References
Abeysingha, NS., Singh, M., Sehgal, V.K., Khanna, M., Pathak, H.,
Jayakody, P. and Srinivasan R. 2015. Assessment of water yield and
evapotranspiration over 1985 to 2010 in the Gomti River basin in India
using the SWAT model. Current science . 108 (12):
2202–2212.
Akan, CJ., Abbagambo, MT., Chellube, Z.M. and Abdulrahman, FI. 2012.
Assessment of Pollutants in Water and Sediment Samples in Lake Chad.
Baga, North Eastern Nigeria. Journal of environmental protection
science (3 ): 1428–1441.
Barbayiannis, N., Panayotopoulos, K., Psaltopoulos, D. and Skuras, D.
2011. The influence of policy on soil conservation: A case study from
Greece. Land Degradation and Development 22 (1): 47–57.
Baryła, A. 2004. Erozyjność deszczy w rejonie Puczniewa. Przegląd
Naukowy Inżynierii i Kształtowania Środowiska 13 (29): 48–54.
Basha, G., Ouarda, TBMJ, and Marpu, PR. 2015. Long-term projections of
temperature, precipitation and soil moisture using non-stationary
oscillation processes over the UAE region. International Journal
of Climatology 35 (15): 4606–4618.
Bedla, D. and Król, K. 2014. The impact of land use on water quality in
rural pond on the example of the pond Zelków. Acta Scientiarum
Polonorum. Formatio Circumiectus 13 (4): 25.
Bedla, D. and Misztal, A. 2014. Changeability of Chemistry of Small
Water Reservoirs with Diversified Use Structure of the Adjoining
Areas. Rocznik Ochrona Srodowiska 16 : 421-439.
Brocca, L., Moramarco, T., Melone F., Wagner, W., Hasenauer S., and Hahn
S. 2012 Assimilation of surface and root-zone ASCAT soil moisture
products into rainfall-runoff modelling. Transactions on
Geoscience and Remote Sensing 50 (7): 2542–2555.
Chiwa, M. 2021. Long-term changes in atmospheric nitrogen deposition and
stream water nitrate leaching from forested watersheds in western Japan.Environmental Pollution 287 : 117634.
da Silva AM. 2004. Rainfall erosivity map of Brazil., Catena57 : 251– 259.
Dabral PP., Baithuri A. and Pandey A. 2008. Soil erosion assessment in a
hilly catchment of North Eastern India using USLE, GIS and remote
sensing. Water Resources Management 22 : 1783–1798.
Frąk, M. and Baryła, A. 2012. Assessment of the state of water quality
of the Dzierzgoń Lake using chemical and biological indicators. Ann.
Wars. Univ. – SGGW. Land Reclamation 44 (2): 111–119.
Gao, X., Wu, P., Zhao, X., Wang, J., &Shi, Y. 2014. Effects of land use
on soil moisture. Variations in a semi-arid catchment: implications for
land and agricultural water management. Land Degradation and
Development 25 (2): 163–172.
Gil, E., Kijowska-Strugała, M., and Demczuk, P. 2021. Soil erosion
dynamics on a cultivated slope in the Western Polish Carpathians based
on over 30 years of plot studies. Catena : 207 , 105682.
Halecki, W., Kowalik, T., and Bogdał, A. 2019. Multiannual Assessment of
the Risk of Surface Water Erosion and Metal Accumulation Indices in the
Flysch Stream Using the MARS Model in the Polish Outer Western
Carpathians. Sustainability 11: 7189.
Halecki, W., Kruk, E.and Ryczek, M. 2018 a. Estimations of nitrate
nitrogen, total phosphorus flux and suspended sediment concentration
(SSC) as indicators of surface-erosion processes using an ANN
(Artificial Neural Network) based on geomorphological parameters in
mountainous catchments. Ecological indicators 91 C:
461–469.
Halecki, W., Kruk, E. and Ryczek, M. 2018 b. Evaluation of water erosion
at a mountain catchment in Poland using the G2 model. Catena164 : 116–124.
Hao, HX., Wang, JG., Guo, ZL., and Hua, L. 2019. Water erosion processes
and dynamic changes of sediment size distribution under the combined
effects of rainfall and overland flow. Catena 173 :
494–504.
Haritash, AK., Gaur, S., and Garg, S. 2016. Assessment of water quality
and suitability analysis of River Ganga in Rishikesh, India.Applied Water Science 6 (4): 383–392.
Kanownik, W. 2005. Impact of mountainous areas management system upon
biogenes content in surface waters. Electronic Journal of Polish
Agricultural Universities 8 , 2;11. Wydawnictwo Uniwersytetu
Przyrodniczego we Wroclawiu, ISSN 1505-0297.
Kondracki, J. 2011. Geografia regionalna Polski. Wydawnictwo Naukowe
PWN, Warszawa.
Koreleski K. 2008. Wpływ czynników terenowych na natężenie erozji wodnej
na przykładzie wsi górskiej. Polska Akademia Nauk. Komisja Technicznej
Infrastruktury Wsi. Oddział w Krakowie. Infrastructure and Ecology
of Rural Areas 3 : 5–12.
Kowalczyk, A., and Twardy, S. 2012. Wielkość erozji wodnej obliczona
metodą USLE. Woda-Środowisko-Obszary Wiejskie 12 (37):
83–92.
Krasowska, M. 2017. Seasonal changes of the chemical composition of
river waters in agricultural catchment. Journal of Ecological
Engineering 18 (3): 175–183.
Kroczak, R., Bryndal, T., and Żychowski, J. 2022. Surface Drainage
Systems Operating during Heavy Rainfall—A Comparative Analysis between
Two Small Flysch Catchments Located in Different Physiographic Regions
of the Western Carpathians (Poland). Water , 14 (3): 482.
Kruk, E. 2017. Influence of daily precipitation on yield of eroded soil
in mountain basin using the MUSLE model. Acta Scientiarum
Polonorum. Formatio Circumiectus 16 (2): 147–158.
Kupczyk, E. 1997. Opad na powierzchni ziemi. W: Soczyńska U. (red.)
Hydrologia dynamiczna. PWN, 108–121.
Łach, J. 2012. Rola gwałtownych ulew i powodzi w modelowaniu rzeźby
Kotliny Kłodzkiej oraz zachodnich pasm górskich Sudetów Wschodnich,
Instytut Geografii i Rozwoju Regionalnego UW, Wrocław.
Łapuszek, M., and Witkowska, H. 2005. Metody spowalniania odpływu ze
zlewni górskiej. Polska Akademia Nauk, Oddział w Krakowie.Infrastructure and Ecology of Rural Areas 4 : 71–84.
Liao, Y., Yuan, Z., Zhuo, M., Huang, B., Nie, X., Xie, Z., Tang, C., and
Li, D. 2019. Coupling effects of erosion and surface roughness on
colluvial deposits under continuous rainfall. Soil and Tillage
Research 191 : 984–107.
Lin, B., Chen, X., Yao, H., Chen, Y., Liu, M., Gao, L., and James, A.
2015. Analyses of landuse change impacts on catchment runoff using
different time indicators based on SWAT model. Ecological
indicators . 58 : 55–63.
Loga, M. 2016. Wody pod presją – praktyczny kurs oceny presji obiektów
gospodarki komunalnej na wody powierzchniowe. Praca zbiorowa.
978-83-937934-4-0.
Luis, AT., Teixeira, P., Almeida, S.F., Matos, JX., da Silva, EF. 2011.
Environmental impact of mining activities in the Lousal area (Portugal):
chemical and diatom characterization of metal contaminated stream
sediments and surface water of Corona stream. Science of the Total
Environment 409 (20); 4312–4325.
Martínez-Mena, M., Carrillo-López, E., Boix-Fayos, C., Almagro, M.,
Franco, N. G., Díaz-Pereira, E., and De Vente, J. 2020. Long-term
effectiveness of sustainable land management practices to control
runoff, soil erosion, and nutrient loss and the role of rainfall
intensity in Mediterranean rainfed agroecosystems. Catena187 : 104352.
Meusburger, K., Steel A., Panagos, P., Montanarella, L., and Alewell, C.
2012. Spatial and temporal variability of rainfall erosivity factor for
Switzerland. Hydrology and Earth System Sciences 16 :
167–177.
Mittelbach, H., & Seneviratne, S.I. 2012. A new perspective on the
spatio-temporal variability of soil moisture: temporal dynamics versus
time invariant contributions. Hydrology and Earth System Sciences16 : 2169–2179.
Mostowik, K., Krzyczman, D., Płaczkowska, E., Rzonca, B., Siwek, J., and
Wacławczyk, P. 2021. Spring recharge and groundwater flow patterns in
flysch aquifer in the Połonina Wetlińska Massif in the Carpathian
Mountains. Journal of Mountain Science 18 (4): 819-833.
Nasirzadehdizaji, R., and Akyüz, DE. 2022. Application of SWAT
Hydrological Model to Assess the Impacts of Land Use Change on Sediment
Loads. International Journal of Agriculture, Environment and Food
Sciences 6 (1): 108-120.
Obi ME., Salako and FK. 1995. Rainfall parameters influencing erosivity
in southeastern Nigeria. Catena 24 (4): 275–287.
Pawłowski, L. 2011. Role of environmental monitoring in implementation
of sustainable development. Annual Set The Environment Protection13 : 333–345.
Purandara, B.K., Varadarajan, N., Venkatesh, B., Choubey, and V.K. 2012.
Surface water quality evaluation and modeling of Ghataprabha River,
Karnataka, India. Environmental Monitoring and Assessment184 (3): 1371–1378.
Rangel, TFLVB., Diniz-Filho, JAF., and Bini, LM. 2010. SAM: a
comprehensive application for Spatial Analysis in Macroecology.Ecography 33 : 46–50.
Richards, G., Gilmore, T. E., Mittelstet, A. R., Messer, T. L., & Snow,
D. D. 2021. Baseflow nitrate dynamics within nested watersheds of an
agricultural stream in Nebraska, USA. Agriculture, Ecosystems and
Environment 308 : 107223.
Robson, B. 2014. State of the art in modelling of phosphorus in aquatic
systems: Review, criticisms and commentary. Environ. Model Softw.,
1–21.
Senent-Aparicio, J., George, C., and Srinivasan, R. 2021. Introducing a
new post-processing tool for the SWAT+ model to evaluate environmental
flows. Environmental Modelling & Software 136 : 104944.
Seneviratne, SI., Corti, T., Davin, EL., Hirschi, M., Jaeger EB.,
Lehner, I., Orlowsky, B. 2010. Investigating soil moisture-climate
interactions in a changing climate: A review. Earth-Science Reviews99 (3-4): 125–161.
Smoroń, S., Kowalczyk, A., & Kostuch, M. 2009. Użytkowanie gruntów
zlewni Szreniawy w kontekście ochrony gleby i wody w latach 1995–2005.
Woda-Środowisko-Obszary Wiejskie 9 (27), 167−179.
Starkel, L. 2006. Geomorphic hazards in the Polish Flysch Carpathians.
Studia Geomorphologica Carpatho-Balcanica 40 , 7–19.
Starkel, L. 2011. Złożoność czasowa i przestrzenna opadów ekstremalnych
– ich efekty geomorfologiczne i drogi przeciwdziałania im. Landform
Analysis 15 , 65–80.
Stępniewski, K., Demczuk, P., Rodzik, J., & Siwek, K. 2010. Związki
między opadem deszczu a spływem powierzchniowym i spłukiwaniem gleby na
poletkach doświadczalnych o różnym użytkowaniu (Guciów – Roztocze
Środkowe). Prace i Studia Geograficzne 45 , 229–241.
Vermeulen, H.R., & Nieuwenhuis, J.D. 2005. Kinetic energy rainfall
relationship for Central Cebu. Philippines for soil erosion. J. Hydrol.300 20–32.
Wang, R., Liu, Z., Yao, Z., & Lei, Y. (2014). Modeling the risk of
nitrate leaching and nitrate runoff loss from intensive farmland in the
Baiyangdian Basin of the North China Plain. Environ. Earth Sci. 10(8),
3143–3157.
Woo, S. Y., Kim, S. J., Lee, J. W., Kim, S. H., & Kim, Y. W. 2021.
Evaluating the impact of interbasin water transfer on water quality in
the recipient river basin with SWAT. Sci. Total Environ.776 ,
145984.
Wu, S., Tetzlaff, D., Goldhammer, T., & Soulsby, C. 2021. Hydroclimatic
variability and riparian wetland restoration control the hydrology and
nutrient fluxes in a lowland agricultural catchment. J. Hydrol.,603 , 126904.
Wu, S., Tetzlaff, D., Yang, X., & Soulsby, C. 2022. Disentangling the
Influence of Landscape Characteristics, Hydroclimatic Variability and
Land Management on Surface Water NO3‐N Dynamics: Spatially Distributed
Modeling Over 30 yr in a Lowland Mixed Land Use Catchment. Water Resour.
Res., 58 (2), e2021WR030566.
Zhao, Z., Zhou, Y., Wang, X., Wang, Z., & Bai, Y. 2022. Water quality
evolution mechanism modeling and health risk assessment based on
stochastic hybrid dynamic systems. Expert Syst. Appl., 116404.
Zheng, Z., & He, S. 2012. Change of soil surface roughness of splash
erosion process. Research on Soil Erosion. Danilo Godone, Silvia
Stanchi, IntechOpen.