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Abstract
Biological sequence data mining is a long-term hot spot in bioinformation. Biological sequence can be regarded as a set of characters composed of a number of letters and contain an evolutionary relationship. Time series is a set of numbers arranged according to time and contains the temporal progressive relationship. Time series is similar to biological sequence in terms of both representation and mechanism. Therefore, in the paper, biological sequence is represented with time series to form biological time sequence (BTS). Based on advanced time series methods, hybrid ensemble learning framework (SaPt-CNN-LSTM-AR-EA) for BTS is proposed. Single-sequence and multi-sequence models are constructed based on self-adaption pre-training one-dimensional convolutional recurrent neural network (CNN-LSTM) and autoregressive fractional integrated moving average (ARFIMA) integrated evolutionary algorithm, respectively. In the DNA sequence experiments of six kinds of viruses, SaPt-CNN-LSTM-AR-EA realized the good overall prediction performance, the prediction accuracy and correlation were 1.7073 and 0.9186, respectively. The effectiveness and stability of SaPt-CNN-LSTM-AR-EA were verified through the comparison with other five benchmark models. In addition, compared with other benchmark models, SaPt-CNN-LSTM-AR-EA increased the average accuracy by about 30%. This study opened up a new field of BTS research. The framework proposed in this paper is significant in many disciplines, such as biology, biomedicine, computer science and economics. Especially in sequence splicing, genome, computational biology, bioinformation, theoretical biology, evolutionary biology, signal processing, medicine and health care and other fields, the framework has a wide range of applications.
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1. Introduction
1.1. Background and research status
Biological sequences include three main types: DNA (Deoxyribonucleic Acids), RNA (Ribonucleic Acids), and protein sequence. In recent years, biological sequence data mining has been widely concerned and mainly focuses on the prediction and functional analysis of coding and non-coding regions of sequences, sequence characteristics analysis, sequence visualization, sequence alignment, gene identification, and evolutionary analysis 1-4. The main sequence research methods mainly include mathematical statistics method, signal processing method, time series method, and machine learning algorithms 5-7. At present, classification, clustering, alignment, similarity, prediction, and graphical representation of biological sequences have been extensively explored 8-10.
Biological time sequence (BTS) is the biological series represented by time series method. Time series models can be classified into three types: single models, hybrid models, and integrated models 11-13. Firstly, single prediction models mainly include autoregressive (AR), moving average (MA), autoregressive moving average (ARMA), autoregressive Integrated moving average (ARIMA), SVM, ANN-based model, and machine learning-based model. Single models mainly have shortcomings in predicting the hidden relationship between data, whereas hybrid models can obtain more accurate prediction results in establishing sequence model and forecasting 14-17. Secondly, hybrid models are classified into two types respectively based on data preprocessing and parameter optimization. In hybrid models based on data preprocessing, sequences are transformed into simpler data or divided into several sub-datasets. The hybrid models based on parameter optimization uses optimization algorithms to select the parameters of the prediction model. For example, various meta-heuristic algorithms are used to optimize the weights and thresholds of ANN, such as differential evolution (DE), simulated annealing (SA), particle swarm optimization (PSO), and genetic algorithm (GA) 18,19. Thirdly, in the past decade, integrated models have become a hotspot and have been widely used in sequence prediction. Integrated models have significant advantages and can improve the accuracy of sequence prediction and reduce the variance 20,21. In addition, the stability of the prediction model is improved. Deep learning algorithms are the emerging field of machine learning, such as recurrent neural network (RNN) 22,23. In the process of RNN training, the problem of gradient disappearance leads to the difficulty of training and the capture of long-term dependencies. To solve this problem, long-short term memory artificial neural network (LSTM) and its variants have been proposed. LSTM is a deep learning model with significant advantages. It has been widely used in sequence modeling of big data and complex task scenarios and has made a lot of achievements. In addition, as a basic unit, LSTM is integrated with other algorithms for sequence modeling and has achieved remarkable results 24,25.
In the preliminary work, our research group conducted relevant literature analysis of BTS . BTS has not been reported, but biological sequences are similar to time series. Based on historical biological sequence data, BTS forecasting is mainly to establish a suitable sequence prediction model by analyzing the trend, periodicity, and volatility of biological sequences, and then the established model is used to generate unknown data for biological sequences. Many time series prediction models can be used in BTSF. This study aims to establish a feasible and efficient computational framework for BTS.
1.2. Research motivation
Biological sequence contains DNA sequence, RNA sequence, and protein sequence. DNA sequence can be regarded as the sequence set of four letters (A, C, G, and T); RNA sequence is also the sequence set of four letters (A, C, G, and U); protein sequence is the sequence set of the most common twenty letters (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y). Time series is a sequence set of digital symbols composed in time order and similar to biological sequence in terms of data representation 26-31.
In terms of mechanism, time series is a sequence based on time, whereas biological sequence also contains a time series relationship due to the evolution of organisms. Time series and biological sequence are related to time order, so biological sequence is similar to time series. This paper aims to study biological sequence with the idea of time series and put forward a biological sequence model.
At present, biological sequence studies focus on single sequences. One of the disadvantages of single-sequence models is that some important feature information hidden in biological sequence is omitted or lost, thus affecting the modeling effect 32-35. In essence, there is a correlation between multivariate biological sequences. With this correlation, the dependence relationship between complex temporal patterns and variables can be obtained. In addition, the prediction accuracy of the model is improved. Although various kinds of machine learning algorithms have been widely applied in the studies on time series prediction, multivariate biological sequence prediction is still a challenge. Firstly, in this paper, the parallel multivariate biological sequences are used for modeling. Secondly, an integrated model is established through multi-channels to fuse the features of multivariate biological sequences. Finally, a multivariate biological sequence ensemble learning model is proposed based on time series method.
Especially in big data and complex tasks, deep learning algorithms combined with convolution and recurrent neural networks have become a hotspot in time series modeling. According to the characteristics of multivariate biological sequences, ARFIMA and one-dimensional convolutional recurrent neural network are applied in single-sequence and multi-sequence modeling, respectively. Then, the output of single sequence and multivariate sequence is fused one by one and a new integrated prediction model of multivariate BTS is proposed. In the integrated model, the pre-training strategy is combined with the self-adaptive mechanism of evolutionary algorithm and then the convolutional recurrent neural network and ARFIMA are modeled.
1.3. Contribution of this paper
(1) In this paper, the idea of parallel fusion of single sequences and multivariate sequences is proposed to form a new method for the study on multivariate biological sequence.
(2) A new idea based on the fusion of biological sequence and time series methods is proposed. The time series method is used to study biological sequence, thus providing a new idea for the study on biological sequence.
(3) This paper opens up a new biological sequence research field, biological time sequence, and provides a new research direction for bioinformatics, biogenetics, and computer science.
(4) A unique and innovative integrated model framework integrating multivariate feature extraction with adaptive pre-training strategies, ARFIMA, and convolutional recurrent neural networks is proposed.
2. Theory and Modeling
2.1. Transformation of biological sequences


A set of DNA sequences with the length n, are denoted(). The following three methods are used to transform biological sequences into time series 36-40.
2.1.1. Spectral time sequence
The spectral time sequence can be obtained by Eq. (1):
 .									(1)
2.1.2. CGR time sequence
Chaos game representation (CGR) is an iterative mapping technique. It maps each element in a sequence to a continuous coordinate space. The four nucleotides of DNA sequence are represented by the four vertices of a square. The coordinates of each base in the sequence are used to determine the position of the next base as follows:
1) The coordinates of square vertices are assigned to four nucleotides as: A = (1, 1); C = (-1, -1); G = (-1, 1); T = (1, -1).
2) The center of the square (0.5,0.5) is assigned to the starting position.
3) The first character of the DNA sequence is defined as the current character. The pointer moves half the distance from the current nucleotide to the last nucleotide coordinate point (The first time is the initial point) so as to determine the next position.
4) The next character of the DNA sequence is assigned to the current character and then Step 3 is implemented until the end of the DNA sequence. The procedure is illustrated in Eq. (2):

	.									(2)
2.1.3. Z time sequence
[bookmark: OLE_LINK3]In the set of DNA sequences,  respectively indicate the numbers of A, C, G, and T in the DNA sequence from base 1 to base . Z sequence is transformed into time series as follows:

	.											(3)
2.2. Descriptions and modeling
The BTS  is defined as:
,                       	    (4)
where  indicates the sequence with a length of before time;  fuses single-sequence pattern  with multivariate-sequence pattern . In this paper, by modeling  and , the ensemble learning module  is constructed for fusion training and the ensemble learning prediction model (SaPt-CNN-LSTM-AR-EA) is obtained. The model framework is shown in Figure 1. (More details are available free of charge at GitHub. https://github.com/gnnumsli/-DNA-Sequence -Forecasting-resource.git. )
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Figure1 Hybrid Ensemble Learning Framework

The input of SaPt-CNN-LSTM-AR-EA is  biological sequences  and the sequence vector of the next time is output after the fusion processing of single sequence module and multivariate sequence module. Firstly, with  biological sequences, ARFIMA is carried out to obtain N single-sequence output vectors. Then, the weight fusion sum calculation is carried out to obtain the output of single sequence pattern . Secondly, N biological sequences are combined to form the input of multivariate sequence patterns. Then the multi-sequences are input into LSTM for modeling. Finally, the weighted summation of multivariate output sequences is carried out to obtain the output  of multi-sequence pattern.
In the single sequence module, the classical statistical method ARFIMA is used to establish the model. The three parameters of ARFIMA model are optimized with the classical particle swarm evolution algorithm . The particle structure is illustrated as:
,													(5)
In the multi-sequence module, the temporal convolution of one-dimensional CNN is used to represent the dependence between multi-biological sequences. The one-dimensional convolution operation is illustrated as:
,														(6)
where  is the convolution result and  is the k-th convolution kernel.
After the execution of the one-dimensional convolution feature extraction, the results are used as the input of the model LSTM 41,42 to obtain the output of the multi-sequence pattern. The three parameters of LSTM model are also optimized by particle swarm optimization algorithm. The particle structure is illustrated as:
.                			                          (7)
Finally, the output of the frame A is obtained by fusing the output of single sequence and multivariate sequence. The procedure is illustrated as:
.        			                         (8)
2.3. Evaluation and testing
2.3.1. Precision and correlation
The average absolute percentage error and correlation coefficient are used to evaluate the prediction accuracy and correlation of the model as follows:

, 	 										(9)

, 							   	 	  (10)




where N is the total number of samples;  and  are respectively the predicted value and predicted average value of the model;  and are the experimental value and mean value, respectively.
2.3.2. Accuracy growth rate
In order to better evaluate the accuracy increase of the integrated model in the forecasting process, the accuracy growth rate is used to quantify the accuracy increase as:

,										 (11)

where  are respectively the mean absolute percentage errors of model i and model j.
2.3.3. Diebold-Mariano test
In order to verify the necessity of the model, the Diebold-Mariano (DM) test is adopted. Significant differences between the models are assessed with the calculated DM values of the prediction errors of the two models. The significance level is set as . Null hypothesis  indicates that the error of the integrated model is not significantly different from the comparison model. Valid hypothesis  is an alternative to . At the confidence level of 90% (i.e., the significance level  is 0.1), DM value should be less than 1.645. The confidence level of 90%  corresponds to 1.96. The confidence level of 99% corresponds to 2.58. Otherwise,  is refused, whereas  is accepted.
2.3.4. VAR
Variance of residuals (VAR) is a common and well-known indicator to evaluate the predictive stability of a model. Therefore, VAR is used to test the stability of the model as follows:
                         	         (12)
The larger the VAR value is, the more unstable the prediction result of the model is. In other words, the model is more dependent on the samples. On the contrary, the lower dependence of the model on samples indicates the more stable prediction result.
3. Results and discussion
3.1. Experimental data and analytics
3.1.1. Source of experimental data
The experimental data were the DNA sequences of six viruses (Table 1)downloaded from NCBI (https://www.ncbi.nlm.nih.gov).
Table 1 Source of experimental data
	Label
	Source
	Accession 
	Length (bp)

	A
	Human adenovirus C
	NC_001405
	35937

	B
	Dubowvirus MR25
	NC_010808
	44342

	C
	Infectious bronchitis virus
	NC_048213
	27464

	D
	Phietavirus MR11
	NC_010147
	43011

	E
	Abalone shriveling syndrome-associated virus
	NC_011646
	34952

	F
	Clostridium phage phiCD505
	NC_028764
	49316


The biological sequence is transformed into time series so as to obtain the corresponding BTS. According to the length of each BTS, the sequence is divided into several data to form a BTS database, which is used for model training, verification, and testing. The procedure is illustrated in Figure 2.
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Figure 2 Partition diagram of biological sequence
After sequence division, each BTS consists of several groups of subsequences. To improve the generalization ability of the model, each subsequence is divided into three subsets: training set (70%), validation set (15%), and test set (15%), as shown in Table 2.
Table 2 Experimental data distribution
	Label
	Training set
	Validation set
	Testing set
	Data points

	A
	420
	89
	89
	598

	B
	519
	110
	110
	739

	C
	321
	68
	68
	457

	D
	502
	107
	107
	716

	E
	408
	87
	87
	582

	F
	575
	123
	123
	821


3.1.2. Stationary analysis
Taking the BTS generated with sequences A, C, and E as an example, the BTS corresponding to the first 3000 bp is shown in Figure 3.
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Figure 3 Biological time sequence
In Figure 3, the time series curves obtained by A, C and E are characterized by large fluctuations, unequal amplitudes, and unequal position intervals, indicating that BTS has typical non-stationary characteristics. Other series have similar non-stationary characteristics.
3.1.3. Experimental data pre-processing
In order to reduce the interference caused by non-stationary series to the model, we carried out normalization and variance normalization transformations for each BTS. Each BTS produces six new series: normalized spectral time sequence, variance-normalized spectral time sequence, normalized CGR time sequence, variance-normalized CGR time sequence, normalized Z time sequence, and variance-normalized Z time sequence.
3.2. Results of the proposed model
The operating environment is Windows 10 64-bit OS (16 GB of memory and Intel (R) Core ™ i7-12700F processor). The deep learning framework was constructed with Matlab2020a programming. The transformed and preprocessed 6 BTSs were used for model testing and prediction simultaneously (see the architecture of the model and corresponding parameters in in Supporting Information). Finally, the output results of the model are reversely normalized to make the model more explanatory.
Firstly, SaPt-CNN-LSTM-AR-EA was trained with the training set. Secondly, various parameters of the model were adjusted to minimize the training error in the training process (see Supporting information). The relationship between the predicted value and the actual value of each data sample in the training set is shown in Figure 4.
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Figure 4 Prediction results of the training set
The closer the predicted data points are to the experimental line, the smaller the prediction error is. As shown in Figure 4, the predicted data points of the 6 biological sequences are basically distributed on the experimental line, indicating that the training effect of SaPt-CNN-LSTM-AR-EA was good on each sequence data set and that the model had been fully trained. The validation set was used to verify the reliability of the model. The parameters of the model were fine-tuned in the validation process so as to reduce the output error of the model. The distribution relationship between the predicted value and the actual value of the model in the validation set is shown in Figure 5.
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Figure 5 Prediction results of the validation set.
In the validation set, the data points predicted by the model are basically distributed near the straight line, indicating that the predicted value was in good agreement with the experimental value. The predicted value of SaPt-CNN-LSTM-AR-EA was more consistent with the experimental value. The trained model had the reliable and high-precision prediction ability. The model can be used to predict BTS.
After training and validation, the model was then subjected to prediction experiments. In the test set, the model was tested against each biological sequence. The test data of each biological sequence were used for model testing. The prediction results and relevant data statistics of the model are shown in Figure 6.
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Figure.6. Prediction results in the test set: (a) Mean distribution of the error between predicted and experimental values, (b) Error statistics of the model in each biological sequence test, and (c) Error distribution of the model in each biological sequence test.
The distributions of predicted values and experimental values and the mean distribution of errors are shown in Figure 6(a). The error statistics and error distribution of the model in each biological sequence test are respectively shown in Figures 6(b) and 6(c).
The predicted values of each sequence were basically consistent with the actual values except for some loci. In the error analysis results, most of the error points ere distributed around the value of 0 and the number of sequences with large errors accounted for a small proportion. The predicted values of the model were highly consistent with the experimental values in six biological sequences and the model had good prediction performance. The performance indexes of the model in the training set, validation set, and test set are shown in Table 3.


Table 3 Predictive performance indexes of the model
	Sequence
	Training set
	Validation set
	Test set

	
	MAPE
	R2
	MAPE
	R2
	MAPE
	R2

	A
	1.7335 
	0.9248 
	1.7491 
	0.9336 
	1.9925 
	0.9105 

	B
	1.6011 
	0.9275 
	1.6279 
	0.9346 
	1.6354 
	0.9167 

	C
	1.1417 
	0.9304 
	1.1331 
	0.9389 
	1.5128 
	0.9268 

	D
	1.5032 
	0.9289 
	1.4305 
	0.9215 
	1.6423 
	0.9142 

	E
	1.6563 
	0.9238 
	1.6101 
	0.9288 
	1.8153 
	0.9186 

	F
	1.6214 
	0.9311 
	1.6042 
	0.9345 
	1.7201 
	0.9193 

	Average
	1.5429 
	0.9278 
	1.5258 
	0.9320 
	1.7197 
	0.9177 


The values of performance indexes fully reflect the comprehensive performance of the model in the three data sets. The error in the validation set was small and the correlation was high. The prediction ability of training and validation sets was better than that of the test set. From the perspective of prediction mechanism, the goal of model training and validation is to reduce the output error, so the correlation should be higher compared with the new samples in the test set.
3.3. Comparison and analysis
In order to further verify the performance of the model, several models with better performance in time series forecasting in recent years were selected as benchmark comparison models in this paper. The theories and parameters of each model are shown in Table 4.
Table 4 Benchmark comparison models
	Model
	Model details
	References

	BI-ARFIMA
	Bayesian Inference for ARFIMA
	Durham, etc. 2019 43

	ARFIMA-LSTM
	ARFIMA-LSTM hybrid recurrent network
	Bukhari, etc. 2020 44

	EA-LSTM
	Evolutionary attention-based LSTM
	Li, etc. 2019 45

	CTS-LSTM
	LSTM network for correlated time series
	Wan, etc. 2020 46

	Conv-LSTM
	Convolutional neural network and LSTM
	Fu, etc. 2022 47


One hundred samples were randomly selected from 6 BTS data sets to form the test data set of the comparison model. Each benchmark model was used to predict each sample in the test data set. The prediction results of each model on sequence A are shown in Figure 7. The results on other sequences are similar to those of sequence A.
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Figure 7 Prediction performance of each benchmark model on sequence A
The correlation between the predicted and experimental values of each benchmark model is shown in Figures 7(a) and 7(b). The prediction results of SaPt-CNN-LSTM-AR-EA model were closer to the experimental line, indicating that the predicted results were more consistent with experimental results. The statistical distribution of predicted values is shown in Figures 7(c), 7(d), and 7(e). The statistical distribution of predicted points indicated that SaPt-CNN-LSTM-AR-EA model performed better than other models. The errors of each model are shown in Figure 8.
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Figure 8 Test errors of each benchmark model
In the error curve (Figure 8(a)), the error bar of the SaPt-CNN-LSTM-AR-EA model is closest to the origin and the prediction error is smaller, indicating that the model had the highest prediction accuracy. According to the error statistics (Figure 8(b)), most of the error points of SaPt-CNN-LSTM-AR-EA model were distributed between 1.4 and 2.0 and the average error was also the smallest, indicating that the accuracy of the model was relatively high. The correlation coefficient and calculation time of each benchmark model are shown in Figure 9
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Figure 9 Correlation coefficient and calculation time of each compared model
According to Figure 9(a), the correlation curve of SaPt-CNN-LSTM-AR-EA model is at the top of the coordinate and the coordinate value is closest to 1. In addition, the statistics of correlation data points also showed that the predicted values of the model in this paper had the highest correlation with experimental values. BI-ARFIMA model had the shortest computation time and CONV-LSTM model had the largest computation time (Figure 9(b)). SAPT-CNN-LSTM-AR-EA model also had the acceptable computation time. Table 5 shows the performance statistics of each model. SaPt-CNN-LSTM-AR-EA model performed better in terms of both prediction accuracy and correlation and its computation time was also acceptable.
Table 5  Statistics of predictive performance of each benchmark model
	Model
	MAPE
	R2
	Time

	BI-ARFIMA
	2.5174
	0.8288
	10.93

	ARFIMA-LSTM
	2.6243
	0.8232
	21.08

	EA-LSTM
	2.4877
	0.8149
	17.82

	CTS-LSTM
	2.2968
	0.8673
	22.48

	Conv-LSTM
	2.2108
	0.8664
	45.62

	SaPt-CNN-LSTM-AR-EA
	1.7073
	0.9186
	19.77


SaPt-CNN-LSTM-AR-EA model had obvious advantages over other models in terms of prediction accuracy and correlation due to the following factors. Firstly, the characteristics of multivariate sequences were fully utilized in the model. Secondly, adaptive pre-training mechanism improved the training performance. Thirdly, the advantages of CNN-LSTM in feature extraction had been fully utilized. SaPt-CNN-LSTM-AR-EA model belonged to a multi-layer cyclic deep learning framework and fused ARFIMA, so its computation time was long. In addition, compared with CTS-LSTM and CONV-LSTM models, SaPt-CNN-LSTM-AR-EA had a slight advantage in computation time because it adopted one-dimensional convolution operation.
3.4. Performance analysis and testing
3.4.1. Accuracy growth rate
In this paper, the accuracy growth rate of each benchmark model was calculated in order to verify the prediction accuracy of SaPt-CNN-LSTM-AR-EA model on the test dataset. The accuracy growth rate statistics of SaPt-CNN-LSTM-AR-EA and other five benchmark models are shown in Figure 10.
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Figure 10 Accuracy growth rate of SAPT-CNN-LSTM-AR-EA model compared with other benchmark models
[bookmark: OLE_LINK1]Compared with the 5 benchmark models (BI-ARFIMA, ARFIMA-LSTM, EA-LSTM, CTS-LSTM and Conv-LSTM), SaPt-CNN-LSTM-AR-EA model had different MAPE growth rates in 6 different biological sequences. The highest accuracy was increased by nearly 50% and the average accuracy was increased by about 30%. The accuracy improvement was obvious. 
The output of SaPt-CNN-LSTM-AR-EA model had obvious advantages in accuracy due to the comprehensive results of each algorithm. In addition, the performance of the model was significantly improved.
3.4.2. Diebold-Mariano test
DM test was performed to analyze the validity of the model. In invalid hypothesis , the error difference of the models is not obvious. In other words, there is no significant difference in the prediction accuracy. The DM test values of each model are shown in Table 6. At the significance level of 1%, all DM test values were above the upper limit of 2.58, suggesting that  should be rejected and that  should be accepted. The DM values indicated that the prediction performance was significantly different among the models.
Table 6 DM values of SaPt-CNN-LSTM-AR-EA and benchmark models (at the significance level of 1%)
	Sequence
	BI-ARFIMA
	ARFIMA-LSTM
	EA-LSTM
	CTS-LSTM
	Conv-LSTM
	Average

	A
	5.2319 
	5.2951 
	5.4511 
	5.1221 
	4.2437 
	5.0688 

	B
	4.4318 
	5.3555 
	5.8193 
	5.2391 
	4.1951 
	5.0082 

	C
	5.9460 
	5.4438 
	4.7947 
	3.5907 
	5.2476 
	5.0046 

	D
	5.1702 
	4.9207 
	5.5258 
	4.8178 
	5.0280 
	5.0925 

	E
	5.5484 
	4.9639 
	4.9925 
	4.8713 
	4.6340 
	5.0020 

	F
	5.3184 
	5.3652 
	4.8212 
	5.7784 
	3.8258 
	5.0218 

	Average
	5.2745 
	5.2240 
	5.2341 
	4.9032 
	4.5290 
	5.0330


DM test was performed to test the necessity of modeling. DM values at the confidence level of 99% showed that SaPt-CNN-LSTM-AR-EA model was necessary and effective. The data distribution of DM values suggested the performance differences among the models. The performance of BI-ARFIMA, ARFIMA-LSTM, and EA-LSTM models was basically the same, and the performance of CTS-LSTM was the same as that of CONV-LSTM. CONV-LSTM had a slight advantage. The DM value on each sequence showed that the performance of the model was basically the same without significant difference among all the sequences.
3.4.3. VAR
The proposed model is to improve the efficiency, accuracy, and stability of prediction. We used variance of residuals (VAR) to test the stability of the model. The VAR change curves of each model are shown in Figure 11. The VAR curve of SaPt-CNN-LSTM-AR-EA model was close to the abscissa, indicating that the model was more stable. In addition, BI-ARFIMA and ARFEIMA-LSTM had similar stability and CTS-LSTM was more stable than EA-LSTM.
[image: ]
Figure 11 VAR of each model
The results of VAR stability test indicated that the stability of SaPt-CNN-LSTM-AR-EA model was basically the same among all the BTS because the fusion of multivariate sequences in the model avoided the defect of single sequence output error and improved the generalization ability. The results also proved the good scalability of the model.
4. Conclusions and Outlook
This paper proposes an integrated prediction model of biological sequence based on time series theory method: SaPt-CNN-LSTM-AR-EA. The results of DNA sequences of six viruses indicated that the model had a good overall prediction accuracy. The performance analysis and test confirmed the better reliability of the model. This study opened up a new field of BTS research and provided a new idea for biological sequence and time series research. The proposed integrated model framework is significant in many fields, such as biology, computer, economics, and medicine. The framework can be widely used in bioinformation, genetic evolution, financial economy, meteorology and hydrology, signal processing, electric power, medicine, and health care.
The algorithm proposed in this paper has achieved good experimental results, but its computing time was long. In the future work, we will further improve the performance, efficiency, and generalization ability of the model and reduce the time and space complexity. We will design more optimized algorithms and models based on the parallel computing strategy for the purpose of mining and analyzing large specification biological sequence data.
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