Stefan Geisen

and 2 more

Soil protists are increasingly studied due to a release from previous methodological constraints and the acknowledgement of their immense diversity and functional importance in ecosystems. However, these studies often lack a sufficient depth in knowledge, which is visible in the form of falsely used terms and false- or over-interpreted data with conclusions that cannot be drawn from the data obtained. As we welcome that also non-experts include protists in their still mostly bacterial and/or fungal focused studies, our aim here is to help avoid some common errors. We provide an overview of current terms to be used when working on soil protists, like protist instead of protozoa, predator instead of grazer, microorganisms rather than microflora and terms to be used to describe the prey spectrum of protists. We then highlight some do’s and don’ts in soil protist ecology including challenges related to interpreting 18S rRNA gene amplicon sequencing data. We caution against the use of standard bioinformatic settings optimized for bacteria and the uncritical reliance on incomplete and partly erroneous reference databases. We also show why causal inferences cannot be drawn from sequence-based correlation analyses or any sampling/monitoring, study in the field without thorough experimental confirmation and sound understanding of the biology of taxa. Together, we envision this work to help non-experts to more easily include protists in their soil ecology analyses, and obtain more reliable interpretations from their protist data and other biodiversity data that, in the end, will help to better understand soil ecology.

Guillaume Lentendu

and 10 more

A large part of the soil protist diversity is missed in metabarcoding studies based on 0.25 g of soil environmental DNA (eDNA) and universal primers due to ca. 80 % co-amplification of non-target plants, animals and fungi. To overcome this problem, enrichment of the substrate used for eDNA extraction is an easyly implemented option but its effect has not yet been tested. In this study, we evaluated the effect of a 150 µm mesh size filtration and sedimentation method to improve the recovery of protist eDNA, while reducing the co-extraction of plant, animal and fungal eDNA, using a set of contrasted forest and alpine soils from La Réunion, Japan, Spain and Switzerland. Biodiversity of the whole eukaryotic community was estimated with V4 18S rRNA metabarcoding and classical amplicon sequence variant calling. A 2-3-fold enrichment in shelled protists (Euglyphida, Arcellinida and Chrysophyceae) was observed at the sample level with the proposed method, with, at the same time, a 2-fold depletion of Fungi and a 3-fold depletion of Embryophyceae. Protist alpha diversity was slightly lower in filtered samples due to reduced coverage in Variosea and Sarcomonadea, but significant differences were observed in only one region. Beta diversity was mostly impacted by region and habitat, and explained the same variance in bulk soil and filtered samples. The increase resolution in the soil protist diversity provided by the filtration-sedimentation method is a strong argument to include it in the standard preparation of any future soil for protist eDNA metabarcoding studies.