References:
Chiu. L., Zhou. X., Burke. S., Wu. X., Prior. R.L., Li. L. The Purple
Cauliflower Arises from Activation of a MYB Transcription Factor. Plant
Physiology, 2010, 154: 1470-1480
Dai. Y., Zhang.L., Sun X., Li F., Zhang. S., Zhang. H., Li. G., Fang.
Z., Sun. R., Hou. X., Zhang. S.Transcriptome analysis reveals
anthocyanin regulation in Chinese cabbage (Brassica rapa L.) at
low temperatures. Scientifc Reports, 2022, 12:6308
Espley. R.V., Hellens. R.P., Putterill. J., Stevenson. D.E., Kutty-Amma.
S., Allan. A.C. Red colouration in apple fruit is due to the activity of
the MYB transcription factor, MdMYB10. the Plant Journal, 2007,
49:414-427.
Grotewold, E. The genetics and biochemistry of floral pigments. Annu.
Rev. Plant Biol. 2006, 57: 761-780.
Guo. L., Gao. L., Ma. X., Guo. F., Ruan. H., Bao. Y., Xia. T., Wang. Y.
Functional analysis of flavonoid 3’-hydroxylase and flavonoid
3′,5′-hydroxylases from tea plant (Camellia sinensis ), involved
in the B-ring hydroxylation of flavonoids. Gene, 2019, 717: 144046.
Han. Y., Vimolmangkang. S., Soria-Guerra. R.E., Rosales-Mendoza. S.,
Zheng. D., Lygin. A.V., Korban. S.S. Ectopic Expression of AppleF3’H Genes Contributes to Anthocyanin Accumulation in the
Arabidopsis tt7 Mutant Grown Under Nitrogen Stress. Plant
Physiology, 2010, 153: 806-820.
Jia. Y., Li. B., Zhang. Y., Zhang. X., Xu. Y., Li. C. Evolutionary
dynamic analyses on monocot flavonoid 3’-hydroxylase gene family reveal
evidence of plant-environment interaction. BMC Plant Biology, 2019,
19:347. https://doi.org/10.1186/s12870-019-1947-z.
Jiang. H., Zhou. L., Gao. H., Wang. X., Li. Z., Li. Y. The transcription
factor MdMYB2 influences cold tolerance and anthocyanin accumulation by
activating SUMO E3 ligase MdSIZ1 in apple. Plant physiology, 2022,
00:1-7.
Lepiniec. L., Debeaujon. I., Routaboul. J.M., Baudry. A., Pourcel. L.,
Nesi. N., Caboche. M. Genetics and biochemistry of seed flavonoids.Annu
Rev Plant Biol, 2006, 57:405–430.
Li. H., Durbin. R. Fast and accurate short read alignment with
Burrows-Wheeler Transform. Bioinformatics, 2009, 25:1754-60.
Li. P., Li. Y., Zhang. F., Zhang. G., Jiang. X., Yu. H., Hou. B. The
Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to
cold, salt and drought stress tolerance via modulating anthocyanin
accumulation. The Plant Journal, 2017, 89: 85-103
Liu. C., Yao. X., Li. G., Huang. L., Wu. X., Xie. Z. Identifification of
Major Loci and Candidate Genes for Anthocyanin Biosynthesis in Broccoli
Using QTL-Seq. Horticulturae, 2021, 7, 246. https://doi.org/10.3390/
horticulturae7080246
Lorenc-Kukula. K., Jafra. S., Oszmianski. J., Szopa. J. Ectopic
expression of anthocyanin 5-o-glucosyltransferase in potato tuber causes
increased resistance to bacteria. J Agric Food Chem 2005, 53:272-281.
Mao. W., Han. Y., Chen. Y., Sun. M., Feng. Q., Li. L., Liu. L., Zhang.
K., Wei. L., Han. Z., Li. B. Low temperature inhibits anthocyanin
accumulation in strawberry fruit by activating FvMAPK3-induced
phosphorylation of FvMYB10 and degradation of Chalcone Synthase. The
plant cell, 2022, 34: 1226-1249.
Moreno. D.A., Perez-Balibrea. S., Ferreres. F., Gil-Izquierdo. A.,
Garcia-Viguera. C. Acylated anthocyanins in Broccoli sprouts. Food Chem.
2010, 123: 358-363.
Owens. D.K., Crosby. K.C., Runac. J., Howard. B.A., Winkel. B.S.
Biochemical and genetic characterization of Arabidopsis flavanone
3β-hydroxylase. Plant. Physiol. Biochem. 2008, 46: 833-843.
Saigo. T., Wang. T., Watanabe. M., Tohge. T. Diversity of anthocyanin
and proanthocyanin biosynthesis in land plants. Current Opinion in Plant
Biology, 2020, 55:93-99.
Saito. K., Kobayashi. M., Gong. Z., Tanaka. Y.,Yamazaki. M. Direct
evidence for anthocyanidin synthase as a 2-oxoglutaratedependent
oxygenase: Molecular cloning and functional expression of cDNA from a
red forma of Perilla frutescens . Plant J. 1999,17: 181-189.
Saito.K., Yonekura-Sakakibara. K., Nakabayashi. R., Higashi. Y.,
Yamazaki. M., Tohge. T., Fernie. A.R. The flavonoid biosynthetic pathway
in Arabidopsis : Structural and genetic diversity, Plant
Physiology and Biochemistry, 2013, 72: 21-34.
Seitz. C., Ameres. S., Forkmann. G. Identification of the molecular
basis for the functional difference between flavonoid 3’-hydroxylase and
flavonoid 3’,5’-hydroxylase. FEBS Letters, 2007, 581: 3429–3434.
Spelt. C., Quattrocchio. F., Mol. JNM., Koes. R. Anthocyanin1 of petunia
encodes a basic helix–loop–helix protein that directly activates
transcription of structural anthocyanin genes. Plant Cell, 2000,
12:1619-1631.
Springob. K., Nakajima. J., Yamazaki. M., Saito. K. Recent advances in
the biosynthesis and accumulation of anthocyanins. Nat Prod Rep, 2003,
20:288-303.
Takos. A.M., Jaffé. F.W., Jacob. S.R., Bogs. J., Robinson. S.P., Walker.
A.R. Light-induced expression of a MYB gene regulates anthocyanin
biosynthesis in red apples. Plant Physiology, 2006, 142: 1216-1232.
Tang. Q., Tian. M., An. G., Zhang. W., Chen. J., Yan. C. Rapid
identification of the purple stem (Ps) gene of Chinese kale
(Brassica oleracea var. alboglabra ) in a segregation
distortion population by bulked segregant analysis and RNA sequencing.
Mol Breeding, 2017, 37: 153.
Tohge. T., Fernie. A.R. Leveraging natural variance towards enhanced
understanding of phytochemical sunscreens. Trends Plant Sci 2017,
22:308-315.
Turnbull. J.J., Nakajima. J.I., Welford. R.W., Yamazaki. M., Saito. K.,
Schofifield. C.J. Mechanistic studies on three 2-oxoglutaratedependent
oxygenases of flavonoid biosynthesis: Anthocyanidin synthase, flavonol
synthase, and flavanone 3 beta-hydroxylase. J. Biol. Chem. 2004, 279:
1206-1216.
Turnbull. J.J., Sobey. W.J., Aplin. R.T., Hassan. A., Firmin. J.L.,
Schofield. C.J., Prescott. A.G. Are anthocyanidins the immediate
products of anthocyanidin synthase? Chem. Commun. 2000, 24: 2473-2474.
Ubi. B.E., Honda. C., Bessho. H., Kondo. S., Wada. M., Kobayashi. S.,
Moriguchi. T. Expression analysis of anthocyanin biosynthetic genes in
apple skin: effect of UV-B and temperature. Plant Science, 2006, 170:
571-578.
Wang. Q., Wang. Y., Sun. H., Sun. L., Zhang, L. Transposon-induced
methylation of the RsMYB1 promoter disturbs anthocyanin accumulation in
red-fleshed radish. J. Exp. Bot. 2020, 71: 2537-2550. doi:
10.1093/jxb/eraa010
Wang. Y., Shi. Y., Li. K., Yang. D., Liu. N., Zhang. L., Zhao. L.,
Zhang. X., Liu. Y., Gao. L., et al. Roles of the
2-Oxoglutarate-Dependent Dioxygenase Superfamily in the Flavonoid
Pathway: A Review of the Functional Diversity of F3H, FNS I, FLS, and
LDOX/ANS. Molecules 2021, 26, 6745. https://doi.org/10.3390/
molecules26216745.
Wellmann. F., Griesser. M., Schwab. W., Martens. S., Eisenreich. W.,
Matern. U., Lukacin. R. Anthocyanidin synthase from Gerbera hybrida
catalyzes the conversion of (+)-catechin to cyanidin and a novel
procyanidin. FEBS Lett. 2006, 580:1642-1648.
Wilmouth. R.C., Turnbull. J.J., Welford. R.W., Clifton. I.J., Prescott.
A.G., Schofield. C.J. Structure and mechanism of anthocyanidin synthase
from arabidopsis thaliana . Structure, 2002, 10: 93-103.
Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics
biochemistry, cell biology, and biotechnology. Plant Physiology, 2001,
126: 485-493.
Yan. C., An. G., Zhu. T., Zhang W., Zhang. L, Peng. L, Chen. J., Kuang.
H. Independent activation of the BoMYB2 gene leading to purple traits inBrassica oleracea . Theoretical and Applied Genetics, 2019,
132:895-906.
Yin. L., Peng Y., Zhong. C., Yang. J., Fu S., Huang. M., Yu. Q.,Wei. X.,
Niu. Y. Study of Anthocyanidin Compositions in Different Pigmented
Potatoes (Solanum tuberosum L .) Cultivars by HPLC. Food Science,
2015, in Chinese.
http://www.cnki.net/kcms/detail/11.2206.TS.20150424.1352.079.html
Yu. H., Wang. J., Zhao. Z., Sheng. X., Shen. Y., Branca. F., Gu. H.
Construction of a high-density genetic map and identification of loci
related to hollow stem trait in broccoli (Brassic oleraceaL. italica ). Frontiers in Plant Science, 2019, 10: 45-55.
Yu. L., Sun. Y., Zhang. X., Chen. M., Wu. T., Zhang. J., Xing. Y., Tian.
J., Yao.Y. ROS1 promotes low temperature-induced anthocyanin
accumulation in apple by demethylating the promoter of
anthocyanin-associated genes. Hortic Res. 2022 doi:
10.1093/hr/uhac007. Online ahead of print.
Zhang. B., Hu. Z., Zhang. Y., Li Y., Zhou. S., Chen. G. A putative
functional MYB transcription factor induced by low temperature regulates
anthocyanin biosynthesis in purple kale (Brassica Oleracea var.acephala f. tricolor). Plant Cell Rep, 2012, 31:281-289.
Zhang. Y., Butelli. E., Martin. C. Engineering anthocyanin biosynthesis
in plants. Curr Opin Plant Biol, 2014, 19: 81-90
Zhang. Y., Zheng. S., Liu. Z., Wang. L., Bi. Y. Both HY5 and HYH are
necessary regulators for low temperature-induced anthocyanin
accumulation in Arabidopsis seedlings. J Plant Physiol, 2010,
47:934-945.
Zhang. Z., Kou. X., Fugal. K., Mclaughlin. J. Comparison of HPLC Methods
for Determination of Anthocyanins and Anthocyanidins in Bilberry
Extracts. J. Agric. Food Chem. 2004, 52, 688-691.
Zhou. L., Li. Y., Zhang. R., Zhang. C., Xie. X., Zhao. C., Hao. Y. The
small ubiquitin-like modifier E3 ligase MdSIZ1 promotes anthocyanin
accumulation by sumoylating MdMYB1 under low-temperature conditions in
apple. Plant Cell and Environment, 2017, 40: 2068-2080.
Zhu. Y., Zhang. B, Allan. A.C., Lin-Wang. K., Zhao. Y., Wang. K., Chen.
K., Xu. C. DNA demethylation is involved in the regulation of
temperature-dependent anthocyanin accumulation in peach. The Plant
Journal, 2020, 102: 965-976.