A local search algorithm with hybrid strategies for the maximum weighted quasi-clique problem
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Identifying cohesive subgraphs is an important topic in graph theory and complex network analysis. The quasi-clique, as a generalization of clique, can be used to identify functional and structural properties of various networks. In this paper, we study the maximum weighted quasi-clique problem, and propose a local search algorithm for solving the problem. In the algorithm, an iterated local search method is used as the search framework. To find the quasi-clique with the maximum total weights, hybrid vertex selection strategies are proposed and incorporated into our algorithm. The hybrid strategies utilize a probability-based mechanism for choosing sub-strategies in each round of the local search. We conduct experiments on synthetic networks and real-world networks to show the effectiveness of our algorithm. The results indicate that hybrid strategies perform better than existing methods, and thus our algorithm has a good ability to tackle various networks.
Introduction: Given a graph, finding cohesive subgraphs is an important topic in graph theory. It is a tool to analyze the structures of networks and used in a number of real-world applications such as complex networks analysis [1], clustering [2], and bioinformatics [3]. In a graph, a clique is a subgraph induced by a subset of vertices such that every two distinct vertices in the clique are adjacent. It is a basic concept of cohesive subgraphs. The maximum clique problem is to find the clique with the most number of vertices in a graph. The problem has proven to be NP-hard, and many algorithms for finding the maximum cliques have been studied. However, its strong requirements of the connectivity limit its applications, so the γ-quasi-clique, a relaxation of the clique, was proposed to identify cohesive subgraphs. It allows some missing edges in a clique, where γ denotes the density of edges in the clique. The maximum quasi-clique problem (MQCP) was proposed to find the largest subgraph. 

Recently, algorithms for finding the maximum quasi-cliques have been well studied. A series of algorithms have been proposed including exact algorithms and heuristic methods [4-11]. As an early work, Pajouh et al. proposed a branch-and-bound algorithm for the maximum γ-quasi-clique problem [4]. Later, Pastukhov et al. introduced a branch-and-bound algorithm for finding exact solutions of the maximum degree-based quasi-clique problem, where a degree-based decomposition algorithm is also introduced [5]. Experiments have proved that the algorithm is the most stable method among the methods considered, and the authors show their algorithm can find the best solution quickly  for most instances they tested. Ribeiro and Riveaux proposed an exact algorithm based on the quasi-hereditary property for solving the maximum quasi-clique problem [6]. This property is the main principle for designing the backtracking algorithm. Besides, a new upper bound of the problem is proposed, and is used for pruning the search tree generated by the backtracking algorithm. It is always tighter than the previous bounds, and leads to a significant reduction in search trees. Moreover, heuristics and meta-heuristics have shown a good ability to solve various optimization problems [12-15], and are important approaches to solve the MQCP. For example, Pinto et al. proposed two variants of a biased random-key genetic algorithm for solving the maximum quasi-clique problem [7]. Djeddi et al. used an extension of adaptive multistart tabu search to solve the MQCP and proposed a heuristic algorithm [8]. Zhou et al. proposed an opposition-based memetic algorithm, which employs a backbone-based crossover operator and an opposition-based learning method [9]. The experimental results show that the algorithm can find the best known quasi-clique of real-world networks in a reasonable time, and performs better than the existing methods on DIMACS and BHOSLIB benchmarks. Then, based on the hybrid of a biased random-key genetic algorithm and an exact local search strategy, Pinto et al. proposed a method to solve the maximal cardinality quasi-clique problem [10]. Very recently, Chen et al. have devised an efficient local search algorithm, called NuQClq, and proposed two novel strategies incorporated into their algorithm [11]. Experimental results show that NuQClq has achieved an excellent performance in a large number of benchmark instances, and outperforms the previous methods. 

In many real-world applications, vertices are associated with weights, and thus the maximum weighted clique problem (MWCP) was proposed and well studied. The MWCP is to identify a complete subgraph with the largest total weight, which is a generalization of the maximum clique problem. We have viewed many studies on the MWCP. For example, Babel proposed a branch-and-bound algorithm that can find the maximum weighted clique in weighted graphs [16]. Wang et al. proposed a heuristic algorithm with an effective strategy called strong configuration check [17]. Cai et al. proposed a new MWCP algorithm with a semi-exact approach [18]. Although many studies focused on γ-quasi-cliques and weighted cliques [19-23], there are rare works to discuss the quasi-clique structures in the weighted graphs. To study the γ-quasi-clique identification algorithms in weighted graphs, in this paper, we introduce the definition of the vertex-weighted quasi-clique and the maximum weighted γ-quasi-clique problem, and then propose a local search algorithm with hybrid vertex selection strategies to solve the problem. The algorithm is derived from the framework of NuQClq, which is a newly proposed algorithm to solve the maximum γ-quasi-clique problem. Note that NuQClq is devised for unweighted graphs, its strategies are no longer effective to deal with weighted graphs. As the goal of the weighted  problem is to optimize total weight of vertices, we have to consider vertex weights when adding or removing vertices. On the other hand, we should keep the edge density of the subgraph we find no less than the threshold γ, so the method in NuQClq that selects the vertex with the maximum degree is still necessary in the weighted clique detection. Therefore, when trying to add a vertex, choosing the vertex with the maximum weight and choosing the vertex with the maximum degree are performed alternatively to enhance search diversity. Based on the above consideration, we proposed hybrid vertex selection strategies in our algorithm for weighted quasi-clique detection. Two hybrid vertex selection strategies are used for adding or removing vertices, respectively. Moreover, a probability of choosing two sub-strategies is introduced in our hybrid strategies. We carried out an extensive experiment to evaluate the proposed algorithm. The results show that the algorithm is effective to solve various graphs including synthetic graphs and real-world networks. We also analyze the effectiveness of our strategies in the algorithm.
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Problem description: Given a graph G=(V,E), where V is the vertex set and E is the edge set. A clique is an induced subgraph of G such that the subgraph is complete. The notation ds(v) indicates the number of vertices connected to vertex v in S, and N(v) is the neighbors of v in G. Given a weighted graph G=(V,E,w), where V is the vertex set, E is the edge set and w is a weighting function mapping each vertex to a positive real number, a weighted γ-quasi-clique is an induced graph G[S] by a subset of vertices S such that dens(G[S]) ≥ γ, where γ∈(0,1] is a fixed constant and                        . A weighted γ-quasi-clique is maximal if it is not included in any other weighted γ-quasi-clique. The maximum weighted γ-quasi-clique of a graph is an induced subgraph such that there is no maximal weighted γ-quasi-clique with a larger total vertex weight. The maximum weighted clique problem is to find the weighted γ-quasi-clique with the largest total weights of vertices in it. 

Among heuristics, local search algorithms can solve the maximum γ-quasi-clique problem effectively, where the vertex selection strategy used in each iteration is a critical component in the algorithms. Recently, NuQClq employed a variable selection strategy based on the degrees of vertices for unweighted graphs. Moreover, a method called edge cumulative saturation is used as a secondary measurement for tie breaking. It counts the number of critical edges. Given a vertex v, its cumulative measurement is calculated as the total number of critical edges abstracts the number of steps that v is in S since its last move to or out of S. For more details, we refer to [11].
Local Search Algorithm: In this part, we present the hybrid strategies for vertex selection, and then give the framework of our local search algorithm based on our hybrid strategies.

Usually, a local search algorithm starts from a randomly generated solution, and performs strategies to change a solution gradually in the candidate solution space in order to search for a better solution. There are various strategies for performing local changes in the local search algorithms. When a certain number of rounds is done but no improvement can be made, the algorithm stops or restarts from another randomly generated solution. In each round, a key component in algorithm is the vertex selection mechanism. It decides the search direction of the algorithm and the effectiveness of local search strategies. In the following, we explain our hybrid strategies. For the weighted  problem, we should consider two factors. First, the selected vertex set should satisfy the edge density constraint with respect to the parameter γ. To increase the number of edges between selected vertices, we give priority to the vertices with higher degrees when we try to add a vertex, and remove vertices with lower degrees. Therefore, the rule based on degrees in NuQClq can be also used here, i.e., adding (removing) the vertex v in a vertex neighborhood such that it has the highest (lowest) ds(v) breaking ties with the cumulative measurement. 

However, such vertices may not have higher weights. As the goal of the problem is to optimize the total weight of vertices, we should add vertices with higher weights to the selected set and remove vertices with lower weights from it. Under this consideration, we propose a weight-based rule to improve the goal that maximizes total weights. The rule selects the vertex v in a vertex neighborhood such that it has the highest (lowest) w(v) breaking ties with ds(v) when adding (removing) v to (from) the selected vertex set. Therefore, new hybrid vertex selection strategies are proposed based on the above discussion. Rule 1 and Rule 2 provide the detail steps of the strategies. 
Each strategy contains two sub-rules, which are performed alternatively. To strike a balance between the performance of the two sub-rules, we introduce a randomized probability-based mechanism to decide which one is performed. The parameter p, a pre-defined threshold, is used to make decisions. To be specific, in each round, a random real number r between 0 and 1 is generated before choosing a node, if r is equal to or below p, the degree-based rule is used, otherwise the weight-based rule is used. 

Rule 1 is our hybrid strategy for adding vertices. It chooses a vertex u in S such that u has at least one neighbor not in S. Then, it generates a random number to decide which sub-rule is used. In degree-based method, it selects the vertex v from u’s neighbors excluding the vertices in S such that v has the highest degree, while in weight-based method, the measurement is weights. 

	Rule 1: adding-vertex

	1. choose a vertex u in S s.t. u has at least one neighbor not in S;
2. generate a real number r randomly and uniformly in [0,1];
3. if r ≤ p, select the vertex v with the highest ds(v) in N(u)\S, breaking ties with the cumulative measurement. Otherwise, select the vertex v with the highest w(v) in N(u)\S, breaking ties with ds(v). 


Rule 2 is also a hybrid method based on the probability mechanism for removing vertices. It first generates a random real, and then chooses a vertex from S excluding the vertex last added, and prefers to the vertices with the lowest degree or weight. The selected vertex v will be removed from S.

 With the hybrid strategies presented above, we then give the detailed procedure of the local search algorithm (shown in Algorithm 1) for the maximum weighted quasi-clique problem. We call it LS4WQC. Following the methods used in NuQClq for detecting unweighted quasi-clique, in our algorithm, it first initializes the selected vertex set S (line 1) by constructing a feasible solution by a constructive method. After that, it uses local search strategies to find feasible solutions and maximizes the total vertex weight. In each round, there are two cases. In the case that S is a legal γ-quasi-clique whose edge density of S is no less than γ, the algorithm tries to add more vertices to S, so the adding vertex rule is performed (line 5); Otherwise, in the case S is not a γ-quasi-clique, it adds a vertex to S, and chooses another vertex according to the removing-vertex rule and deletes it from S (line 9). If no improvement can be made for a certain number of rounds, our algorithm restarts with a newly generated solution (line 11), and if it achieves the limited time it returns the best weighted γ-quasi-clique (line 12). Moreover, the bounded-based configuration check strategy [11] are also employed in our algorithm to restrict some moves of vertices so that avoid searching cycles. 
	Rule 2: removing-vertex

	1. generate a real number r randomly and uniformly in [0,1];
2. if r ≤ p, select the vertex v with the smallest ds(v) in S, breaking ties with the cumulative measurement. Otherwise, select the vertex v with the smallest w(v) in S, breaking ties with ds(v). 


	Algorithm 1: LS4WQC

	Input: a weighted graph G=(V,E,w); the parameter γ
Output: the best quasi-clique Sbest;
1.  S ← an initial solution;
2.  while no improvement for a certain rounds do
3.       if dens(G[S]) ≥ γ then
4.           update Sbest  if a new better solution is found;
5.           select a vertex v by applying adding-vertex, and S ← S∪{v};
6.           update states and control parameters;
7.       else
8.           select v by applying adding-vertex rule; S ← S∪{v};
9.           select u by applying removing-vertex rule; and S ← S\{u};
10.         update states and control parameters;
11. if not reach the limited time then restart the algorithm;
12. return Sbest.


Experiment: All experiments were carried out on a computer with Linux, configured with Intel(R) Xeon(R) E5-2630v4 CPUs (2.20GHz) and 32GB RAM. Our algorithm was implemented with C++ language and compiled by gcc 5.4 with -O3 option. We used 20 benchmark graphs, including DIMACS benchmark instances and real-world massive graphs, to evaluate our algorithm. We randomly generated weights for each vertex in the graphs, ranging from 1 to 100, as the previous works did [11], and set the parameter p in our algorithm to 0.6. Three γ values are considered: γ = 0.999, 0.95, 0.90. We compare our algorithm with NuQClq, which is the state-of-the-art algorithm for the maximum γ-quasi-clique problem and outperforms the existing methods as reported [11]. For a fair comparison, we ran our algorithm and NuQClq 10 times for each instance. The time limitation is set to 1800s. The average results over 10 runs were counted for each instance and each value of the density threshold γ. 
Table 1 indicates the comparative results. It is clear that LS4WQC has a better performance than NuQClq, because it yields better or comparable results for all the instances except soc-BlogCatalog. To be specific, LS4WQC gets 9 better solutions for γ = 0.999 whereas NuQClq gets only 1 better solution. This number of LS4WQC grows bigger as γ decreases, and the number of better solutions produced by LS4WQC grows to 14 for γ = 0.95 and 17 for γ = 0.9. In comparison, NuQClq has not a better solution for γ = 0.9.
Besides, we listed the average running time that an algorithm finds the best solution first time in Table 2, where the running time is grouped by γ. In the table, LS4WQC can get the best solutions with approximate 60% time of NuQClq, so it is clear that our hybrid selection strategies speed up the convergence of the local search. 

In all, our hybrid strategies can improve the selection of vertices in each round and enhance the solution diversity. The results confirm LS4WQC makes significant improvements on the solution quantity and the convergence speed, and has the ability to find a better solution with less running time than the state-of-the art method.
Table 1. Comparative results of NuQClq and LS4WQC on 20 benchmark instances; the average weights over 10 runs are listed for γ = 0.999, 0.95 and 0.90. 
	Instance
	γ = 0.999
	γ = 0.95
	γ = 0.9

	
	NuQClq 
	LS4WQC
	NuQClq 
	LS4WQC
	NuQClq 
	LS4WQC

	brock200-3
	990
	990
	1188
	1188
	1486.7
	1502

	brock200-4
	1043
	1043
	1373
	1373
	1743.7
	1773

	C125-9
	1953
	1953
	3657.3
	3779
	6040
	6040

	C250-9
	2461.4
	2614
	5315.9
	5599.8
	11474
	11479

	c-fat200-2
	1287
	1310
	1393.9
	1404
	1465.3
	1497.3

	c-fat200-5
	2854.3
	2875
	3133.6
	3151
	3373.6
	3474

	c-fat500-2
	1477
	1480
	1562.8
	1574
	1724
	1724

	c-fat500-5
	3519.2
	3522
	3813.9
	3816.8
	4152.6
	4191.3

	c-fat500-10
	7064
	7083
	7598.6
	7731.9
	8296.2
	8503.1

	hamming8-4
	1079
	1079
	1201.2
	1257
	1480.2
	1615.9

	johnson8-4-4
	979
	979
	1093.2
	1107
	1301
	1361

	ia-wiki-Talk
	890
	890
	1125
	1125
	1408
	1411.6

	MANN-a9
	1103.6
	1109
	1834.7
	1837
	2365
	2365

	sc-nasasrb
	1688
	1732
	1774.8
	1832
	1892.4
	1924.8

	sc-pkustk11
	2097
	2097
	2330.6
	2367
	2519.9
	2551.6

	sc-pkustk13
	2421
	2421
	2683.4
	2684
	3009.4
	3043.8

	sc-pwtk
	1803.6
	1836
	1886.5
	1924.5
	2019.9
	2060.1

	sc-shipsec1
	1380
	1380
	1564
	1564
	1685.8
	1731

	sc-shipsec5
	1665
	1665
	1750
	1750
	1873.3
	1885

	soc-BlogCatalog
	2611.4
	2580
	4485.4
	4475.8
	6360.6
	6464.1


Table 2. The average running time of NuQClq and LS4WQC on 20 instances (in seconds).
	
	γ = 0.999
	γ = 0.95
	γ = 0.9

	
	NuQClq 
	LS4WQC
	NuQClq 
	LS4WQC
	NuQClq 
	LS4WQC

	average time (s)
	144.19
	67.21
	542.41
	268.03
	612.91
	442.68


In our algorithm, there is a parameter p that controls the probability in vertex selection. We analyze whether the algorithm is robust under the control parameter. We select 5 instances (c-fat500-10, Johnson8-4-4, ia-wiki-Talk, sc-pwtk, soc-BlogCatalog) and vary p from 0 to 1 at an increment 0.1. Total weights are calculated for each value p. When p is below 0.5, the results are quite unsatisfactory, so we show the results for p ≥ 0.5. Ten runs are performed for each instance. We draw box and whisker plots of the results to visualize summary statistics in Figure 1. We can see that the weights become smaller with p growing, and there is no significant difference for p = 0.5, 0.6, 0.7, where p = 0.6 has the best average weight, so we set p to 0.6 in our experiment. 
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Fig 1 The box and whisker plots of total weights varying p from 0.5 to 1.0.
Conclusion: Local search approaches play an important role in solving various optimization problems in graph theory. This paper studied the maximum weighted quasi-clique problem, and proposed an efficient local search algorithm to solve this problem. In the algorithm, we proposed two hybrid strategies for vertex selection in the vertex-adding step and the vertex-removing step, respectively. To maximize the total weight of selected vertices while keeping the density of edges between these vertices, we present a hybrid approach that chooses the vertex according to the degrees and the weights. Both measurements are used alternatively, and a probability-based mechanism is introduced to decide which one is used in a round. With the hybrid strategies, the local search algorithm can solve the weighted problem effectively. Through computational experiments, we concluded that our algorithm has a good performance for both synthetic graphs and real-world networks from various applications, and verified the effectiveness of the hybrid strategies. 
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