References:
[1]. Sood, A.K., Ohdar, R.K. and Mahapatra, S.S., 2010. Parametric
appraisal of mechanical property of fused deposition modelling processed
parts. Materials & Design, 31(1), pp.287-295.
[2] Upcraft, S. and Fletcher, R., 2003. The rapid prototyping
technologies. Assembly Automation, 23(4), pp.318-330.
[3]. Chua, C.K., Feng, C., Lee, C.W. and Ang, G.Q., 2005. Rapid
investment casting: direct and indirect approaches via model maker II.
The International Journal of Advanced Manufacturing Technology, 25(1-2),
pp.26-32.
[4]. Masood, S.H. and Song, W.Q., 2004. Development of new
metal/polymer materials for rapid tooling using fused deposition
modelling. Materials & design, 25(7), pp.587-594.
[5].Smith, W.C. and Dean, R.W., 2013. Structural characteristics of
fused deposition modeling polycarbonate material. Polymer testing,
32(8), pp.1306-1312.
[6]. Kumar, S. and Kruth, J.P., 2010. Composites by rapid
prototyping technology. Materials & Design, 31(2), pp.850-856.
[7]. Novakova-Marcincinova, L. and Kuric, I., 2012. Basic and
advanced materials for fused deposition modeling rapid prototyping
technology. Manuf. and Ind. Eng, 11(1), pp.24-27.
[8]. Chua, C.K., Chou, S.M. and Wong, T.S., 1998. A study of the
state-of-the-art rapid prototyping technologies. The International
Journal of Advanced Manufacturing Technology, 14(2), pp.146-152.
[9]. Jain, P. and Kuthe, A.M., 2013. Feasibility study of
manufacturing using rapid prototyping: FDM approach. Procedia
Engineering, 63, pp.4-11.
[10]. Rocha, C.R., Perez, A.R.T., Roberson, D.A., Shemelya, C.M.,
MacDonald, E. and Wicker, R.B., 2014. Novel ABS-based binary and ternary
polymer blends for material extrusion 3D printing. Journal of materials
research, 29(17), pp.1859-1866.
[11]. Roberson, D., Shemelya, C.M., MacDonald, E. and Wicker, R.,
2015. Expanding the applicability of FDM-type technologies through
materials development. Rapid Prototyping Journal, 21(2), pp.137-143.
[12]. Durgun, I. and Ertan, R., 2014. Experimental investigation of
FDM process for improvement of mechanical properties and production
cost. Rapid Prototyping Journal, 20(3), pp.228-235.
[13]. Espalin, D., Alberto Ramirez, J., Medina, F. and Wicker, R.,
2014. Multi-material, multi-technology FDM: exploring build process
variations. Rapid Prototyping Journal, 20(3), pp.236-244.
[14]. Lee, J. and Huang, A., 2013. Fatigue analysis of FDM
materials. Rapid prototyping journal, 19(4), pp.291-299.
[15]. Singh, R., Bedi, P., Fraternali, F. and Ahuja, I.P.S., 2016.
Effect of single particle size, double particle size and triple particle
size Al2O3 in Nylon-6 matrix on mechanical properties of feed stock
filament for FDM. Composites Part B: Engineering, 106, pp.20-27.
[16]. Papon, E.A. and Haque, A., 2018. Tensile properties, void
contents, dispersion and fracture behaviour of 3D printed carbon
nanofiber reinforced composites. Journal of Reinforced Plastics and
Composites, 37(6)
[17]. Kaynak, C. and Varsavas, S.D., 2019. Performance comparison of
the 3D-printed and injection-molded PLA and its elastomer blend and
fiber composites. Journal of Thermoplastic Composite Materials, 32(4),
pp.501-520.
[18] Daniel, F., Patoary, N.H., Moore, A.L., Weiss, L. and Radadia,
A.D., 2018. Temperature-dependent electrical resistance of conductive
polylactic acid filament for fused deposition modeling. The
International Journal of Advanced Manufacturing Technology, 99(5-8),
pp.1215-1224
[19]Hou, Z., Tian, X., Zhang, J. and Li, D., 2018. 3D printed
continuous fiber reinforced composite corrugated structure. Composite
Structures, 184, pp.1005-1010.
[20]Ivey, M., Melenka, G.W., Carey, J.P. and Ayranci, C., 2017.
Characterizing short-fiber-reinforced composites produced using additive
manufacturing. Advanced Manufacturing: Polymer & Composites Science,
3(3), pp.81-91.
[21]Ferreira, R.T.L., Amatte, I.C., Dutra, T.A. and Bürger, D.,
2017. Experimental characterization and micrography of 3D printed PLA
and PLA reinforced with short carbon fibers. Composites Part B:
Engineering, 124, pp.88-100.
[22] Hofstätter, T., Pedersen, D.B., Tosello, G. and Hansen, H.N.,
2017. Applications of fiber-reinforced polymers in additive
manufacturing. Procedia Cirp, 66, pp.312-316.
[23] Hofstätter, T., Gutmann, I.W., Koch, T., Pedersen, D.B.,
Tosello, G., Heinz, G. and Hansen, H.N., 2016. Distribution and
orientation of carbon fibers in polylactic acid parts produced by fused
deposition modeling. In ASPE Summer Topical Meeting 2016. ASPE–The
American Society for Precision Engineering.
[24]Tian, X., Liu, T., Yang, C., Wang, Q. and Li, D., 2016.
Interface and performance of 3D printed continuous carbon fiber
reinforced PLA composites. Composites Part A: Applied Science and
Manufacturing, 88, pp.198-205.
[25] Li, N., Li, Y. and Liu, S., 2016. Rapid prototyping of
continuous carbon fiber reinforced polylactic acid composites by 3D
printing. Journal of Materials Processing Technology, 238, pp.218-225.
[26] Yao, X., Luan, C., Zhang, D., Lan, L. and Fu, J., 2017.
Evaluation of carbon fiber-embedded 3D printed structures for
strengthening and structural-health monitoring. Materials & Design,
114, pp.424-432.
[27] Tao, Y., Wang, H., Li, Z., Li, P. and Shi, S.Q., 2017.
Development and application of wood flour-filled polylactic acid
composite filament for 3D printing. Materials, 10(4), p.339.
[28] Le Duigou, A., Castro, M., Bevan, R. and Martin, N., 2016. 3D
printing of wood fiberbiocomposites: From mechanical to actuation
functionality. Materials & Design, 96, pp.106-114.
[29] Ochi, S., 2015. Flexural properties of long bamboo fiber/PLA
composites. Open Journal of Composite Materials, 5(03), p.70.
[30] Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.K., Asahara, H.,
Horiguchi, K., Nakamura, T., Todoroki, A. and Hirano, Y., 2016.
Three-dimensional printing of continuous-fiber composites by in-nozzle
impregnation. Scientific reports, 6, p.23058.
[31] Prashantha, K. and Roger, F., 2017. Multifunctional properties
of 3D printed poly (lactic acid)/graphene nanocomposites by fused
deposition modeling. Journal of Macromolecular Science, Part A, 54(1),
pp.24-29
[32] Bettini, P., Alitta, G., Sala, G. and Di Landro, L., 2017.
Fused deposition technique for continuous fiber reinforced
thermoplastic. Journal of Materials Engineering and Performance, 26(2),
pp.843-848.
[33] Yu, T., Ren, J., Li, S., Yuan, H. and Li, Y., 2010. Effect of
fiber surface-treatments on the properties of poly (lactic acid)/ramie
composites. Composites Part A: Applied Science and Manufacturing, 41(4),
pp.499-505.
[34] Postiglione, G., Natale, G., Griffini, G., Levi, M. and Turri,
S., 2015. Conductive 3D microstructures by direct 3D printing of
polymer/carbon nanotube nanocomposites via liquid deposition modeling.
Composites Part A: Applied Science and Manufacturing, 76, pp.110-114.
[35] Lebedev, S.M., Gefle, O.S., Amitov, E.T., Zhuravlev, D.V.,
Berchuk, D.Y. and Mikutskiy, E.A., 2018. Mechanical properties of
PLA-based composites for fused deposition modeling technology. The
International Journal of Advanced Manufacturing Technology, 97(1-4),
pp.511-518.
[36] Taguchi, G., Chowdhury, S. and Wu, Y., 2004. Taguchi’s quality
engineering handbook. John Wiley & Sons.
[37] Hill, N. and Haghi, M., 2014. Deposition direction-dependent
failure criteria for fused deposition modeling polycarbonate. Rapid
Prototyping Journal.
[38] Ahn, S.H., Montero, M., Odell, D., Roundy, S. and Wright, P.K.,
2002. Anisotropic material properties of fused deposition modeling ABS.
Rapid prototyping journal.
[39] Torres, J., Cole, M., Owji, A., DeMastry, Z. and Gordon, A.P.,
2016. An approach for mechanical property optimization of fused
deposition modeling with polylactic acid via design of experiments.
Rapid Prototyping Journal.
[40] Croccolo, D., De Agostinis, M. and Olmi, G., 2013. Experimental
characterization and analytical modelling of the mechanical behaviour of
fused deposition processed parts made of ABS-M30. Computational
Materials Science, 79, pp.506-518.
[41] Coogan, T.J. and Kazmer, D.O., 2017. Bond and part strength in
fused deposition modeling. Rapid Prototyping Journal.