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Abstract: With the development of smart distribution network and the proposal of dual carbon target, the importance of demand side management in improving the flexible operation of power system is becoming more and more prominent. In order to solve the problems of excessive load peak valley difference, insufficient utilization of demand side resources, and unreasonable pricing of aggregators, this paper propose an economic optimization scheme for aggregators based on electric vehicle three-stage dispatching. First, the loss aversion analysis is conducted on the willingness of electric vehicle users to participate in dispatching. The contract signing methods between aggregators and electric vehicles are divided into three categories: complete dispatching, rolling reward and punishment mechanism dispatching, and free dispatching. Next, the response model of electric vehicle users based on the improved cloud model is obtained. Then, the aggregators conduct three-phase optimal dispatching for electric vehicles according to the bid winning peak shaving capacity. Phase 1 according to the time of regional differences, the dispatching of reward power set rewards and punishment mechanism, phase 2 to determine the full freedom dispatching of electric vehicles, three kinds of dispatching and dynamic load capacity of electricity, phase 3 according to the phase 1 and 2, the amount of information and user loss aversion, the user response model of final rolling rewards and punishment mechanism, get the aggregators final pricing schemes. Finally, a numerical example is given to verify the feasibility of the proposed method. 
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2. Introduction
In recent years, the power system is facing great challenges. With the proposal of the dual carbon goal, in order to better solve the problems of environmental pollution and energy shortage, more and more renewable energy and dispatchable loads are connected to the grid. At the same time, the interconnection of multiple energy sources also gives rise to different kinds of power markets, which has promoted the transformation of traditional distribution networks to smart distribution networks. With the development of smart distribution network, demand side management is more and more important in improving the flexible operation of power system. The electric vehicle industry is strongly supported by the government. The number of EVs(electric vehicles) is increasing and has become an important part of people's daily travel. In addition, many foreign EV-surveys show that by 2030, EVs will account for 30% of the total vehicle sales, even higher in some countries. However, due to the randomness of the travel time of EV owners, their charging also has great uncertainty. If no action is taken to control the charging behavior, a large number of EVs will be connected to the grid for disorderly charging, which will threaten the security and stability of the grid operation.
Aggregators[1-9] are newly born service enterprises developed from demand response, mainly providing users with professional demand response technology and efficient consulting services. They obtain benefits by aggregating demand response resources and participating in demand response capacity and electric energy bidding as agents. Power system needs to keep balance between supply and demand, so the traditional approach is to increase the output of generator units when the load demand is high, but the peak load period usually shorter duration, leading to the low investment utilization rate of the power generation, transmission and distribution. In addition, most of the peak load regulators are high cost and environmentally unfriendly thermal power units. Therefore, the balance between supply and demand can be achieved by reducing or delaying the power load on the demand side. When the price of the wholesale electricity market rises or the system reliability is threatened, to ensure the stability of the power grid system and curb the short-term behavior of price rise, aggregators and other companies temporarily change their inherent customary power consumption mode according to the price signal or incentive measures, reducing or shifting the power load in a certain period. In recent years, the national policy has put forward clear requirements for demand response capacity building by guiding and encouraging end users to use peak shaving resources, covering about 3% of the maximum annual load [10-11].
In terms of loss aversion, literature [12] studied the stability of the non-cooperative switching system with quadratic return based on loss avoidance.Literature [13] studied the stability conditions of non-cooperative exchange systems with loss averse agents. Literature [14] studied the effects of ambiguity aversion and loss aversion on robust optimal portfolio returns. Literature [15] designed a payment mechanism to encourage users to improve data quality based on loss aversion. Literature [16] redefined the tail value of risk based on uncertainty theory in order to measure risk aversion. Most of the existing researches on loss aversion are limited to the financial industry. This paper introduces loss aversion to EV users for the first time, so as to avoid users' losses and improve users' participation willingness to participate in pricing.
In terms of pricing, literature [17] proposed fixed contracting strategies and flexible contracting strategies in combination with price based and incentive based demand response measures. Literature [18] proposed a dual time scale reinforcement learning algorithm to learn the optimal incentive strategy under user disturbance response. Literature [19] proposed a two-stage optimal dispatching scheme for regional power grid based on the strategy of EVs participating in peak shaving pricing. Literature [20] proposed a theoretical method based on electric power consumer satisfaction to quantify incentive compensation. Literature [21] established the orderly scheduling strategy of EVs under V2G technology. Literature [22] proposed a node price method for EVs. Literature [23] studied a new optimization method of TOU(time-of-use) price considering two-way feedback effect. Literature [24] based on the use of price time, the online dispatching strategy of EVs is formulated. Literature [25]proposed a new deep reinforcement learning method to solve the pricing problem of EVs . Some articles have mentioned the contract between aggregators and EVs, but the existing research had not classified the contract between aggregators and EVs. Different contract types have different electricity price settings and reward and punishment mechanisms.
[bookmark: _Hlk116722074]In order to solve the problems such as excessive load peak valley difference, insufficient utilization of demand side resources and unreasonable pricing of aggregators, the loss aversion of EV users caused by participating in dispatching should be analyzed, the contract signing methods between aggregators and EVs should be divided into three categories, which are respectively complete dispatching, rolling reward and punishment mechanism dispatching, and free dispatching. The improved cloud model is obtained by considering the index weights on the basis of the cloud model, and the EV user response volume model based on the improved cloud model is obtained. The aggregator conducts three-phase optimal dispatching of EVs according to the bid winning peak shaving capacity. In the first stage, the reward price for rolling reward and punishment mechanism dispatching is preseted according to the time and regional differences. In the second stage, the peak shaving capacity of complete dispatching and free dispatching EVs and the dynamic price for three types of dispatching are determined. At the same time, the rolling reward and punishment mechanism dispatching willingness of EV users is collected. In the third stage, according to the information in the first and second stages, the user loss aversion, the user response model, the rolling reward and punishment mechanism is finally determined, and the pricing scheme of aggregators for three types of EVs is obtained. The feasibility of the proposed method is verified through numerical example analysis.
The following sections of the paper are presented in the following order. Section 2 describes the concept of aggregators and the characteristics of the electric vehicles. Section 3 describes the preferences of EVs to participate in dispatching and the types of contracts between aggregators and EVs. Section 4 describes the aggregators for three phase EVs, optimization of concrete steps. Section 5 is an example analysis to verify the feasibility of this scheme.Finally, Section 6 summarizes this study and possible future work.
3. Aggregator concept and EV characterisitce 
3.1. Aggregator concept 
In order to further improve the construction of electricity peak shaving auxiliary service market, the market mechanism is used to encourage aggregators to provide peak shaving resources, fully tap the peak shaving potential of aggregators including distributed energy storage, EVs, electric heating, virtual power plants and other load side regulation resources, as well as power generation side energy storage, and improve the consumption space of renewable energy. As the intermediary between the network side and the EVs, the aggregator needs to aggregate the resources on the EV side in the form of electricity price to reach the standard of peak shaving capacity.
There are three options for EVs contracted with aggregators: 1. complete dispatching: the dynamic electricity price of EV charging is the lowest, but the aggregators must comply with the dispatching tasks when releasing them, otherwise they need to pay default fees. 2.Rolling reward and punishment mechanism dispatching: the dynamic electricity price of EV charging is higher than that of Mode 1, but the aggregator will set a rolling reward and punishment mechanism to guide the charging and discharging of EVs. The EVs can decide the charging and discharging time according to the price, and there is no default. 3. Free dispatching: Although EVs have signed contracts with aggregators, they only provide real-time charging and location information, with the highest dynamic price. The relationship among distribution network, aggregator and EV is shown in Figure 1.
[image: ]
Fig.1 Relationship diagram of the three
[bookmark: _Hlk116725966]2.2 EV user information collection 
The aggregator designs a software, and the aggregator signs a contract with the EVs. The EVs needs to provide the aggregator with the following information: the real-time location of the EVs, the real-time electricity quantity, the electricity quantity to be charged in the next period, the travel time of the user, the time of the user's next charging, and the charging station. The EV can choose to connect the system with the EVs to automatically obtain the information of each period, can also choose to manually input information, fully protect the privacy of users.
[image: ]
Fig.2 User information collection interface
2.3 Prediction of daily travel rules for EV users
Taking the urban traffic network as the carrier, the Monte Carlo sampling method is used to simulate the change of SOC(State of charge) of EV-users during travel.
The driving characteristics of EVs are random. Without any guidance and restriction measures, the peak demand for charging load of large-scale EVs will appear near the peak of the original load, causing the load curve near the peak load of the distribution network to move up. Both Spatio-temporal distribution characteristics of charging demand and the demand analysis of stochastic movement of EVs couple the transportation system and the power system in space and time domain. According to the purpose of the trip, residents start at the initial location, go through several destinations in a certain time sequence, and finally arrive at the final destination to end the trip. This process is an EV trip chain. In this paper, travel locations are divided into residential area H, working area W, leisure area L and other areas O. The travel chain of EVs is shown in Figure 3.
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Fig.3 Travel chain of EVs
The daily travel time of EV-users [26] follows certain rules, as shown in Figure 4.
[image: ]
Fig.4 Probability distribution of all day travel time of EVs
According to the data of the US Department of Transportation [26], the daily mileage of private cars conforms to the lognormal distribution:

     (1)



Where,  is the daily driving distance of EVs,  is the mean value,  is the standard deviation.
The end time of EV daily journey conforms to the normal distribution [26], which is also the start time of EV charging, and its probability distribution is:

   (2)


Where,  is the mean value and  is the standard deviation.
4. Preference and contract type of EVs 
3.1 Loss aversion
Loss aversion means that when people face the same amount of gains and losses, they think that losses are more intolerable to them. The negative utility of equal loss is far greater than the positive utility of equal return. Loss aversion reflects that people's risk preferences are not consistent. When it comes to returns, people behave as risk aversion, and when it comes to losses, people behave as risk seeking. Therefore, aggregators need to consider the participation willingness of users when formulating electricity prices, and the participation willingness of users is related to the loss aversion of users to the charge and discharge dispatching behavior. Users will have loss aversion and refuse to participate in the discharge dispatching when the electricity price involved in the discharge dispatching cannot exceed the damage to the life of EVs caused by the discharge, the time lost in user dispatching, and the time taken for transportation. Similarly, When the value brought by the electricity price participating in the charging dispatching cannot exceed the time lost by the EV users in dispatching, the traffic energy consumption and so on, the users will be disgusted with the loss and refuse to participate in the charging dispatching. Therefore, the aggregators should consider their own interests, as well as the time lost by the users, the traffic energy consumption, the battery loss and other factors when formulating the electricity price.
In 1979, Kahneman and Tversky put forward [27] prospect theory. They studied investors' risk preference and loss aversion, and concluded that people's profit status or loss status would make them react differently in the same environment. According to the experimental data, economic behavior individuals are more sensitive to losses than profits, in other words, when the amount of profits and losses are the same, the satisfaction brought by profits is lower than the depression brought by losses. At the same time, compared with taking risks to maximize profits, economic actors are more willing to take risks to avoid losses. When profits exist, most economic individuals are risk averse. When losses occur, most economic individuals become risk seekers. That is, when faced with certain opportunities to make money, most economic individuals are risk averse. When faced with certain losses, most economic individuals are willing to take risks to avoid losses.
The utility function based on relevant experiments and conclusions is shown in Equation (3). The utility function curve is S-shaped, as shown in Figure 5. The curve is concave when making profits and convex when making losses. However, the concave of losses is steeper than the convex of profits. Therefore, it can be proved that EV-users are more disgusted with the risks brought by losses.

[bookmark: _Hlk113360353]                    (3)










where  is the reference point, which is determined according to the subjective will of the decision-maker.  represents the utility change of profit,  represents the utility change of loss,  and  represent the increasing function,  represents that individuals are more sensitive to loss under the same conditions,  and  are profit and loss curve parameters,  and  are respectively.
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Fig.5 Loss risk utility curve



EV-users want to maximize the cost of charging reduction, so they need to find a strategy  to maximize the expected utility at moment . The objective function of EVs is .
It is assumed that EVs aims to maximize its profit from participating in peak shaving, which should meet the following conditions: profit from participating in peak shaving minus total traffic energy consumption participating in peak shaving should be a positive number.

When participating in peak shaving, due to the influence of energy consumption, time required to go to the charging station, charging and discharging times on battery life and other factors, the EV users suffer losses, and the users have loss aversion, and the loss aversion coefficient is .






Assume that the profit of the EV is  after the settlement of the dynamic electricity price and rolling reward and punishment mechanism when the EV participates in peak shaving, and the overall impact of the energy consumption , time  and the impact on battery life  required to participate in peak shaving in this period is , if , the EV user has losses, otherwise, the user gains profits. Based on this, according to the core of the prospect theory. The utility function of loss aversion EV users participating in peak shaving can be obtained as

                     (4)

                 (5)



Where,  ,  and  are respectively the energy consumption required to participate in peak regulation during this period, the time, and the influencing factors on battery life.
From the above equation, the expected utility function of loss averse EV users can be obtained as follows:

(6)

where  represents the average value of the total value evaluated by EV-users to participate in peak-shaving.
3.2 User response model based on improved cloud model
The cloud model is mainly used for the mutual transformation between qualitative and quantitative. The uncertainty in nature mainly has randomness and fuzziness from the attribute perspective. The biggest advantage of cloud model is that it reveals the correlation between uncertainty and fuzziness, and realizes the natural conversion between qualitative linguistic value and quantitative value. Whether EV users participate in the dispatching has certain randomness and fuzziness. This paper obtains an improved cloud model based on the cloud model considering the index weight, and establishes a user response model based on user loss aversion based on the improved cloud model.
1. Basic cloud model



The expectation of the spatial distribution of cloud droplets in the universe is the point value that can best represent the qualitative concept. It reflects the cloud center of gravity of the cloud droplet group of this concept, which is generally represented by the symbol ; Entropy represents the uncertainty degree of cloud droplets, which is determined by the degree of dispersion and fuzziness, and represents the uncertainty and fuzziness of cloud droplet distribution, which is generally represented by symbol ; Hyperentropy is used to measure the uncertainty of entropy, in other words, it is the entropy of entropy. The greater the super entropy is, the greater the uncertainty of the model is, and the greater the cloud thickness is, which is generally represented by the symbol .
2. Trigger mechanism of normal cloud generator



1) Generate a normal random number  with  as the expectation and  as the variance;



2) Generate a normal random number  with  as the expectation and  as the variance;



3) Calculate the degree of certainty , and  is a cloud drop relative to universe ;
4) Repeat steps 1) - 3) until enough cloud droplets are generated.
3. Entropy weight method improves entropy value




The entropy value in the cloud model is improved by using the entropy weight method. Based on the specific data of EV trips a few days before the evaluation, the judgment matrix of the willingness of the EV team to participate in peak shaving under the TOU tariff is obtained. The judgment matrix of the willingness of the EV team to participate in peak shaving with different electricity prices set by the aggregator is , and the matrix  is obtained after the normalization of the judgment matrix. The information entropy  of the index  is calculated as follows:

                  (7)


where  is the characteristic proportion of the evaluation object . The smaller the entropy weight is, the greater the variation degree of the index value is, the more information is provided, and the greater the weight is.






Calculate the entropy weight  of each index. When the value of the  index of each evaluated object is equal, . Define the difference coefficient  so that . The greater the difference coefficient , the greater the index weight. The entropy weight of each index parameter is as follows:

               (8)

where  is the weight.
Figure 6 shows the response volume of EVs, where the solid line is the response volume of EVs, and the upper and lower dotted lines are the maximum and small responses of EVs respectively.
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Fig.6 The curve of user response volume versus incentive level









Assuming that the single response of EV dispatching in period  fluctuates near the expected single response , and its response is , and each response will have an impact on the next response, so it can be seen that the response of EV-users has great uncertainty. The psychological effect of EVs, emergencies and other factors will have a certain impact on the response, but these factors have a small impact on the user's participation in dispatching. The user's response can be regarded as a normal distribution. The response  takes  as the expectation and  as the variance. The expected response increases with the increase of the incentive price set by the aggregator and the decrease of the dynamic price.  represents the distribution range of the user's response in period , It also represents the entropy in the improved cloud model, which is determined by the incentive price and dynamic price set by the aggregator. This reflects the degree of dispersion of demand response, namely randomness, and the number of users whose responses can be accepted within the fluctuation range, namely fuzziness. The larger the value, the larger the fluctuation range of demand response, and the greater the uncertainty of response.  is the user response cloud thickness, which is the super entropy in the cloud model, reflecting the uncertainty degree of entropy. The main influencing factor is the signing type of EVs participating in scheduling. The smaller the value, the more concentrated the user response distribution, and the closer the response distribution is to the normal distribution.
3.3 Aggregator and EV contract type
The contract signing mode between aggregators and EVs includes complete dispatching, rolling reward and punishment mechanism dispatching and free dispatching. The EV contracted with the aggregator can be installed with an app free of charge. The app will provide the aggregator with the real-time location, SOC and other information of the EV. When the EV dispatched by the rolling reward and punishment mechanism participates in the dispatching in the next period, it can click the key to participate in the dispatching on the aggregator's information collection platform. The other two dispatching mechanisms do not need to feed back the participation information to the aggregator in advance.
For EVs with complete dispatch, the dynamic charging and discharging electricity price of EVs is set with a time scale of 15 minutes. This type of EVs are dispatched completely according to the instructions of the aggregator, which sets the corresponding dynamic price according to the dispatching cost of EVs.
For EVs dispatched by the rolling reward and punishment mechanism, the price of selling electricity to EVs in each time period shall be determined according to the dynamic electricity price, and then the EVs shall be updated with incentives or penalties every 15 minutes in combination with factors such as user loss aversion, user response model, and the aggregator's bid winning peak shaving capacity. When the peak shaving volume is negative, the charged EVs shall be punished and the discharged EVs should be rewarded. The charging cost of EVs is the sum of the dynamic charging price and the rolling charging penalty price. Reward the discharged EVs. The discharge income of EVs is the sum of the dynamic charging price and the discharge reward price. When the peak load regulation is positive, it is necessary to encourage the charging behavior of EVs, reward the charged EVs, and EV-users optimize their electricity consumption behavior with the dynamic electricity price and rolling reward and punishment mechanism.
1. Dynamic electricity price
Without the participation of aggregators, the charging cost of EVs is determined by the TOU price. In order to encourage users to transfer the power load reasonably, cut the peak and fill the valley, reduce the power load rate during peak and valley periods, improve the utilization efficiency of system equipment capacity and save energy, the TOU price policy is adopted. However, as the TOU price is determined by different regions according to their seasons and the time of peak and valley loads, the TOU price is generally determined at least one year in advance, which has great inaccuracy in the prediction of power generation and consumption. Therefore, this paper adopts dynamic electricity price instead of TOU price for EV charging under contract with aggregators.
Different from the traditional TOU price, the dynamic electricity price used in this paper will change in real time, but it is linearly related to the TOU price, which can let EVs know the price fluctuation range in different periods in advance.
When the TOU price is used as the charging price of EVs, the charging TOU price of EVs is as follows:

                 (9)



where  is the EV charging TOU price in period , and  is the influence coefficient.
2. Rolling reward and punishment mechanism
Generally speaking, after the aggregator signs the contract with the EV, it needs to dispatch according to the instructions of the aggregator. If it defaults, it needs to pay a penalty. Different from the traditional way, the contract signed between the aggregator and the EVs in this paper does not require the EVs to participate in the dispatching. The EV charging is subject to the dynamic electricity price set by the aggregator. At the same time, it needs to accept the rolling charge and discharge reward and punishment mechanism set by the aggregator. However, for EVs, the rolling charge and discharge reward and punishment mechanism is more incentive oriented, and the punishment price is lower, It is mainly to restrain the charging of EVs in the period when charging needs to be reduced. As long as EVs are not charged in the period when the penalty price is imposed, the charging cost of EV-users who have signed with aggregators is low. The flexible dispatching method of aggregators is conducive to attracting more EVs to reach agreements with aggregators. EVs can choose whether to participate in the dispatching according to their own willing. After signing the contract, even if the EVs do not participate in the dispatching, there will be no risk of default. The dynamic electricity price is related to the time-sharing electricity price, which is not attractive enough for the willingness of EVs to participate in the dispatching. Therefore, the aggregator will formulate the rolling incentive price and penalty price of EVs according to the user loss aversion analysis and the user response model to guide the EVs to participate in the dispatching. The way of price guidance can effectively improve the freedom of EV-users, and also greatly improve the schedulable capacity. The rolling charge reward and penalty price of EVs shall be updated according to the electricity use behavior of EVs, the participation willingness and the others. Since the EV-users' willingness to participate in the discharge is lower than that of charging, the rolling discharge reward price of EVs will be appropriately higher than the rolling charge reward price. The rolling charge and discharge reward and penalty price of EVs will be adjusted according to the real-time electricity use behavior of EVs, Therefore, it is called the rolling reward and punishment mechanism of EVs.


The EVs can charge through the valley value  of the electricity in use, and the peak value  discharges to earn the price difference. At the same time, there is a reward price for the discharge. Therefore, the profits from the EV discharge are as follows:

    (10)








where  is the profit from EV discharge,  is the number of times EVs earn profits through discharge in a day,  is the dynamic electricity price earned by EV discharge in period ,  is the cost of EV charging in period , and  is the incentive electricity price earned by EV discharge in period .
For free dispatching EVs, such EVs only provide the information required by aggregators and do not participate in dispatching. The charging price of such EVs is slightly lower than the TOU price.
5. The aggregator optimizes the charging and discharging of EVs in three stages 
[bookmark: _Hlk116744502]4.1 Dispatchable basis
The Basis for aggregator to judge the capacity of dispatchable EVs is as follows:
First, consider the EVs of free dispatching type, which do not participate in the dispatching and are charged randomly by default. According to the travel characteristics of EVs and the information obtained by the system, predict the time, location and capacity of charging for free dispatching EVs, and make statistics on the charging piles required for free dispatching in different time periods.
Secondly, consider complete dispatching EVs. Since the aggregator has control over complete dispatching EVs, calculate the peak shaving power that can be provided by complete dispatching EVs. At the same time, consider the impact of the charging and discharging times of complete dispatching EVs on the battery life, and arrange the charging piles in different periods of time and the capacity provided.
Finally, for EVs dispatching by rolling reward and punishment mechanism, due to the price incentive of such EVs, the formulation of reward and punishment mechanism needs to be carefully considered. The rolling reward and punishment mechanism is determined by the peak shaving capacity that the EVs dispatched by the rolling reward and punishment mechanism need to provide in different periods of time in addition to free dispatching and complete dispatching.
As EVs are divided into pure EVs and hybrid EVs, they need to be considered separately. The standard for pure EVs to participate in charging is that the remaining electricity can support them to go to the nearest charging station with idle charging piles, and the standard for participating in discharging is that the remaining electricity after reaching the charging station is determined according to the user's electricity preference. The charging standard for hybrid EVs is that the remaining oil and electricity can support them to go to the nearest charging station, and the remaining electricity before charging is less than 50% of the total electricity. Therefore, when the hybrid EVs go to the charging station, there is no electricity at all, but the oil can support them to go to the charging station, and the EVs can also participate in charging dispatching.
4.2 Phase 1
The distribution locations of charging stations in different regions will vary greatly. Charging stations in densely populated regions may need to queue for charging. When the peak shaving capacity required by aggregators is large, the actual peak shaving capacity provided by EVs may be reduced due to the lack of idle charging piles near EVs, while for regions with low per capita density, a large number of charging piles may be idle. Before the distribution of charging stations for EVs, the rolling reward and punishment mechanism shall be preset according to the regional and time differences. When the peak shaving capacity required by the aggregators is large, the reward price of charging stations with lower per capita density is higher, and the reward price of charging stations with higher per capita density is lower or no reward. By adjusting the rolling reward and punishment mechanism, some EVs can be guided to charge in more biased areas. When the peak shaving capacity required by the aggregator does not need to adjust the rolling reward and punishment mechanism, the number and location of charging piles can also meet the needs of EVs, and the rolling reward and punishment mechanism remains unchanged, so as to give full play to the peak shaving dispatching capacity of EVs and improve the utilization rate of some charging piles.
To calculate the first stage aggregators based on the law of universal gravitation, a rolling reward and punishment mechanism should be preset according to time and region. The universal gravitation formula is defined as follows:

                 (11)





where  is the universal gravitation,  is the gravitational constant,  and  are the masses of two objects that attract each other, and  is the distance between objects.
[image: ]
Fig.7 Electricity price setting based on the law of universal gravitation
For aggregators, the more idle charging piles in different periods, the higher the reward price, and the peak shaving capacity required by aggregators is proportional to the reward price. These two variables can be compared to those in the law of gravity:

          (12)






where  is the peak shaving capacity required by the aggregator in period ,  is the idle number of charging piles in period ,  is the influencing factor of the peak shaving capacity required by the aggregator, and  is the influencing factor of the idle number of charging piles.
The more the real-time SOC of an EV, the farther it can travel, the less the real-time SOC of an EV, and the fewer charging stations available for an EV. The SOC of an EV can be compared to:

                    (13)



where the remaining electricity of the EV of the number  in period  is .
Generally speaking, the area with the largest urban population density is located in the city center, and EV-users tend to move around the city center. Therefore, the farther the charging station is from the city center, the lower the willingness of users to charge. Moreover, the smaller the population density of a place is, the fewer EV users are active in this area, the lower the utilization rate of charging posts is, and the greater the population density is. The more EV-users are active in this area, the higher the utilization rate of charging posts is. Both the distance between the charging station location and the city center, and the population density are used to analogy the following two variables in the law of universal gravitation:

                  (14)




where  is the distance between the charging station location and the city center,  is the population density of the charging station area,  is the influence factor of the distance between the charging station location and the city center, and  is the influence factor of the population density of the charging station area.
Based on the above factors, the price of rolling reward and punishment mechanism determined by the aggregator in Phase 1 is as follows:

     (15)




where  is the incentive price for the  EV to participate in charging dispatching in Phase 1 and Period , and  is the actual total peak shaving capacity that can be provided by the EV calculated according to the number of charging piles and the EV providing peak shaving capacity.
4.3 Phase 2
In phase 2, the aggregator analyzes the remaining power, real-time location and other information of the EV, calculates the dynamic electricity price and rolling reward and punishment mechanism of EVs of different dispatching types, and sends the scheme to the user. Because the complete dispatching EVs need to obey the aggregator's arrangement unconditionally, otherwise they need to pay the penalty fee. By default, the complete dispatching EVs all participate in the dispatching tasks arranged by the aggregator. For EVs with rolling reward and punishment mechanism, the decision is made based on personal factors and fed back to the aggregator. In phase 2, the peak shaving capacity provided by complete dispatching can be determined.
When the EV needs to participate in the charging dispatching in the next period, first check whether there is a free charging pile in the nearest charging station to the EV. If yes, calculate whether the remaining electricity of the pure EV is greater than the electricity consumed when driving to the charging station. If it is a hybrid EV, calculate whether the remaining electricity and oil together can support the EV to go to the charging station, and set the dispatching limit distance. When the distance from the EV to the charging station is greater than the limit distance, it will not participate in the dispatching. When the above conditions are met, the number of charges and discharges of the EV in a day will be calculated. If the number of charges and discharges is too frequent, it will have a negative impact on the battery life. If the number of charges and discharges does not reach the limit, and the remaining electricity is less than 30% of the total electricity, the EV will participate in the charging dispatching of the next period. If any of the above conditions is not met, it can not participate in the charging dispatching of the next period. When the EV needs to participate in the discharge dispatching in the next period, first check whether there is a free charging pile in the nearest charging station to the EV. If there is, calculate the distance from the EV to the charging station. If it is greater than the limit distance, it will not participate in the dispatching. Calculate the remaining electricity after the EV arrives at the charging station. When the remaining electricity is greater than 60% of the total electricity, it can participate in the discharge dispatching, otherwise it will not participate in the discharge dispatching. The specific process is shown in the figure 8.
[image: ]
Fig.8 flow chart for judging whether phase 2 participates in dispatching
For EVs of free dispatching type, it defaults to random charging, so the charging time and location of EVs in different periods can be predicted. The total number of charging piles minus the number of charging piles required for charging in different periods of time for free dispatching EVs is the number of charging piles available for complete dispatching and rolling reward and punishment mechanism dispatching. Set dynamic electricity price according to TOU price:

                   (16)






where  is the dynamic charge price of EVs of free dispatching type in period ,  is the dynamic charge price coefficient of EVs of free dispatching type in period  (less than 1), and  is the time-sharing price in period .
For EVs of complete dispatching type, the time period during which EVs can participate in dispatching shall be released first, and the EVs shall be scheduled according to the peak shaving capacity, the location and number of residual charging piles, the real-time location, the residual electricity and other information won by the aggregator in different periods, and the response quantity model of EVs should be integrated. At the same time, the impact of excessive charging and discharging on the battery life of EVs should be considered.
Both charging and discharging of EV will have a certain impact on power battery. Therefore, the life cost of the power battery and the power fluctuation cost of the power battery caused by the discharge should be taken into account. The participation of EVs in V2G(Vehicle-to-Grid) may experience multiple discharge cycles.

                   (17)




where  is the battery life loss cost of the EV participating in V2G,  is the equivalent number of cycles corresponding to a discharge cycle in any discharge interval of V2G,  is the cycle life of the battery under standard test conditions, and  is the battery investment cost.
The dynamic electricity price for self charging of complete dispatching EVs is the lowest among the three types of dispatching, which is determined according to the dynamic electricity price:

                  (18)



where  is the dynamic self charging price of complete dispatching EVs in period , and  is the dynamic self charging price coefficient of complete dispatching EVs (less than 1).
When EVs of the complete dispatching type participate in the dispatching, the dynamic electricity price of charging will be lower and the subsidy price of discharging will be higher. At this time, the dynamic electricity price is related to the total peak shaving capacity of the aggregator:

                     (19)

                     (20)






where  is the dynamic charge price of complete dispatching EVs participating in dispatching in period ,  is the dynamic charge price coefficient of complete dispatching EVs participating in dispatching,  is the benchmark power of aggregator in clearing period , F is the discharge subsidy price of complete dispatching EVs participating in dispatching in period , and H is the discharge subsidy price coefficient of complete dispatching EVs participating in dispatching.
For EVs of rolling reward and punishment mechanism dispatching type, the difference between the peak shaving capacity won by the aggregator in different periods and the peak shaving capacity of EVs of free dispatching and complete dispatching is the peak shaving capacity required for EVs of rolling reward and punishment mechanism dispatching. According to peak shaving capacity, set dynamic electricity price and EV charging penalty price:

        (21)

        (22)










where  is the dynamic EV charging price of the rolling reward and punishment mechanism dispatching type in period ,  is the dynamic EV charging price coefficient of the rolling reward and punishment mechanism dispatching type in period ,  is the peak shaving capacity required by the rolling reward and punishment mechanism dispatching type EV in period , and  is the EV charging penalty price of the rolling reward and punishment mechanism dispatching type in period ,  is the penalty electricity price coefficient of EV charging for scheduling type of rolling reward and punishment mechanism in period .
According to the real-time location of EVs, whether the nearest charging station has free charging piles, residual electricity and other information, the optimal participation intention scheme of different EVs is obtained and sent to the EV-users. The EV-users choose whether to participate in the next period of dispatching according to the dynamic electricity price and the dispatching participation scheme sent by the aggregator, and feed back their willingness to the aggregator.
4.4 Phase 3
In phase 3, according to the information sent by the EV-user of the rolling reward and punishment mechanism dispatching type in phase 2 on whether to participate in the dispatching of the next period, the total capacity of the EV scheduled by the rolling reward and punishment mechanism in phase 2 to participate in peak shaving is calculated:

       (23)





where  is the total peak regulating capacity of EVs dispatched by rolling reward and penalty mechanism in period  after adjustment in phase 3,  is the total peak regulating capacity provided by EVs fully scheduled in period , and  is the total capacity that EVs scheduled by rolling reward and penalty mechanism can participate in dispatching in phase 2.

As the reward price of rolling reward and punishment mechanism dispatching EVs in phase 1 is only a low pre-set reward price, which is not attractive to some EV-users, according to the total peak shaving capacity of EVs dispatched by rolling reward and punishment mechanism after adjustment in phase 3, the reward price for rolling charge of EVs and the reward price for rolling discharge of EVs are set. It also needs to consider the loss aversion of EV-users, and set the reward and punishment mechanism based on the user response model. The objective function of EVs is . When formulating the reward and punishment mechanism, it needs to make the objective function of EVs as large as possible to attract more EVs to participate in the adjustment. The EV-users will consider whether to participate in the next period of dispatching according to the rolling reward and punishment mechanism and their travel intentions. At the same time, aggregators need to consider their own benefits.


In phase 3, the aggregator needs to optimize the incentive price  of EVs determined in phase 1, and further adjust the incentive price  of EVs according to the lack of peak shaving capacity of EVs.
6. Model establishment 
5.1 Aggregator Model
The goal of the aggregator is to maximize profits. When formulating dynamic electricity price and rolling reward and punishment mechanism, the aggregator should consider its own interests while considering peak shaving capacity. The profit of the aggregator is as follows:

(24)







where  is the total profit of the aggregator,  is the cost required by the aggregator to dispatch complete dispatching EVs in phase 2 of optimal dispatching in period ,  is the cost required by the aggregator to obtain free dispatching EV information in phase 2 of period , and  is the total cost required by the reward and punishment mechanism type EVs in phase 3 of optimal dispatching in period , including the setting of dynamic electricity price, EV rolling charge incentive price, EV rolling charge penalty price The cost of rolling discharge incentive electricity price for EVs.
5.2 EV Model
EVs can choose to sign contracts with aggregators or purchase electricity directly from the distribution network. After signing the contract with the aggregator, the EV needs to follow the dynamic electricity price and the rolling reward and punishment mechanism set by the aggregator. The EV can voluntarily choose whether to participate in the dispatching each time, and the aggregator will change the reward and punishment mechanism in real time according to the participation willingness of the EV-users and other factors. Therefore, the charging and discharging behavior of the EV is constantly exchanged with the aggregator. The rolling reward and punishment mechanism set by aggregators will greatly change the willingness of EVs to charge and discharge, which is a new way to dispatch EVs.
1.Complete dispatching


The dynamic power price of EV charging is , and the subsidy power price of EV discharging is . This new dispatching mode can be a new way of part-time. EV users can contract with aggregators to dispatch according to their instructions, save charging costs by using a lower dynamic power price, and earn additional fees by discharging. The overall cost of EVs after charging and discharging may be close to zero or even part of the profits, However, it is only suitable for EVs with strong flexibility because this dispatching mode is tough.
2. Rolling reward and punishment mechanism dispatching




In phase 1, the basic rolling reward and penalty mechanism of different time periods is firstly determined, and the incentive electricity price  of EVs of different dispatching types is firstly determined. In phase 2, the dynamic electricity price of EVs of charging and discharging and the penalty electricity price of EVs of rolling charging are determined. The dynamic electricity price of EVs of charging is , and the subsidized electricity price of discharging is . In the period when EV should discharge, the rolling charging penalty price of EV is . In phase 2, EV-users can choose whether to participate in the dispatching or not after obtaining the above information and the dispatching scheme provided by the aggregator. When the total peak regulating capacity after the phase 2 is less than the peak regulating capacity won by the aggregator, it is necessary to enter the phase 3. The aggregator adjusts the rolling charging and discharging reward mechanism of EVs in real time according to the required peak load capacity in different periods, the dispatching capacity calculated in the third stage, and the charging and discharging willingness of EV users, and schedules EVs indirectly. EVs that choose this dispatching method accounts for a high proportion because this method is flexible and fully respects the charging and discharging willingness of electric vehicles, which is suitable for most electric vehicles.
3.Free dispatching

The dynamic electricity price of EV charging in this dispatching is , which is the highest among the three dispatching types. The EVs of this dispatching mode are unwilling to participate in the dispatching, and only charge according to their own needs. Therefore, the main purpose of signing a contract with the aggregator is to charge at a price lower than the TOU price, and such EVs only need to provide real-time charging location information. Under this dispatching mode, EV users can charge at a price lower than the TOU price only by providing information to the aggregator. It is applicable to EV users other than the first two categories. The charging time and location of EV users of this type are consistent with random charging and do not participate in dispatching.
The purpose of EVs participating in demand response is to maximize the saved charging cost. When EVs do not sign a contract with aggregators, they will be charged according to the TOU price. The charging time and location are related to the will of EV users. When EVs sign a contract with aggregators, the reduced cost of complete dispatching EVs and the cost of TOU price charging, dynamic price of participating in dispatching charging, discharge subsidy price. The impact of charging and discharging times on battery life and traffic energy consumption for dispatching are related. The cost saved by EVs is shown in the following formula:

   (25)



where  is the cost saved by the EV,  is the cost of charging the EV according to the time-sharing electricity price without participating in the dispatching, and  is the total cost of battery life loss of the EV participating in V2G.
5.3 Constraint condition
1. EV power constraint

             (26)





where  is the charging power of EV in period ,  and  are the minimum and maximum values of charging power of EV in period .
2. dynamic electricity price constraint of aggregators

         (27)


where  and  represent the minimum and maximum of the electricity selling price of the aggregator respectively.
7. Case studies 
Taking the regional data of a city in southern China as an example, the simulation is carried out on a 15 minute time scale, and 550 yuan/MWh is used as the bid winning declaration price of the aggregator. In this paper, the slow charge of EVs are 6.6kw, and the battery capacity are 60kwh. Assuming that the proportion of complete dispatching EVs is 10%, the proportion of rolling reward and punishment mechanism dispatching EVs is 85%, and the proportion of free dispatching EVs is 5%.
TOU price is as follows:
Table 1 Time of use tariff
	period
	time quantum
	electricity price

	peak
	10：00-12：00；14：00-19：00
	1.0033yuan/ kilowatt

	average
	8：00-10：00；12：00-14：00；19：00-24：00
	0.5902yuan/ kilowatt

	vally
	0：00-8：00
	0.3811yuan/ kilowatt


The following four scenarios are simulated:
Scenario 1: The distribution cloud chart of demand response based on the cloud model with the incentive unit price of 0.1 yuan;
Scenario 2: The distribution cloud chart of demand response based on the cloud model with the incentive unit price of 0.2 yuan;
Scenario 3: The distribution cloud chart of demand response based on the improved cloud model with the incentive price of 0.1 yuan;
Scenario 4: The distribution cloud chart of demand response based on the improved cloud model with the incentive price of 0.2 yuan.
[image: ]
Fig.9 distribution cloud chart of demand response in different scenarios
It can be seen from Figure 9 that the demand response of EVs based on the improved cloud model is greater than the demand response of EVs based on the cloud model. The higher the incentive price is, the higher the willingness of users to participate in dispatching, and thus the greater the demand response.
[image: ]
Fig.10 Relationship between loss aversion and willingness to participate
Figure 10 shows the relationship between the unit loss caused by EV-users' participation in dispatching and their loss aversion and willingness to participate. It can be seen that the greater the unit loss caused by users' participation in dispatching, the higher their loss aversion, and the lower their willingness to participate in dispatching.
Aggregator and EV profits with and without loss aversion are as follows:
[bookmark: _Hlk116891368]Table 2 Whether loss aversion is included
	Loss aversion
	Net profit of aggregator/yuan
	Reduced cost of EVs/yuan

	no
	14323.2298
	63972.8321

	yes
	15221.7535
	76324.9656


It can be seen from Table 2 that after considering the loss aversion, the net profit of the aggregator has increased slightly. Considering the loss aversion from the perspective of EV users, the cost of EVs has greatly increased.
Table 3 Aggregator profits under different scenarios
	scenario
	Net profit of aggregator/yuan

	1
	9670.3711

	2
	11671.4427

	3
	13074.5339

	4
	15221.7535


Table 4 Cost reduction of electric vehicles in different scenarios
	scenario
	Reduced cost of EVs/yuan

	1
	64074.4272

	2
	73388.2358

	3
	72076.6405

	4
	76324.9656


Table 3 and Table 4 respectively show the net profits of aggregators and the reduced costs of EVs under different scenarios. When the cost of EV charging is less than the reduced cost, the final profit of EV is positive, otherwise it is negative. The data in the table clearly shows that the net profit of the aggregator is the highest and the cost of the EV is the most reduced after the solution of this method. The profits of aggregators and EVs after classifying EVs are higher than those without classifying EVs in the comparison of the scenarios 1 and 2 as well as 3 and 4. And the profits of aggregators and EVs can be increased by adopting three-stage dispatching in the comparison of the scenarios 1 and 3.
[image: ]
Fig.11 dynamic charge price of EV under different scenarios
The dynamic EV charging price of different dispatching types in different periods is shown in Figure 11. It can be seen that the dynamic price difference is small set by different contracting types in phase 1.
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Fig.12 incentive electricity price of rolling reward and punishment mechanism dispatching under different scenarios
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Fig.13 charging schedulable power of different dispatching types in different scenarios
[image: 图表

描述已自动生成]
Fig.14 schedulable discharge power of different dispatching types in different scenarios
The charging and discharging incentive price of EVs dispatched by rolling reward and punishment mechanism is shown in Figure 12, and the schedulable charging and discharging power of different dispatching types under different scenarios is shown in Figures 13 and 14. Scenarios 1 and 3 do not classify EVs, so the dispatching capacity that EVs can provide is higher than the dispatching power of the rolling reward and punishment mechanism in scenarios where EVs are divided into three stage, but the total dispatching power is low, and the setting of reward price in the rolling reward and punishment mechanism is not stable. For Scenario 2, there is no three-stage optimal dispatching, however the schedulable power is higher than Scenario 1 because of the classification of EVs. Although the incentive price in Scenario 4 is not low, the total schedulable capacity is the largest and the effect is the best because the classification of EVs and the three-stage optimal dispatching,.
8. Conclusions and future work 
In order to improve the efficiency and benefits of aggregators for EV aggregation, we propose an economic optimization scheme for aggregators based on three-stage dispatching of EVs. In particular, this paper proposes for the first time to divide the contract modes between aggregators and EVs into three categories, consider the loss aversion of EVA users, and obtain the response model of EV users based on the improved cloud model. The three-stage dispatching optimization method is innovatively adopted. Get a better dispatching scheme of aggregators for EVs. The following conclusions can be drawn from the example simulation:
1. The pricing of aggregators will affect the loss aversion of EV users, which will further affect the willingness of EVs to participate in dispatching.
2. Based on the cloud model, the improved cloud model is obtained by considering the index weight. The response of EV based on the improved cloud model is greater than that based on the traditional cloud model.
3. The contract signing modes of aggregators and EVs are divided into three categories and compared with the traditional non-classification mode. The classification of the contract signing modes of aggregators and EVs can give full play to the role of different types of EVs. After classification, the profits of aggregators and the reduced costs of EVs are significantly improved.
4. The three-stage optimization of the aggregator's optimal dispatching can gradually improve the dispatching scheme and finally achieve the optimal effect. Compared with the traditional non-step optimization, the profit of the aggregator and the cost reduction of EVs are higher.
As this paper only considers the mode of signing a contract between a single aggregator and an EV, it does not analyze the bidding game among multiple aggregators, which opens the door for future research. In the future, we can further analyze how multiple aggregators provide multiple dispatching schemes and how EVs choose aggregators. In addition, this paper does not carry out a detailed analysis of the traffic network. In the future, the shortest path guidance can be provided for EVs in combination with the actual traffic situation to improve the accuracy of charging station distribution.
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