References
1. Kolosnjaj-Tabi J., di Corato R., Lartigue L., Marango I., Guardia P.,
Silva A.K., Luciani N., Clément O., Flaud P., Singh J.V., et al.
Heat-generating iron oxide nanocubes: Subtle “destructurators” of the
tumoral microenvironment. ACS Nano. 2014;8:4268–4283.
2. Maier-Hauff K., Ulrich F., Nestler D., Niehoff H., Wust P., Thiesen
B., Orawa H., Budach V., Jordan A. Efficacy and safety of intratumoral
thermotherapy using magnetic iron-oxide nanoparticles combined with
external beam radiotherapy on patients with recurrent glioblastoma
multiforme. J. Neurooncol. 2011;103:317–324.
3. Laurent S., Dutz S., Häfeli U.O., Mahmoudi M. Magnetic fluid
hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv.
Colloid Interface Sci. 2011;166:8–23.
4. Danhier F., Feron O., Preat V. To exploit the tumor microenvironment:
Passive and active tumor targeting of nanocarriers for anti-cancer drug
delivery. J. Control Release. 2010;148:135–146.
5. Caputo F., de Nicola M., Ghibelli L. Pharmacological potential of
bioactive engineered nanomaterials. Biochem. Pharmacol.
2014;92:112–130.
6. Van Landeghem F.K., Maier-Hauff K., Jordan A., Hoffmann K.-T.,
Gneveckow U., Scholz R., Thiesen B., Brück W., von Deimling A.
Post-mortem studies in glioblastoma patients treated with thermotherapy
using magnetic nanoparticles. Biomaterials. 2009;30:52–57.
7. Orel V., Shevchenko A., Romanov A., Tselepi M., Mitrelias T., Barnes
C.H., Burlaka A., Lukin S., Shchepotin I. Magnetic properties and
antitumor effect of anocomplexes of iron oxide and doxorubicin.
Nanomedicine. 2015;11:47–55.
8. Hilger I., Kaiser W.A. Iron oxide-based nanostructures for MRI and
magnetic hyperthermia. Nanomedicine. 2012;7:1443–1459.
9. Bhattacharyya S., Kudgus R.A., Bhattacharya R., Mukherjee P.
Inorganic nanoparticles in cancer therapy. Pharm Res. 2011;28:237–259.
10. Silva A.C., Oliveira T.R., Mamani J.B., Malheiros S.M., Malavolta
L., Pavon L.F., Sibov T.T., Amaro E., Jr., Tann_us A., Vidoto E.L.
Application of hyperthermia induced by superparamagnetic iron oxide
nanoparticles in glioma treatment. Int. J. Nanomed. 2011;6:591–603.
11. Johannsen M., Thiesen B., Wust P., Jordan A. Magnetic nanoparticle
hyperthermia for prostate cancer. Int. J. Hyperthermia.
2010;26:790–795.
12. (a) Hemmati S et al . Appl Organometal Chem2019; 33: e5277.
DOI:10.1002/aoc.5277. (b) Hemmati S et al . Appl Organometal
Chem2020; 34: e5274. DOI:10.1002/aoc.5274. (c) Zangeneh MM. Appl
Organometal Chem2020; 34: e5295. DOI:10.1002/aoc.5295. (d) Zangeneh MMet al . Appl Organometal Chem 2019; 33: e4961. (e) Zangeneh MMet al . Appl Organometal Chem. 2019, 33, e5016. (f)
Zangeneh A et al . Appl Organometal Chem. 2019,33, e5247.
DOI:10.1002/aoc.5247. (g) Zangeneh MM et al . Appl Organometal
Chem 2019; 33: e5246. DOI: 10.1002/aoc.5246. (h) Mahdavi B et al .
Appl Organometal Chem 2019; 33: e5248. DOI:10.1002/aoc.5248.
13. (a) Hamelian M et al . Appl Organometal Chem 2018; 32: e4458.
(b) Hemmati S et al . Polyhedron 2019; 158: 8-14. (c) Hamelian Met al . Appl Organometal Chem 2020; 34: e5278. (d) Mohammadi Get al . Appl Organometal Chem2020; 34: e5136. (e) Ahmeda Aet al . Appl Organometal Chem 2020; 34: e5378. (f) Zangeneh MM.
Appl Organometal Chem 2020; 34: e5295. (g) Jalalvand AR et al . J
Photochem Photobiol B 2019; 192: 103–112.
14. R. Fazaeli, H. Aliyan, N. Fazaeli, Open Catal. J. 3 (2010) 14–18.
15. S. R. Konda, B. R. Reguri, M. Kagga, Der Pharma Chem. 6 (2014)
228–233.
16. C. Pan, B. Hu, W. Li, Y. Sun, H. Ye, X. Zeng, J. Mol. Catal. B:
Enzym. 61 (2009) 208–215.
17. C. Sartori, D. S. Finch, B. Ralph, Polymer . 38 (1997) 43-51.
18. Felice B., Prabhakaran M.P., Rodríguez A.P., Ramakrishna S. Drug
delivery vehicles on a nano-engineering perspective. Mater. Sci. Eng. C.
2014;41:178–195.
19. Fernandes E., Ferreira J.A., Peixoto A., Lima L., Barroso S.,
Sarmento B., Santos L.L. New trends in guided nanotherapies for
digestive cancers: A systemic review. J. Control Release.
2015;209:288–307.
20. Caputo F., de Nicola M., Ghibelli L. Pharmacological potential of
bioactive engineered nanomaterials. Biochem. Pharmacol.
2014;92:112–130.
21. Danhier F., Feron O., Preat V. To exploit the tumor
microenvironment: Passive and active tumor targeting of nanocarriers for
anti-cancer drug delivery. J. Control Release. 2010;148:135–146.
22. Laurent S., Dutz S., Häfeli U.O., Mahmoudi M. Magnetic fluid
hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv.
Colloid Interface Sci. 2011;166:8–23.
23. Maier-Hauff K., Ulrich F., Nestler D., Niehoff H., Wust P., Thiesen
B., Orawa H., Budach V., Jordan A. Efficacy and safety of intratumoral
thermotherapy using magnetic iron-oxide nanoparticles combined with
external beam radiotherapy on patients with recurrent glioblastoma
multiforme. J. Neurooncol. 2011;103:317–324.
24. Kolosnjaj-Tabi J., di Corato R., Lartigue L., Marango I., Guardia
P., Silva A.K., Luciani N., Clément O., Flaud P., Singh J.V., et al.
Heat-generating iron oxide nanocubes: Subtle “destructurators” of the
tumoral microenvironment. ACS Nano. 2014;8:4268–4283.
25. Bhattacharyya S., Kudgus R.A., Bhattacharya R., Mukherjee P.
Inorganic nanoparticles in cancer therapy. Pharm Res. 2011;28:237–259.