References
Abeysingha, NS., Singh, M., Sehgal, V.K., Khanna, M., Pathak, H., Jayakody, P. and Srinivasan R. 2015. Assessment of water yield and evapotranspiration over 1985 to 2010 in the Gomti River basin in India using the SWAT model. Current science . 108 (12): 2202–2212.
Akan, CJ., Abbagambo, MT., Chellube, Z.M. and Abdulrahman, FI. 2012. Assessment of Pollutants in Water and Sediment Samples in Lake Chad. Baga, North Eastern Nigeria. Journal of environmental protection science (3 ): 1428–1441.
Barbayiannis, N., Panayotopoulos, K., Psaltopoulos, D. and Skuras, D. 2011. The influence of policy on soil conservation: A case study from Greece. Land Degradation and Development 22 (1): 47–57.
Baryła, A. 2004. Erozyjność deszczy w rejonie Puczniewa. Przegląd Naukowy Inżynierii i Kształtowania Środowiska 13 (29): 48–54.
Basha, G., Ouarda, TBMJ, and Marpu, PR. 2015. Long-term projections of temperature, precipitation and soil moisture using non-stationary oscillation processes over the UAE region. International Journal of Climatology 35 (15): 4606–4618.
Bedla, D. and Król, K. 2014. The impact of land use on water quality in rural pond on the example of the pond Zelków. Acta Scientiarum Polonorum. Formatio Circumiectus 13 (4): 25.
Bedla, D. and Misztal, A. 2014. Changeability of Chemistry of Small Water Reservoirs with Diversified Use Structure of the Adjoining Areas. Rocznik Ochrona Srodowiska 16 : 421-439.
Brocca, L., Moramarco, T., Melone F., Wagner, W., Hasenauer S., and Hahn S. 2012 Assimilation of surface and root-zone ASCAT soil moisture products into rainfall-runoff modelling. Transactions on Geoscience and Remote Sensing 50 (7): 2542–2555.
Chiwa, M. 2021. Long-term changes in atmospheric nitrogen deposition and stream water nitrate leaching from forested watersheds in western Japan.Environmental Pollution 287 : 117634.
da Silva AM. 2004. Rainfall erosivity map of Brazil., Catena57 : 251– 259.
Dabral PP., Baithuri A. and Pandey A. 2008. Soil erosion assessment in a hilly catchment of North Eastern India using USLE, GIS and remote sensing. Water Resources Management 22 : 1783–1798.
Frąk, M. and Baryła, A. 2012. Assessment of the state of water quality of the Dzierzgoń Lake using chemical and biological indicators. Ann. Wars. Univ. – SGGW. Land Reclamation 44 (2): 111–119.
Gao, X., Wu, P., Zhao, X., Wang, J., &Shi, Y. 2014. Effects of land use on soil moisture. Variations in a semi-arid catchment: implications for land and agricultural water management. Land Degradation and Development 25 (2): 163–172.
Gil, E., Kijowska-Strugała, M., and Demczuk, P. 2021. Soil erosion dynamics on a cultivated slope in the Western Polish Carpathians based on over 30 years of plot studies. Catena : 207 , 105682.
Halecki, W., Kowalik, T., and Bogdał, A. 2019. Multiannual Assessment of the Risk of Surface Water Erosion and Metal Accumulation Indices in the Flysch Stream Using the MARS Model in the Polish Outer Western Carpathians. Sustainability 11: 7189.
Halecki, W., Kruk, E.and Ryczek, M. 2018 a. Estimations of nitrate nitrogen, total phosphorus flux and suspended sediment concentration (SSC) as indicators of surface-erosion processes using an ANN (Artificial Neural Network) based on geomorphological parameters in mountainous catchments. Ecological indicators 91 C: 461–469.
Halecki, W., Kruk, E. and Ryczek, M. 2018 b. Evaluation of water erosion at a mountain catchment in Poland using the G2 model. Catena164 : 116–124.
Hao, HX., Wang, JG., Guo, ZL., and Hua, L. 2019. Water erosion processes and dynamic changes of sediment size distribution under the combined effects of rainfall and overland flow. Catena 173 : 494–504.
Haritash, AK., Gaur, S., and Garg, S. 2016. Assessment of water quality and suitability analysis of River Ganga in Rishikesh, India.Applied Water Science 6 (4): 383–392.
Kanownik, W. 2005. Impact of mountainous areas management system upon biogenes content in surface waters. Electronic Journal of Polish Agricultural Universities 8 , 2;11. Wydawnictwo Uniwersytetu Przyrodniczego we Wroclawiu, ISSN 1505-0297.
Kondracki, J. 2011. Geografia regionalna Polski. Wydawnictwo Naukowe PWN, Warszawa.
Koreleski K. 2008. Wpływ czynników terenowych na natężenie erozji wodnej na przykładzie wsi górskiej. Polska Akademia Nauk. Komisja Technicznej Infrastruktury Wsi. Oddział w Krakowie. Infrastructure and Ecology of Rural Areas 3 : 5–12.
Kowalczyk, A., and Twardy, S. 2012. Wielkość erozji wodnej obliczona metodą USLE. Woda-Środowisko-Obszary Wiejskie 12 (37): 83–92.
Krasowska, M. 2017. Seasonal changes of the chemical composition of river waters in agricultural catchment. Journal of Ecological Engineering 18 (3): 175–183.
Kroczak, R., Bryndal, T., and Żychowski, J. 2022. Surface Drainage Systems Operating during Heavy Rainfall—A Comparative Analysis between Two Small Flysch Catchments Located in Different Physiographic Regions of the Western Carpathians (Poland). Water , 14 (3): 482.
Kruk, E. 2017. Influence of daily precipitation on yield of eroded soil in mountain basin using the MUSLE model. Acta Scientiarum Polonorum. Formatio Circumiectus 16 (2): 147–158.
Kupczyk, E. 1997. Opad na powierzchni ziemi. W: Soczyńska U. (red.) Hydrologia dynamiczna. PWN, 108–121.
Łach, J. 2012. Rola gwałtownych ulew i powodzi w modelowaniu rzeźby Kotliny Kłodzkiej oraz zachodnich pasm górskich Sudetów Wschodnich, Instytut Geografii i Rozwoju Regionalnego UW, Wrocław.
Łapuszek, M., and Witkowska, H. 2005. Metody spowalniania odpływu ze zlewni górskiej. Polska Akademia Nauk, Oddział w Krakowie.Infrastructure and Ecology of Rural Areas 4 : 71–84.
Liao, Y., Yuan, Z., Zhuo, M., Huang, B., Nie, X., Xie, Z., Tang, C., and Li, D. 2019. Coupling effects of erosion and surface roughness on colluvial deposits under continuous rainfall. Soil and Tillage Research 191 : 984–107.
Lin, B., Chen, X., Yao, H., Chen, Y., Liu, M., Gao, L., and James, A. 2015. Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecological indicators . 58 : 55–63.
Loga, M. 2016. Wody pod presją – praktyczny kurs oceny presji obiektów gospodarki komunalnej na wody powierzchniowe. Praca zbiorowa. 978-83-937934-4-0.
Luis, AT., Teixeira, P., Almeida, S.F., Matos, JX., da Silva, EF. 2011. Environmental impact of mining activities in the Lousal area (Portugal): chemical and diatom characterization of metal contaminated stream sediments and surface water of Corona stream. Science of the Total Environment 409 (20); 4312–4325.
Martínez-Mena, M., Carrillo-López, E., Boix-Fayos, C., Almagro, M., Franco, N. G., Díaz-Pereira, E., and De Vente, J. 2020. Long-term effectiveness of sustainable land management practices to control runoff, soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems. Catena187 : 104352.
Meusburger, K., Steel A., Panagos, P., Montanarella, L., and Alewell, C. 2012. Spatial and temporal variability of rainfall erosivity factor for Switzerland. Hydrology and Earth System Sciences 16 : 167–177.
Mittelbach, H., & Seneviratne, S.I. 2012. A new perspective on the spatio-temporal variability of soil moisture: temporal dynamics versus time invariant contributions. Hydrology and Earth System Sciences16 : 2169–2179.
Mostowik, K., Krzyczman, D., Płaczkowska, E., Rzonca, B., Siwek, J., and Wacławczyk, P. 2021. Spring recharge and groundwater flow patterns in flysch aquifer in the Połonina Wetlińska Massif in the Carpathian Mountains. Journal of Mountain Science 18 (4): 819-833.
Nasirzadehdizaji, R., and Akyüz, DE. 2022. Application of SWAT Hydrological Model to Assess the Impacts of Land Use Change on Sediment Loads. International Journal of Agriculture, Environment and Food Sciences 6 (1): 108-120.
Obi ME., Salako and FK. 1995. Rainfall parameters influencing erosivity in southeastern Nigeria. Catena 24 (4): 275–287.
Pawłowski, L. 2011. Role of environmental monitoring in implementation of sustainable development. Annual Set The Environment Protection13 : 333–345.
Purandara, B.K., Varadarajan, N., Venkatesh, B., Choubey, and V.K. 2012. Surface water quality evaluation and modeling of Ghataprabha River, Karnataka, India. Environmental Monitoring and Assessment184 (3): 1371–1378.
Rangel, TFLVB., Diniz-Filho, JAF., and Bini, LM. 2010. SAM: a comprehensive application for Spatial Analysis in Macroecology.Ecography 33 : 46–50.
Richards, G., Gilmore, T. E., Mittelstet, A. R., Messer, T. L., & Snow, D. D. 2021. Baseflow nitrate dynamics within nested watersheds of an agricultural stream in Nebraska, USA. Agriculture, Ecosystems and Environment 308 : 107223.
Robson, B. 2014. State of the art in modelling of phosphorus in aquatic systems: Review, criticisms and commentary. Environ. Model Softw., 1–21.
Senent-Aparicio, J., George, C., and Srinivasan, R. 2021. Introducing a new post-processing tool for the SWAT+ model to evaluate environmental flows. Environmental Modelling & Software 136 : 104944.
Seneviratne, SI., Corti, T., Davin, EL., Hirschi, M., Jaeger EB., Lehner, I., Orlowsky, B. 2010. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews99 (3-4): 125–161.
Smoroń, S., Kowalczyk, A., & Kostuch, M. 2009. Użytkowanie gruntów zlewni Szreniawy w kontekście ochrony gleby i wody w latach 1995–2005. Woda-Środowisko-Obszary Wiejskie 9 (27), 167−179.
Starkel, L. 2006. Geomorphic hazards in the Polish Flysch Carpathians. Studia Geomorphologica Carpatho-Balcanica 40 , 7–19.
Starkel, L. 2011. Złożoność czasowa i przestrzenna opadów ekstremalnych – ich efekty geomorfologiczne i drogi przeciwdziałania im. Landform Analysis 15 , 65–80.
Stępniewski, K., Demczuk, P., Rodzik, J., & Siwek, K. 2010. Związki między opadem deszczu a spływem powierzchniowym i spłukiwaniem gleby na poletkach doświadczalnych o różnym użytkowaniu (Guciów – Roztocze Środkowe). Prace i Studia Geograficzne 45 , 229–241.
Vermeulen, H.R., & Nieuwenhuis, J.D. 2005. Kinetic energy rainfall relationship for Central Cebu. Philippines for soil erosion. J. Hydrol.300 20–32.
Wang, R., Liu, Z., Yao, Z., & Lei, Y. (2014). Modeling the risk of nitrate leaching and nitrate runoff loss from intensive farmland in the Baiyangdian Basin of the North China Plain. Environ. Earth Sci. 10(8), 3143–3157.
Woo, S. Y., Kim, S. J., Lee, J. W., Kim, S. H., & Kim, Y. W. 2021. Evaluating the impact of interbasin water transfer on water quality in the recipient river basin with SWAT. Sci. Total Environ.776 , 145984.
Wu, S., Tetzlaff, D., Goldhammer, T., & Soulsby, C. 2021. Hydroclimatic variability and riparian wetland restoration control the hydrology and nutrient fluxes in a lowland agricultural catchment. J. Hydrol.,603 , 126904.
Wu, S., Tetzlaff, D., Yang, X., & Soulsby, C. 2022. Disentangling the Influence of Landscape Characteristics, Hydroclimatic Variability and Land Management on Surface Water NO3‐N Dynamics: Spatially Distributed Modeling Over 30 yr in a Lowland Mixed Land Use Catchment. Water Resour. Res., 58 (2), e2021WR030566.
Zhao, Z., Zhou, Y., Wang, X., Wang, Z., & Bai, Y. 2022. Water quality evolution mechanism modeling and health risk assessment based on stochastic hybrid dynamic systems. Expert Syst. Appl., 116404.
Zheng, Z., & He, S. 2012. Change of soil surface roughness of splash erosion process. Research on Soil Erosion. Danilo Godone, Silvia Stanchi, IntechOpen.