References

Adams, C. I., Hepburn, C., Jeunen, G. J., Cross, H., Taylor, H. R., Gemmell, N. J., ... & Knapp, M. (2022). Environmental DNA reflects common haplotypic variation. Environmental DNA.
Adams, C. I., Knapp, M., Gemmell, N. J., Jeunen, G. J., Bunce, M., Lamare, M. D., & Taylor, H. R. (2019). Beyond biodiversity: can environmental DNA (eDNA) cut it as a population genetics tool?. Genes, 10(3), 192.
Alemu, Y. (2021). Seal pose estimation using convolutional neural networks. Master Thesis. School of Engineering Science, Laskennallinen tekniikka.
Andres, K.J., Sethi, S.A., Lodge, D.M. and Andrés, J. (2021), Nuclear eDNA estimates population allele frequencies and abundance in experimental mesocosms and field samples. Mol Ecol, 30: 685-697. https://doi.org/10.1111/mec.15765
Antich, A., Palacin, C., Wangensteen, O. S., & Turon, X. (2021). To denoise or to cluster, that is not the question: optimizing pipelines for COI metabarcoding and metaphylogeography. BMC bioinformatics, 22(1), 1-24.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV., Sirotkin AV., Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19(5): 455–477.
Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Ostell, J., Pruitt, K.D., and Sayers, E.W. 2018. GenBank. Nucleic Acids Res. 46(D1): D41–D47. Available from http://dx.doi.org/10.1093/nar/gkx1094.
Boratyn, G. M., Schäffer, A. A., Agarwala, R., Altschul, S. F., Lipman, D. J., & Madden, T. L. (2012). Domain enhanced lookup time accelerated BLAST. Biology direct, 7, 12. https://doi.org/10.1186/1745-6150-7-12
Boyer F, Mercier C, Bonin A, Le Bras Y, Taberlet P, Coissac E (2016) obitools: A unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources 16(1): 176-182. https://doi.org/10.1111/1755-0998.12428
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: architecture and applications. BMC bioinformatics, 10(1), 1-9.
Collins, R. A., Bakker, J., Wangensteen, O. S., Soto, A. Z., Corrigan, L., Sims, D. W., ... & Mariani, S. (2019). Non‐specific amplification compromises environmental DNA metabarcoding with COI. Methods in Ecology and Evolution, 10(11), 1985-2001.
Dierckxsens N., Mardulyn P. and Smits G. (2016) NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, doi: 10.1093/nar/gkw955
Dully, V., Wilding, T. A., Mühlhaus, T., & Stoeck, T. (2021). Identifying the minimum amplicon sequence depth to adequately predict classes in eDNA-based marine biomonitoring using supervised machine learning. Computational and structural biotechnology journal, 19, 2256-2268.
Edgar R.C. (2016), UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing, https://doi.org/10.1101/081257
Egerton, J. P., Johnson, A. F., Turner, J., LeVay, L., Mascareñas-Osorio, I., & Aburto-Oropeza, O. (2018). Hydroacoustics as a tool to examine the effects of Marine Protected Areas and habitat type on marine fish communities. Scientific reports, 8(1), 1-12.
Elbrecht V, Steinke D (2019) Scaling up DNA metabarcoding for freshwater macrozoobenthos monitoring. Freshwater Biology 64(2): 380-387. https://doi.org/10.1111/fwb.13220
Elbrecht, V., Vamos, E. E., Steinke, D., & Leese, F. (2018). Estimating intraspecific genetic diversity from community DNA metabarcoding data. PeerJ, 6, e4644.
Field, K. A. et al. 2019. Publication reform to safeguard wildlife from researcher harm. – PLoS Biol. 17: e3000193.
Folmer, O., Hoeh, W. R., Black, M. B., & Vrijenhoek, R. C. (1994). Conserved primers for PCR amplification of mitochondrial DNA from different invertebrate phyla. Molecular Marine Biology and Biotechnology, 3(5), 294-299.
Freeland, J. R. (2017). The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA. Genome, 60(4), 358–374. doi:10.1139/gen-2016-0100
Frøslev, T. G., Kjøller, R., Bruun, H. H., Ejrnæs, R., Brunbjerg, A. K., Pietroni, C., & Hansen, A. J. (2017). Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nature communications, 8(1), 1-11.
G. Guillot, F. Mortier, and A. Estoup. Geneland: A computer package for landscape genetics. Molecular Ecology Notes, 5(3):708–711, 2005b.
G. Guillot. Inference of structure in subdivided populations at low levels of genetic differentiation.The correlated allele frequencies model revisited. Bionformatics, 24:2222–2228, 2008.
Geller J, Meyer C, Parker M, Hawk H (2013) Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Molecular Ecology Resources 13(5): 851-861. https://doi.org/10.1111/1755-0998.12138
Guillot, G., Santos, F., & Estoup, A. (2011). Population genetics analysis using R and the Geneland program. Lyngby, Denmark: Technical University of Denmark
Hazkani-Covo, E., Zeller, R. M., & Martin, W. (2010). Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS genetics, 6(2), e1000834.
Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator . Proceedings of the National Academy of Sciences of the United States of America, 101 (41), 14812–14817.
Hering D. et al. Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive // Water Research. 2018. Vol. 138. P. 192-205.
Hilborn, R., Quinn, T. P., Schindler, D. E., & Rogers, D. E. (2003). Biocomplexity and fisheries sustainability. Proceedings of the National Academy of Sciences, USA, 100(11), 6564–6568. https://doi.org/10.1073/pnas.1037274100.
Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, Ruscheweyh HJ, Tappu R (2016) MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. PLoS Computational Biology 12(6): e1004957. https://doi.org/10.1371/journal.pcbi.1004957
Jeff A. Eble, Toby S. Daly-Engel, Joseph D. DiBattista, Adam Koziol, Michelle R. Gaither. (2020). Marine environmental DNA: Approaches, applications, and opportunities. Advances in Marine Biology, 86 (1), 141-169. https://doi.org/10.1016/bs.amb.2020.01.001.
Jerde C. L. Can we manage fisheries with the inherent uncertainty from eDNA? // Journal of fish biology. 2019. P. 1-44. doi:10.1111/jfb.14218.
Jerde C. L. et al. “Sight‐unseen” detection of rare aquatic species using environmental DNA // Conservation Letters. 2011. Vol. 4. №. 2. P. 150-157.
Ji, D., Liang, J., Li, P., Gao, T., & Xu, S. (2020). The complete mitochondrial genome of Hexagrammos agrammus (Scorpaeniformes: Hexagrammidae) by next-generation sequencing. Mitochondrial DNA Part B, 5(3), 2509-2511.
Kalchugin P.V. Long-term dynamics of biomass and dominant species of the bottom fish complex in Peter the Great Bay. Izvestiya TINRO. 2021;201(1):44-61. (In Russian) https://doi.org/10.26428/1606-9919-2021-201-44-61
Kawahara-Miki, R., Wada, K., Azuma, N., & Chiba, S. (2011). Expression profiling without genome sequence information in a non-model species, Pandalid shrimp (Pandalus latirostris), by next-generation sequencing. PloS one, 6(10), e26043.
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England), 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
Kesberg AI, Schleheck D (2013) Improved protocol for recovery of bacterial DNA from water filters: Sonication and backflushing of commercial syringe filters. Journal of Microbiological Methods 93(1): 55-57. https://doi.org/10.1016/j.mimet.2013.02.001
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular biology and evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., ... & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. bioinformatics, 23(21), 2947-2948.
Leitwein, M., Duranton, M., Rougemont, Q., Gagnaire, P. A., & Bernatchez, L. (2020). Using haplotype information for conservation genomics. Trends in ecology & evolution, 35(3), 245-258.
Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, Boehm JT, Machida RJ (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Frontiers in Zoology 10(1): 34. https://doi.org/10.1186/1742-9994-10-34
Li D., Hao Y., Duan Y. Nonintrusive methods for biomass estimation in aquaculture with emphasis on fish: a review // Reviews in Aquaculture. 2019. P. 1-22. doi: 10.1111/raq.12388.
Li, D. H., Shi, W., Munroe, T. A., Gong, L., & Kong, X. Y. (2015). Concerted evolution of duplicate control regions in the mitochondria of species of the flatfish family Bothidae (Teleostei: Pleuronectiformes). PLoS One, 10(8), e0134580.
Lischer, H. E., & Excoffier, L. (2012). PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics, 28(2), 298-299.
Marshall, C., & Parson, W. (2021). Interpreting NUMTs in forensic genetics: Seeing the forest for the trees. Forensic Science International: Genetics, 53, 102497.
Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinformatics 13(1): 31. https://doi.org/10.1186/1471-2105-13-31
Mercier C, Boyer F, Bonin A, Coissac E (2013) Programs and Abstracts of the SeqBio 2013 workshop. Abstract SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences. Programs and Abstracts of the SeqBio 2013 workshop. Abstract, 27–29.
Minteer, B. A. et al. 2014. Avoiding (re)extinction. – Science 344: 260–261.
Murakami, H., Yoon, S., Kasai, A. et al. Dispersion and degradation of environmental DNA from caged fish in a marine environment. Fish Sci 85, 327–337 (2019). https://doi.org/10.1007/s12562-018-1282-6
Nester, G. M., Heydenrych, M. J., Berry, T. E., Richards, Z., Wasserman, J., White, N. E., ... & Claassens, L. (2022). Characterizing the distribution of the critically endangered estuarine pipefish (Syngnathus watermeyeri) across its range using environmental DNA. Environmental DNA.
Nugent, C. M., Elliott, T. A., Ratnasingham, S., & Adamowicz, S. J. (2020). Coil: An R package for cytochrome c oxidase I (COI) DNA barcode data cleaning, translation, and error evaluation. Genome, 63 , 291–305. https://doi.org/10.1139/gen-2019-0206
Page, A. J., Taylor, B., Delaney, A. J., Soares, J., Seemann, T., Keane, J. A., & Harris, S. R. (2016). SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microbial genomics, 2(4).
Paradis, E. (2010). pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics, 26(3), 419-420.
Porter, T. M., & Hajibabaei, M. (2021). Profile hidden Markov model sequence analysis can help remove putative pseudogenes from DNA barcoding and metabarcoding datasets. BMC Bioinformatics, 22 (256), 1–20. https://doi.org/10.1186/s12859-021-04180-x
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Rees H. C. et al. The detection of aquatic animal species using environmental DNA–a review of eDNA as a survey tool in ecology // Journal of Applied Ecology. 2014. Vol. 51. №. 5. P. 1450-1459.
Rozas, Julio & Ferrer-Mata, Albert & Sánchez-DelBarrio, Juan & Guirao-Rico, Sara & Librado, Pablo & Ramos-Onsins, Sebastian & Sánchez-Gracia, Alejandro. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Molecular biology and evolution. 34. https://doi.org/10.1093/molbev/msx248
Schindler, D. E., Hilborn, R., Chasco, B., Boatright, C. P., Quinn, T. P., Rogers, L. A., & Webster, M. S. (2010). Population diversity and the portfolio effect in an exploited species. Nature, 465(7298), 609–612.
Schultz, J., & Hebert, P. (2021). Do pseudogenes pose a problem for metabarcoding marine animal communities?. Authorea Preprints.
Shu, L., Ludwig, A., & Peng, Z. (2021). Environmental DNA metabarcoding primers for freshwater fish detection and quantification: In silico and in tanks. Ecology and Evolution, 11(12), 8281-8294.
Siddiqui S. A. et al. Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data // ICES Journal of Marine Science. 2018. Vol. 75. №. 1. P. 374-389.
Sigsgaard, E. E., Jensen, M. R., Winkelmann, I. E., Møller, P. R., Hansen, M. M., & Thomsen, P. F. (2020). Population-level inferences from environmental DNA — Current status and future perspectives. Evolutionary Applications, 13(2), 245– 262. https://doi.org/10.1111/eva.12882
Sigsgaard, E. E., Nielsen, I. B., Bach, S. S., Lorenzen, E. D., Robinson, D. P., Knudsen, S. W., Pedersen, M. W., Jaidah, M. A., Orlando, L., Willerslev, E., Møller, P. R., & Thomsen, P. F. (2016). Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nature Ecology & Evolution, 1(1), 4– 4. https://doi.org/10.1038/s4155 9- 016- 0004
Singer, G. A., Shekarriz, S., McCarthy, A., Fahner, N., & Hajibabaei, M. (2020). The utility of a metagenomics approach for marine biomonitoring. BioRxiv.
Tsuji, S, Maruyama, A, Miya, M, et al. Environmental DNA analysis shows high potential as a tool for estimating intraspecific genetic diversity in a wild fish population. Mol Ecol Resour. 2020a; 20: 1248– 1258. https://doi.org/10.1111/1755-0998.13165
Tsuji, S., Miya, M., Ushio, M., Sato, H., Minamoto, T., Yamanaka, H. (2019). Evaluating intraspecific genetic diversity of a fish population using environmental DNA: An approach to distinguish true haplotypes from erroneous sequences. bioRxiv 429993. https://doi.org/10.1101/429993
Tsuji, S., Shibata, N., Sawada, H., & Ushio, M. Quantitative evaluation of intraspecific genetic diversity in a natural fish population using environmental DNA analysis. Molecular ecology resources. 2020b, 20(5), 1323–1332. https://doi.org/10.1111/1755-0998.13200
Turon, X., Antich, A., Palacín, C., Præbel, K., & Wangensteen, O. S. (2020). From metabarcoding to metaphylogeography: separating the wheat from the chaff. Ecological Applications, 30(2), e02036.
Veilleux, H. D., Misutka, M. D., & Glover, C. N. (2021). Environmental DNA and environmental RNA: Current and prospective applications for biological monitoring. Science of the Total Environment, 782, 146891.
Viker, S. M., Klingberg, Å. N., & Sundberg, P. (2006). The complete mitochondrial DNA sequence of the northern shrimp, Pandalus borealis. Journal of Crustacean Biology, 26(3), 433-435.
Vucetich, J. A. and Nelson, M. P. 2007. What are 60 warblers worth? Killing in the name of conservation. – Oikos 116: 1267–1278.
Wang et al., Assessment of fish composition and spatio-temporal distribution using acoustic and conventional netting methods in Xiangxi River, a large tributary of the Three Gorges Reservoir, China. Water. 2022.....
Wang, D., Xiang, H., Ning, C., Liu, H., Liu, J. F., & Zhao, X. (2019). Mitochondrial DNA enrichment reduced NUMT contamination in porcine NGS analyses. Briefings in Bioinformatics, 21 (4), 1368–1377. https://doi.org/10.1093/bib/bbz060
Wangensteen OS, Palacín C, Guardiola M, Turon X (2018) DNA metabarcoding of littoral hardbottom communities: High diversity and database gaps revealed by two molecular markers. PeerJ 6: e4705. https://doi.org/10.7717/peerj.4705
Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., & Hebert, P. D. (2005). DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1847-1857.
Yang, C., Bohmann, K., Wang, X., Cai, W., Wales, N., Ding, Z., ... & Yu, D. W. (2021). Biodiversity Soup II: A bulk‐sample metabarcoding pipeline emphasizing error reduction. Methods in Ecology and Evolution, 12(7), 1252-1264.
Zemanova, M. A. (2020). Towards more compassionate wildlife research through the 3Rs principles: Moving from invasive to non-invasive methods. Wildlife Biology, 2020.
Zepeda-Mendoza ML, Bohmann K, Carmona Baez A, Gilbert MTP (2016) DAMe: A toolkit for the initial processing of datasets with PCR replicates of double-tagged amplicons for DNA metabarcoding analyses. BMC Research Notes 9(1): 1-13. https://doi.org/10.1186/s13104-016-2064-9

Additional files, tables and figures