J. Cell Biol. 187, 1037–1054.
https://doi.org/10.1083/jcb.200904158
Ghajar, C.M., Chen, X., Harris, J.W., Suresh, V., Hughes, C.C.W., Jeon,
N.L., Putnam, A.J., George, S.C., 2008. The effect of matrix density on
the regulation of 3-D capillary morphogenesis. Biophys. J. 94,
1930–1941. https://doi.org/10.1529/biophysj.107.120774
Gomes, Antony, Bhattacharjee, P., Mishra, R., Biswas, A.K., Dasgupta,
S.C., Giri, B., Debnath, A., Gupta, S. Das, Das, T., Gomes, Aparna,
2010. Anticancer potential of animal venoms and toxins. Indian J. Exp.
Biol. 48, 93–103.
Homburger, F., Russfield, A.B., Baker, J.R., Tregier, A., 1962.
Experimental Chemotherapy in Chemically Induced Mouse Tumors and Their
Transplants *.
Hong, J.T., Kim, E.J., Ahn, K.S., Jung, K.M., Yun, Y.P., Park, Y.K.,
Lee, S.H., 2001. Inhibitory Effect of Glycolic Acid on
Ultraviolet-Induced Skin Tumorigenesis in SKH-1 Hairless Mice and Its
Mechanism of Action 160, 152–160.
Hursting, S.D., Nunez, N.P., Patel, A.C., Perkins, S.N., Lubet, R.A.,
Barrett, J.C., 2005. The utility of genetically altered mouse models for
nutrition and cancer chemoprevention research. Mutat. Res. - Fundam.
Mol. Mech. Mutagen. 576, 80–92.
https://doi.org/10.1016/j.mrfmmm.2004.11.019
Iwahana, M., Nakayama, Y., Tanaka, N.G., Goryo, M., Okada, K., 1996.
Quantification of tumour-induced angiogenesis by image analysis. Int. J.
Exp. Pathol. 77, 109–114.
https://doi.org/10.1046/j.1365-2613.1996.00970.x
Johnston, G., 2010. Automated handheld instrument improves counting
precision across multiple cell lines. Biotechniques 48, 325–327.
https://doi.org/10.2144/000113407
Jong, B.K., 2005. Three-dimensional tissue culture models in cancer
biology. Semin. Cancer Biol. 15, 365–377.
https://doi.org/10.1016/j.semcancer.2005.05.002
Kang, H., Bayless, K.J., Kaunas, R., 2008. Fluid shear stress modulates
endothelial cell invasion into three-dimensional collagen matrices. Am.
J. Physiol. - Hear. Circ. Physiol. 295.
https://doi.org/10.1152/ajpheart.00281.2008
Khan, T., Ali, M., Khan, A., Nisar, P., Jan, S.A., Afridi, S., Shinwari,
Z.K., 2020. Anticancer plants: A review of the active phytochemicals,
applications in animal models, and regulatory aspects. Biomolecules 10.
https://doi.org/10.3390/biom10010047
Khanna, C., Hunter, K., 2005. Modeling metastasis in vivo.
Carcinogenesis 26, 513–523. https://doi.org/10.1093/carcin/bgh261
Kim, S.I., Kim, H.J., Lee, H.J., Lee, K., Hong, D., Lim, H., Cho, K.,
Jung, N., Yi, Y.W., 2016. Application of a non-hazardous vital dye for
cell counting with automated cell counters. Anal. Biochem. 492, 8–12.
https://doi.org/10.1016/j.ab.2015.09.010
Kniazeva, E., Putnam, A.J., 2009. Endothelial cell traction and ECM
density influence both capillary morphogenesis and maintenance in 3-D.
Am. J. Physiol. - Cell Physiol. 297, 179–188.
https://doi.org/10.1152/ajpcell.00018.2009
Kntayya, S.B., Ibrahim, M.D., Ain, N.M., Iori, R., Ioannides, C., Abdull
Razis, A.F., 2018. Induction of apoptosis and cytotoxicity by
isothiocyanate sulforaphene in human hepatocarcinoma HepG2 cells.
Nutrients 10, 1–15. https://doi.org/10.3390/nu10060718
Krause, A.W., Carley, W.W., Webb, W.W., 1984. Fluorescent erythrosin B
is preferable to trypan blue as a vital exclusion dye for mammalian
cells in monolayer culture. J. Histochem. Cytochem. 32, 1084–1090.
https://doi.org/10.1177/32.10.6090533
Lippman, M.E., 1983. Comparison of dye exclusion assays with a
clonogenic assay in the determination of drug-Induced cytotoxicity.
Cancer Res. 43, 258–264.
Lung, H., Cells, L.C., 2020. Anticancer Activity of Novel Plant Extracts
and.
Maehara, Y., Anai, H., Tamada, R., Sugimachi, K., 1987. The ATP assay is
more sensitive than the succinate dehydrogenase inhibition test for
predicting cell viability. Eur. J. Cancer Clin. Oncol. 23, 273–276.
https://doi.org/10.1016/0277-5379(87)90070-8
Manglani, N., Vaishnava, S., Dhamodaran, P., Sawarkar, H., 2014. In
vitro and in vivo anti-cancer activity of leaf extract of Barleria
grandiflora. Int. J. Pharm. Pharm. Sci. 6, 70–72.
Marmion, D., Updated by Staff, 2012. Colorants for Foods, Drugs, and
Cosmetics. Kirk-Othmer Encycl. Chem. Technol.
https://doi.org/10.1002/0471238961.0315121513011813.a01.pub3
Mueller, H., Kassack, M.U., Wiese, M., 2004. Comparison of the
usefulness of the MTT, ATP, and calcein assays to predict the potency of
cytotoxic agents in various human cancer cell lines. J. Biomol. Screen.
9, 506–515. https://doi.org/10.1177/1087057104265386
Naher, S., Aziz, A., Akter, M.I., Rahman, S.M.M., Sajon, S.R., Mazumder,
K., 2019. Anti-diarrheal activity and brine shrimp lethality bioassay of
methanolic extract of Cordyline fruticosa ( L .) A . Chev . leaves 4–9.
Nakatsu, M.N., Hughes, C.C.W., 2008. Chapter 4 An Optimized
Three-Dimensional In Vitro Model for the Analysis of Angiogenesis.
Methods Enzymol. 443, 65–82.
https://doi.org/10.1016/S0076-6879(08)02004-1
Navale, A.M., 2013. ANIMAL MODELS OF CANCER: A REVIEW Archana M. Navale
Department of Pharmacology, Parul Institute of Pharmacy, Limda,
Waghodia, Gujarat, India 4, 19–28.
Nehls, V., Drenckhahn, D., 1995. A novel, microcarrier-based in vitro
assay for rapid and reliable quantification of three-dimensional cell
migration and angiogenesis. Microvasc. Res.
https://doi.org/10.1006/mvre.1995.1061
Nicol, C.J., Yoon, M., Ward, J.M., Yamashita, M., Fukamachi, K., Peters,
J.M., Gonzalez, F.J., 2004. PPARγ influences susceptibility to
DMBA-induced mammary, ovarian and skin carcinogenesis. Carcinogenesis
25, 1747–1755. https://doi.org/10.1093/carcin/bgh160
Niles, A.L., Moravec, R.A., Riss, T.L., 2009. In vitro viability and
cytotoxicity testing and same-well multi-parametric combinations for
high throughput screening. Curr. Chem. Genomics 3, 33–41.
https://doi.org/10.2174/1875397300903010033
Nounou, M.I., Elamrawy, F., Ahmed, N., Abdelraouf, K., Goda, S.,
Syed-Sha-Qhattal, H., 2015. Breast cancer: Conventional diagnosis and
treatment modalities and recent patents and technologies supplementary
issue: Targeted therapies in breast cancer treatment. Breast Cancer
Basic Clin. Res. 9, 17–34. https://doi.org/10.4137/BCBCR.S29420
O’Brien, J., Wilson, I., Orton, T., Pognan, F., 2000. Investigation of
the Alamar Blue (resazurin) fluorescent dye for the assessment of
mammalian cell cytotoxicity. Eur. J. Biochem. 267, 5421–5426.
https://doi.org/10.1046/j.1432-1327.2000.01606.x
O’Reilly, M.S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R.A.,
Moses, M., Lane, W.S., Cao, Y., Sage, E.H., Folkman, J., 1994.
Angiostatin: A novel angiogenesis inhibitor that mediates the
suppression of metastases by a lewis lung carcinoma. Cell 79, 315–328.
https://doi.org/10.1016/0092-8674(94)90200-3
Özlem Sultan, A., 2012. In Vitro Cytotoxicity and Cell Viability Assays:
Principles, Advantages, and Disadvantages. Genotoxicity - A Predict.
Risk to Our Actual World 1, 38–55.
Page, B., Page, M., Noel, C., 1993. A new fluorometric assay for
cytotoxicity measurements in vitro. Int. J. Oncol. 3, 473–476.
https://doi.org/10.3892/ijo.3.3.473
Phillips, H.J., 1973. Dye Exclusion Tests for Cell Viability, Tissue
Culture. ACADEMIC PRESS, INC.
https://doi.org/10.1016/b978-0-12-427150-0.50101-7
Poonam, S., Chandana, M., 2015. A review on anticancer natural drugs.
Int. J. PharmTech Res. 8, 131–141.
Rashidi, B., Yang, M., Jiang, P., Baranov, E., An, Z., Wang, X., Moossa,
A.R., Hoffman, R.M., 2000. A highly metastatic Lewis lung carcinoma
orthotopic green fluorescent protein model. Clin. Exp. Metastasis 18,
57–60. https://doi.org/10.1023/A:1026596131504
Riss, T.L., Moravec, R.A., Niles, A.L., Duellman, S., Benink, H.A.,
Worzella, T.J., Minor, L., 2004. Cell Viability Assays. Assay Guid. Man.
1–25.
Rygaard, J., Povlsen, C.O., 1969. Heterotransplantation of a human
malignant tumour to “Nude” mice. Acta Pathol. Microbiol. Scand. 77,
758–760. https://doi.org/10.1111/j.1699-0463.1969.tb04520.x
Saini, A., Kumar, M., Bhatt, S., Saini, V., 2020. INTRODUCTION :
Cancer : Cancer is a disorder. Int. J. Pharm. Sci. Res. 11, 3121–3134.
https://doi.org/10.13040/IJPSR.0975-8232.11(7).3121-34
Schins, R.P.F., Duffin, R., Höhr, D., Knaapen, A.M., Shi, T., Weishaupt,
C., Stone, V., Donaldson, K., Borm, P.J.A., 2002. Surface modification
of quartz inhibits toxicity, particle uptake, and oxidative DNA damage
in human lung epithelial cells. Chem. Res. Toxicol. 15, 1166–1173.
https://doi.org/10.1021/tx025558u
Senger, D.R., Davis, G.E., 2011. Angiogenesis 1–20.
Shapiro, W.R., Basler, G.A., Chernik, N.L., Posner, J.B., 1979. Human
brain tumor transplantation into nude mice. J. Natl. Cancer Inst. 62,
447–453. https://doi.org/10.1093/jnci/62.3.447
Skehan, P., Storeng, R., Scudiero, D., Monks, A., Mcmahon, J., Vistica,
D., Warren, J.T., Bokesch, H., Kenney, S., Boyd, M.R., 1990. New
colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl.
Cancer Inst. 82, 1107–1112. https://doi.org/10.1093/jnci/82.13.1107
Staton, C.A., Reed, M.W.R., Brown, N.J., 2009. A critical analysis of
current in vitro and in vivo angiogenesis assays. Int. J. Exp. Pathol.
90, 195–221. https://doi.org/10.1111/j.1365-2613.2008.00633.x
Stone, V., Johnston, H., Schins, R.P.F., 2009. Development of in vitro
systems for nanotoxicology: Methodological considerations in vitro
methods for nanotoxicology Vicki Stone et al. Crit. Rev. Toxicol. 39,
613–626. https://doi.org/10.1080/10408440903120975
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I.,
Jemal, A., Bray, F., 2021. Global Cancer Statistics 2020: GLOBOCAN
Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185
Countries. CA. Cancer J. Clin. 71, 209–249.
https://doi.org/10.3322/caac.21660
Van Moorst, M., Dass, C.R., 2011. Methods for co-culturing tumour and
endothelial cells: Systems and their applications. J. Pharm. Pharmacol.
63, 1513–1521. https://doi.org/10.1111/j.2042-7158.2011.01352.x
Vollmer, G., 2003. Endometrial cancer : experimental models useful for
studies on molecular aspects of endometrial cancer and carcinogenesis
23–42.
Voskoglou-Nomikos, T., Pater, J.L., Seymour, L., 2003. Clinical
predictive value of the in vitro cell line, human xenograft, and mouse
allograft preclinical cancer models. Clin. Cancer Res. 9, 4227–4239.
Wiley, M.M., 2005. Diagnosis Related Groups (DRGs): Measuring Hospital
Case Mix. Encycl. Biostat. https://doi.org/10.1002/0470011815.b2a4a007
Wong, M.K.K., Gotlieb, A.I., n.d. I . Characterization of Dense
Peripheral Band of Microfilaments.
Yip, D.K., Auersperg, N., 1972. The dye-exclusion test for cell
viability: Persistence of differential staining following fixation.
Vitr. J. Tissue Cult. Assoc. 7, 323–329.
https://doi.org/10.1007/BF02618887