REFERENCES
  1. Li L, Yang L, Wang J, et al. Highly efficient separation of methane from nitrogen on a squarate-based metal organic framework. AlChE J . 2018; 64:3681-3689.
  2. Chang M, Zhao Y, Yang Q, Liu D. Microporous Metal-Organic Frameworks with Hydrophilic and Hydrophobic Pores for Efficient Separation of CH4/N2 Mixture. ACS Omega . 2019; 4:14511-14516.
  3. He Y, Zhou W, Qian G, Chen B. Methane storage in metal-organic frameworks. Chem Soc Rev . 2014; 43:5657-5678.
  4. Saha D, Grappe HA, Chakraborty A, Orkoulas G. Postextraction Separation, On-Board Storage, and Catalytic Conversion of Methane in Natural Gas: A Review. Chem Rev . 2016; 116:11436-11499.
  5. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature 2012; 488: 294-303.
  6. Limbri H, Gunawan C, Rosche B, Scott J. Challenges to Developing Methane Biofiltration for Coal Mine Ventilation Air: A Review.Water Air Soil Pollut . 2013; 224:1-15.
  7. Kim J, Maiti A, Lin L, Stolaroff JK, Smit B, Aines RD. New materials for methane capture from dilute and medium-concentration sources.Nat Commun . 2013; 4:1694.
  8. Guo Y, Hu J, Liu X, Sun T, Zhao S, Wang S. Scalable solvent-free preparation of Ni3(HCOO)6 frameworks for highly efficient separation of CH4 from N2. Chem Eng J . 2017; 327:564-572.
  9. Qadir S, Gu Y, Ali S, et al. A thermally stable isoquinoline based ultra-microporous metal-organic framework for CH4separation from coal mine methane. Chem Eng J. 2022; 428:131136.
  10. Du S, Wu Y, Wang X, et al. Facile synthesis of ultramicroporous carbon adsorbents with ultra-high CH4 uptake by in situ ionic activation. AlChE J. 2020; 66:e16231.
  11. Hu J, Sun T, Liu X, Zhao S, Wang S. Rationally tuning the separation performances of [M3(HCOO)6] frameworks for CH4/N2 mixtures via metal substitution. Microporous Mesoporous Mater . 2016; 225: 456-464.
  12. Niu Z, Cui X, Pham T, et al. A Metal-Organic Framework Based Methane Nano-trap for the Capture of Coal-Mine Methane. Angew Chem Int Ed . 2019; 58:10138-10141.
  13. Yang J, Li J, Wang W, Li L, Li J. Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-Membered Ring Hydrophobic Microporous High-Silica Zeolites: DDR, Silicalite-1, and Beta. Ind Eng Chem Res. 2013; 52:17856-17864.
  14. Wang X, Li L, Yang J, Li J. CO2/CH4and CH4/N2 separation on isomeric metal organic frameworks. Chin J Chem Eng. 2016; 24:1687-1694.
  15. Wang K, Li C, Liang Y, et al. Rational construction of defects in a metal-organic framework for highly efficient adsorption and separation of dyes. Chem Eng J. 2016; 289:486-493.
  16. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013; 341:974-986.
  17. Lu W, Wei Z, Gu Z, et al. Tuning the structure and function of metal-organic frameworks via linker design. Chem Soc Rev . 2014; 43:5561-5593.
  18. Bao Z, Chang G, Xing H, Krishna R, Ren Q, Chen B. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures, Energy Environ. Sci . 2016; 9:3612-3641.
  19. Zhai Q, Bu X, Zhao X, Li D, Feng P, Pore Space Partition in Metal-Organic Frameworks. Acc Chem Res. 2017; 50:407-417.
  20. Li JR, Sculley J, Zhou HC. Metal-Organic Frameworks for Separations.Chem Rev . 2012; 112: 869-932.
  21. Yu J, Xie L, Li J, Ma Y, Seminario JM, Balbuena PB. CO2 Capture and Separations Using MOFs: Computational and Experimental Studies. Chem Rev . 2017; 117:9674-9754.
  22. Adil K, Belmabkhout Y, Pillai RS, et al. Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship. Chem Soc Rev . 2017; 46:3402-3430.
  23. Yang Q, Liu D, Zhong C, et al. Development of Computational Methodologies for Metal-Organic Frameworks and Their Application in Gas Separations. Chem Rev . 2013; 113:8261-8323.
  24. Wang Y, Huang N, Zhang X, et al. Selective Aerobic Oxidation of a Metal-Organic Framework Boosts Thermodynamic and Kinetic Propylene/Propane Selectivity. Angew Chem Int Ed . 2019; 58:7692-7696.
  25. Bachman JE, Kapelewski MT, Reed DA, Gonzalez MI, Long JR. M2(m-dobdc) (M = Mn, Fe, Co, Ni) Metal-Organic Frameworks as Highly Selective, High-Capacity Adsorbents for Olefin/Paraffin Separations. J Am Chem Soc. 2017; 139:15363-15370.
  26. Hao H, Zhao Y, Chen D, et al. Simultaneous Trapping of C2H2 and C2H6 from a Ternary Mixture of C2H2/C2H4/C2H6in a Robust Metal-Organic Framework for the Purification of C2H4. Angew Chem Int Ed. 2018; 57:16067-16071.
  27. Wang S, Shivanna M, Yang Q. Nickel-Based Metal-Organic Frameworks for Coal-Bed Methane Purification with Record CH4/N2 Selectivity. Angew Chem Int Ed . 2022; 61:e17819.
  28. Chang M, Yan T, Wei Y, Wang J, Liu D, Chen J. Enhancing CH4 Capture from Coalbed Methane through Tuning van der Waals Affinity within Isoreticular Al-Based Metal-Organic Frameworks. ACS Appl Mater Interfaces 2022; 14:25374-25384.
  29. Gaab M, Trukhan N, Maurer S, Gummaraju R, Mueller U. The progression of Al-based metal-organic frameworks - From academic research to industrial production and applications. Microporous Mesoporous Mater . 2012; 157:131-136.
  30. Chen Y, Wang Y, Wang Y, et al. Improving CH4 uptake and CH4/N2 separation in pillar-layered metal-organic frameworks using a regulating strategy of interlayer channels. AlChE J . 2022; e17819.
  31. Li L, Lin R, Wang X, et al. Kinetic separation of propylene over propane in a microporous metal-organic framework. Chem Eng J . 2018; 354:977-982.
  32. Ding Q, Zhang Z, Yu C, et al. Exploiting equilibrium-kinetic synergetic effect for separation of ethylene and ethane in a microporous metal-organic framework. Sci Adv . 2020;6:eaaz4322.
  33. Bereciartua PJ, Corma A, Jorda JL,et al.Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene.Science 2017; 358:1068-1071.
  34. Lee CY, Bae YS, Jeong NC, et al. Kinetic Separation of Propene and Propane in Metal-Organic Frameworks: Controlling Diffusion Rates in Plate-Shaped Crystals via Tuning of Pore Apertures and Crystallite Aspect Ratios. J Am Chem Soc . 2011; 133:5228-5231.
  35. Lyndon R, You W, Ma Y, et al. Tuning the Structures of Metal–Organic Frameworks via a Mixed-Linker Strategy for Ethylene/Ethane Kinetic Separation. Chem Mater . 2020; 32:3715-3722.
  36. Zeng H, Xie M, Wang T, et al. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature 2021; 595:542-548.
  37. Cadiau A, Adil K, Bhatt PM, Belmabkhout Y, Eddaoudi M. A metal-organic framework-based splitter for separating propylene from propane.Science 2016; 353:137-140.
  38. Yu L, Han X, Wang H, et al. Pore Distortion in a Metal–Organic Framework for Regulated Separation of Propane and Propylene. J Am Chem Soc . 2021; 143:19300-19305.
  39. Liang B, Zhang X, Xie Y, et al. An Ultramicroporous Metal–Organic Framework for High Sieving Separation of Propylene from Propane.J Am Chem Soc . 2020; 142:17795-17801.
  40. Volkringer C, Loiseau T, Haouas M, et al. Occurrence of Uncommon Infinite Chains Consisting of Edge-Sharing Octahedra in a Porous Metal Organic Framework-Type Aluminum Pyromellitate Al4(OH)8C10O8H2(MIL-120): Synthesis, Structure, and Gas Sorption Properties.Chem Mater . 2009; 21:5783-5791.
  41. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett . 1996; 77:3865-3868.
  42. Yang J, Bai H, Shang H, Wang J, Li J, Deng S. Experimental and simulation study on efficient CH4/N2separation by pressure swing adsorption on silicalite-1 pellets.Chem Eng J . 2020; 388:124222.
  43. Liu J, Shang H, Yang J, Wang J, Li J, Deng S. Novel zeolite/carbon monolith adsorbents for efficient CH4/N2 separation. Chem Eng J . 2021; 426:130163.
  44. Zhang P, Zhong Y, Yao Q, et al. Robust Ultramicroporous Metal-Organic Framework with Rich Hydroxyl-Decorated Channel Walls for Highly Selective Noble Gas Separation. J Chem Eng Data 2020; 65:4018-4023.
  45. Chang M, Zhao Y, Liu D, Yang J, Li J, Zhong C. Methane-trapping metal-organic frameworks with an aliphatic ligand for efficient CH4/N2 separation. Sustain Energy Fuels 2020; 4:138-142.
  46. Lv D, Wu Y, Chen J, et al. Improving CH4/N2 selectivity within isomeric Al-based MOFs for the highly selective capture of coal-mine methane.AlChE J . 2020; 66:e16287.
  47. Liu X, Gu Y, Sun T, et al. Water Resistant and Flexible MOF Materials for Highly Efficient Separation of Methane from Nitrogen. Ind Eng Chem Res . 2019; 58:20392-20400.
  48. Chang M, Ren J, Yang Q, Liu D. A robust calcium-based microporous metal-organic framework for efficient CH4/N2 separation. Chem Eng J . 2021; 408:127294.
  49. Hu J, Sun T, Liu X, Guo Y, Wang S. Separation of CH4/N2 mixtures in metal-organic frameworks with 1D micro-channels. RSC Adv . 2016; 6:64039-64046.
  50. Chang M, Wang F, Wei Y, et al. Separation of CH4/N2 by an ultra-stable metal-organic framework with the highest breakthrough selectivity.AlChE J . 2022; 68:e17794.
  51. Shi Q, Wang J, Shang H, et al. Effective CH4enrichment from N2 by SIM-1 via a strong adsorption potential SOD cage. Sep Purif Technol . 2020; 230:115850.
  52. Kim MB, Thallapally PK. Effective CH4/N2 separation using NU-1000 at high pressures. J Coord Chem . 2021; 74:216-225.
  53. Saha D, Deng S. Structural Stability of Metal Organic Framework MOF-177. J Phys Chem Lett . 2010; 1:73-78.
  54. Chen Q, Luo M, Hammershoj P, et al. Microporous Polycarbazole with High Specific Surface Area for Gas Storage and Separation. J Am Chem Soc . 2012; 134:6084-6087.
  55. Li T, Jia X, Chen H, et al. Tuning the Pore Environment of MOFs toward Efficient CH4/N2 Separation under Humid Conditions. ACS Appl Mater Interfaces 2022; 14:15830-15839.
  56. Liu J, Tang X, Liang X, et al. Superhydrophobic zeolitic imidazolate framework with suitable SOD cage for effective CH4/N2 adsorptive separation in humid environments. AlChE J . 2022; 68:e17589.