References:
Chiu. L., Zhou. X., Burke. S., Wu. X., Prior. R.L., Li. L. The Purple Cauliflower Arises from Activation of a MYB Transcription Factor. Plant Physiology, 2010, 154: 1470-1480
Dai. Y., Zhang.L., Sun X., Li F., Zhang. S., Zhang. H., Li. G., Fang. Z., Sun. R., Hou. X., Zhang. S.Transcriptome analysis reveals anthocyanin regulation in Chinese cabbage (Brassica rapa L.) at low temperatures. Scientifc Reports, 2022, 12:6308
Espley. R.V., Hellens. R.P., Putterill. J., Stevenson. D.E., Kutty-Amma. S., Allan. A.C. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. the Plant Journal, 2007, 49:414-427.
Grotewold, E. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 2006, 57: 761-780.
Guo. L., Gao. L., Ma. X., Guo. F., Ruan. H., Bao. Y., Xia. T., Wang. Y. Functional analysis of flavonoid 3’-hydroxylase and flavonoid 3′,5′-hydroxylases from tea plant (Camellia sinensis ), involved in the B-ring hydroxylation of flavonoids. Gene, 2019, 717: 144046.
Han. Y., Vimolmangkang. S., Soria-Guerra. R.E., Rosales-Mendoza. S., Zheng. D., Lygin. A.V., Korban. S.S. Ectopic Expression of AppleF3’H Genes Contributes to Anthocyanin Accumulation in the Arabidopsis tt7 Mutant Grown Under Nitrogen Stress. Plant Physiology, 2010, 153: 806-820.
Jia. Y., Li. B., Zhang. Y., Zhang. X., Xu. Y., Li. C. Evolutionary dynamic analyses on monocot flavonoid 3’-hydroxylase gene family reveal evidence of plant-environment interaction. BMC Plant Biology, 2019, 19:347. https://doi.org/10.1186/s12870-019-1947-z.
Jiang. H., Zhou. L., Gao. H., Wang. X., Li. Z., Li. Y. The transcription factor MdMYB2 influences cold tolerance and anthocyanin accumulation by activating SUMO E3 ligase MdSIZ1 in apple. Plant physiology, 2022, 00:1-7.
Lepiniec. L., Debeaujon. I., Routaboul. J.M., Baudry. A., Pourcel. L., Nesi. N., Caboche. M. Genetics and biochemistry of seed flavonoids.Annu Rev Plant Biol, 2006, 57:405–430.
Li. H., Durbin. R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 2009, 25:1754-60.
Li. P., Li. Y., Zhang. F., Zhang. G., Jiang. X., Yu. H., Hou. B. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. The Plant Journal, 2017, 89: 85-103
Liu. C., Yao. X., Li. G., Huang. L., Wu. X., Xie. Z. Identifification of Major Loci and Candidate Genes for Anthocyanin Biosynthesis in Broccoli Using QTL-Seq. Horticulturae, 2021, 7, 246. https://doi.org/10.3390/ horticulturae7080246
Lorenc-Kukula. K., Jafra. S., Oszmianski. J., Szopa. J. Ectopic expression of anthocyanin 5-o-glucosyltransferase in potato tuber causes increased resistance to bacteria. J Agric Food Chem 2005, 53:272-281.
Mao. W., Han. Y., Chen. Y., Sun. M., Feng. Q., Li. L., Liu. L., Zhang. K., Wei. L., Han. Z., Li. B. Low temperature inhibits anthocyanin accumulation in strawberry fruit by activating FvMAPK3-induced phosphorylation of FvMYB10 and degradation of Chalcone Synthase. The plant cell, 2022, 34: 1226-1249.
Moreno. D.A., Perez-Balibrea. S., Ferreres. F., Gil-Izquierdo. A., Garcia-Viguera. C. Acylated anthocyanins in Broccoli sprouts. Food Chem. 2010, 123: 358-363.
Owens. D.K., Crosby. K.C., Runac. J., Howard. B.A., Winkel. B.S. Biochemical and genetic characterization of Arabidopsis flavanone 3β-hydroxylase. Plant. Physiol. Biochem. 2008, 46: 833-843.
Saigo. T., Wang. T., Watanabe. M., Tohge. T. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Current Opinion in Plant Biology, 2020, 55:93-99.
Saito. K., Kobayashi. M., Gong. Z., Tanaka. Y.,Yamazaki. M. Direct evidence for anthocyanidin synthase as a 2-oxoglutaratedependent oxygenase: Molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens . Plant J. 1999,17: 181-189.
Saito.K., Yonekura-Sakakibara. K., Nakabayashi. R., Higashi. Y., Yamazaki. M., Tohge. T., Fernie. A.R. The flavonoid biosynthetic pathway in Arabidopsis : Structural and genetic diversity, Plant Physiology and Biochemistry, 2013, 72: 21-34.
Seitz. C., Ameres. S., Forkmann. G. Identification of the molecular basis for the functional difference between flavonoid 3’-hydroxylase and flavonoid 3’,5’-hydroxylase. FEBS Letters, 2007, 581: 3429–3434.
Spelt. C., Quattrocchio. F., Mol. JNM., Koes. R. Anthocyanin1 of petunia encodes a basic helix–loop–helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell, 2000, 12:1619-1631.
Springob. K., Nakajima. J., Yamazaki. M., Saito. K. Recent advances in the biosynthesis and accumulation of anthocyanins. Nat Prod Rep, 2003, 20:288-303.
Takos. A.M., Jaffé. F.W., Jacob. S.R., Bogs. J., Robinson. S.P., Walker. A.R. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology, 2006, 142: 1216-1232.
Tang. Q., Tian. M., An. G., Zhang. W., Chen. J., Yan. C. Rapid identification of the purple stem (Ps) gene of Chinese kale (Brassica oleracea var. alboglabra ) in a segregation distortion population by bulked segregant analysis and RNA sequencing. Mol Breeding, 2017, 37: 153.
Tohge. T., Fernie. A.R. Leveraging natural variance towards enhanced understanding of phytochemical sunscreens. Trends Plant Sci 2017, 22:308-315.
Turnbull. J.J., Nakajima. J.I., Welford. R.W., Yamazaki. M., Saito. K., Schofifield. C.J. Mechanistic studies on three 2-oxoglutaratedependent oxygenases of flavonoid biosynthesis: Anthocyanidin synthase, flavonol synthase, and flavanone 3 beta-hydroxylase. J. Biol. Chem. 2004, 279: 1206-1216.
Turnbull. J.J., Sobey. W.J., Aplin. R.T., Hassan. A., Firmin. J.L., Schofield. C.J., Prescott. A.G. Are anthocyanidins the immediate products of anthocyanidin synthase? Chem. Commun. 2000, 24: 2473-2474.
Ubi. B.E., Honda. C., Bessho. H., Kondo. S., Wada. M., Kobayashi. S., Moriguchi. T. Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature. Plant Science, 2006, 170: 571-578.
Wang. Q., Wang. Y., Sun. H., Sun. L., Zhang, L. Transposon-induced methylation of the RsMYB1 promoter disturbs anthocyanin accumulation in red-fleshed radish. J. Exp. Bot. 2020, 71: 2537-2550. doi: 10.1093/jxb/eraa010
Wang. Y., Shi. Y., Li. K., Yang. D., Liu. N., Zhang. L., Zhao. L., Zhang. X., Liu. Y., Gao. L., et al. Roles of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily in the Flavonoid Pathway: A Review of the Functional Diversity of F3H, FNS I, FLS, and LDOX/ANS. Molecules 2021, 26, 6745. https://doi.org/10.3390/ molecules26216745.
Wellmann. F., Griesser. M., Schwab. W., Martens. S., Eisenreich. W., Matern. U., Lukacin. R. Anthocyanidin synthase from Gerbera hybrida catalyzes the conversion of (+)-catechin to cyanidin and a novel procyanidin. FEBS Lett. 2006, 580:1642-1648.
Wilmouth. R.C., Turnbull. J.J., Welford. R.W., Clifton. I.J., Prescott. A.G., Schofield. C.J. Structure and mechanism of anthocyanidin synthase from arabidopsis thaliana . Structure, 2002, 10: 93-103.
Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics biochemistry, cell biology, and biotechnology. Plant Physiology, 2001, 126: 485-493.
Yan. C., An. G., Zhu. T., Zhang W., Zhang. L, Peng. L, Chen. J., Kuang. H. Independent activation of the BoMYB2 gene leading to purple traits inBrassica oleracea . Theoretical and Applied Genetics, 2019, 132:895-906.
Yin. L., Peng Y., Zhong. C., Yang. J., Fu S., Huang. M., Yu. Q.,Wei. X., Niu. Y. Study of Anthocyanidin Compositions in Different Pigmented Potatoes (Solanum tuberosum L .) Cultivars by HPLC. Food Science, 2015, in Chinese. http://www.cnki.net/kcms/detail/11.2206.TS.20150424.1352.079.html
Yu. H., Wang. J., Zhao. Z., Sheng. X., Shen. Y., Branca. F., Gu. H. Construction of a high-density genetic map and identification of loci related to hollow stem trait in broccoli (Brassic oleraceaL. italica ). Frontiers in Plant Science, 2019, 10: 45-55.
Yu. L., Sun. Y., Zhang. X., Chen. M., Wu. T., Zhang. J., Xing. Y., Tian. J., Yao.Y. ROS1 promotes low temperature-induced anthocyanin accumulation in apple by demethylating the promoter of anthocyanin-associated genes. Hortic Res. 2022  doi: 10.1093/hr/uhac007. Online ahead of print.
Zhang. B., Hu. Z., Zhang. Y., Li Y., Zhou. S., Chen. G. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var.acephala f. tricolor). Plant Cell Rep, 2012, 31:281-289.
Zhang. Y., Butelli. E., Martin. C. Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol, 2014, 19: 81-90
Zhang. Y., Zheng. S., Liu. Z., Wang. L., Bi. Y. Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings. J Plant Physiol, 2010, 47:934-945.
Zhang. Z., Kou. X., Fugal. K., Mclaughlin. J. Comparison of HPLC Methods for Determination of Anthocyanins and Anthocyanidins in Bilberry Extracts. J. Agric. Food Chem. 2004, 52, 688-691.
Zhou. L., Li. Y., Zhang. R., Zhang. C., Xie. X., Zhao. C., Hao. Y. The small ubiquitin-like modifier E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low-temperature conditions in apple. Plant Cell and Environment, 2017, 40: 2068-2080.
Zhu. Y., Zhang. B, Allan. A.C., Lin-Wang. K., Zhao. Y., Wang. K., Chen. K., Xu. C. DNA demethylation is involved in the regulation of temperature-dependent anthocyanin accumulation in peach. The Plant Journal, 2020, 102: 965-976.