References:
[1]. Sood, A.K., Ohdar, R.K. and Mahapatra, S.S., 2010. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials & Design, 31(1), pp.287-295.
[2] Upcraft, S. and Fletcher, R., 2003. The rapid prototyping technologies. Assembly Automation, 23(4), pp.318-330.
[3]. Chua, C.K., Feng, C., Lee, C.W. and Ang, G.Q., 2005. Rapid investment casting: direct and indirect approaches via model maker II. The International Journal of Advanced Manufacturing Technology, 25(1-2), pp.26-32.
[4]. Masood, S.H. and Song, W.Q., 2004. Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Materials & design, 25(7), pp.587-594.
[5].Smith, W.C. and Dean, R.W., 2013. Structural characteristics of fused deposition modeling polycarbonate material. Polymer testing, 32(8), pp.1306-1312.
[6]. Kumar, S. and Kruth, J.P., 2010. Composites by rapid prototyping technology. Materials & Design, 31(2), pp.850-856.
[7]. Novakova-Marcincinova, L. and Kuric, I., 2012. Basic and advanced materials for fused deposition modeling rapid prototyping technology. Manuf. and Ind. Eng, 11(1), pp.24-27.
[8]. Chua, C.K., Chou, S.M. and Wong, T.S., 1998. A study of the state-of-the-art rapid prototyping technologies. The International Journal of Advanced Manufacturing Technology, 14(2), pp.146-152.
[9]. Jain, P. and Kuthe, A.M., 2013. Feasibility study of manufacturing using rapid prototyping: FDM approach. Procedia Engineering, 63, pp.4-11.
[10]. Rocha, C.R., Perez, A.R.T., Roberson, D.A., Shemelya, C.M., MacDonald, E. and Wicker, R.B., 2014. Novel ABS-based binary and ternary polymer blends for material extrusion 3D printing. Journal of materials research, 29(17), pp.1859-1866.
[11]. Roberson, D., Shemelya, C.M., MacDonald, E. and Wicker, R., 2015. Expanding the applicability of FDM-type technologies through materials development. Rapid Prototyping Journal, 21(2), pp.137-143.
[12]. Durgun, I. and Ertan, R., 2014. Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyping Journal, 20(3), pp.228-235.
[13]. Espalin, D., Alberto Ramirez, J., Medina, F. and Wicker, R., 2014. Multi-material, multi-technology FDM: exploring build process variations. Rapid Prototyping Journal, 20(3), pp.236-244.
[14]. Lee, J. and Huang, A., 2013. Fatigue analysis of FDM materials. Rapid prototyping journal, 19(4), pp.291-299.
[15]. Singh, R., Bedi, P., Fraternali, F. and Ahuja, I.P.S., 2016. Effect of single particle size, double particle size and triple particle size Al2O3 in Nylon-6 matrix on mechanical properties of feed stock filament for FDM. Composites Part B: Engineering, 106, pp.20-27.
[16]. Papon, E.A. and Haque, A., 2018. Tensile properties, void contents, dispersion and fracture behaviour of 3D printed carbon nanofiber reinforced composites. Journal of Reinforced Plastics and Composites, 37(6)
[17]. Kaynak, C. and Varsavas, S.D., 2019. Performance comparison of the 3D-printed and injection-molded PLA and its elastomer blend and fiber composites. Journal of Thermoplastic Composite Materials, 32(4), pp.501-520.
[18] Daniel, F., Patoary, N.H., Moore, A.L., Weiss, L. and Radadia, A.D., 2018. Temperature-dependent electrical resistance of conductive polylactic acid filament for fused deposition modeling. The International Journal of Advanced Manufacturing Technology, 99(5-8), pp.1215-1224
[19]Hou, Z., Tian, X., Zhang, J. and Li, D., 2018. 3D printed continuous fiber reinforced composite corrugated structure. Composite Structures, 184, pp.1005-1010.
[20]Ivey, M., Melenka, G.W., Carey, J.P. and Ayranci, C., 2017. Characterizing short-fiber-reinforced composites produced using additive manufacturing. Advanced Manufacturing: Polymer & Composites Science, 3(3), pp.81-91.
[21]Ferreira, R.T.L., Amatte, I.C., Dutra, T.A. and Bürger, D., 2017. Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Composites Part B: Engineering, 124, pp.88-100.
[22] Hofstätter, T., Pedersen, D.B., Tosello, G. and Hansen, H.N., 2017. Applications of fiber-reinforced polymers in additive manufacturing. Procedia Cirp, 66, pp.312-316.
[23] Hofstätter, T., Gutmann, I.W., Koch, T., Pedersen, D.B., Tosello, G., Heinz, G. and Hansen, H.N., 2016. Distribution and orientation of carbon fibers in polylactic acid parts produced by fused deposition modeling. In ASPE Summer Topical Meeting 2016. ASPE–The American Society for Precision Engineering.
[24]Tian, X., Liu, T., Yang, C., Wang, Q. and Li, D., 2016. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Composites Part A: Applied Science and Manufacturing, 88, pp.198-205.
[25] Li, N., Li, Y. and Liu, S., 2016. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. Journal of Materials Processing Technology, 238, pp.218-225.
[26] Yao, X., Luan, C., Zhang, D., Lan, L. and Fu, J., 2017. Evaluation of carbon fiber-embedded 3D printed structures for strengthening and structural-health monitoring. Materials & Design, 114, pp.424-432.
[27] Tao, Y., Wang, H., Li, Z., Li, P. and Shi, S.Q., 2017. Development and application of wood flour-filled polylactic acid composite filament for 3D printing. Materials, 10(4), p.339.
[28] Le Duigou, A., Castro, M., Bevan, R. and Martin, N., 2016. 3D printing of wood fiberbiocomposites: From mechanical to actuation functionality. Materials & Design, 96, pp.106-114.
[29] Ochi, S., 2015. Flexural properties of long bamboo fiber/PLA composites. Open Journal of Composite Materials, 5(03), p.70.
[30] Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.K., Asahara, H., Horiguchi, K., Nakamura, T., Todoroki, A. and Hirano, Y., 2016. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Scientific reports, 6, p.23058.
[31] Prashantha, K. and Roger, F., 2017. Multifunctional properties of 3D printed poly (lactic acid)/graphene nanocomposites by fused deposition modeling. Journal of Macromolecular Science, Part A, 54(1), pp.24-29
[32] Bettini, P., Alitta, G., Sala, G. and Di Landro, L., 2017. Fused deposition technique for continuous fiber reinforced thermoplastic. Journal of Materials Engineering and Performance, 26(2), pp.843-848.
[33] Yu, T., Ren, J., Li, S., Yuan, H. and Li, Y., 2010. Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites. Composites Part A: Applied Science and Manufacturing, 41(4), pp.499-505.
[34] Postiglione, G., Natale, G., Griffini, G., Levi, M. and Turri, S., 2015. Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Composites Part A: Applied Science and Manufacturing, 76, pp.110-114.
[35] Lebedev, S.M., Gefle, O.S., Amitov, E.T., Zhuravlev, D.V., Berchuk, D.Y. and Mikutskiy, E.A., 2018. Mechanical properties of PLA-based composites for fused deposition modeling technology. The International Journal of Advanced Manufacturing Technology, 97(1-4), pp.511-518.
[36] Taguchi, G., Chowdhury, S. and Wu, Y., 2004. Taguchi’s quality engineering handbook. John Wiley & Sons.
[37] Hill, N. and Haghi, M., 2014. Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate. Rapid Prototyping Journal.
[38] Ahn, S.H., Montero, M., Odell, D., Roundy, S. and Wright, P.K., 2002. Anisotropic material properties of fused deposition modeling ABS. Rapid prototyping journal.
[39] Torres, J., Cole, M., Owji, A., DeMastry, Z. and Gordon, A.P., 2016. An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments. Rapid Prototyping Journal.
[40] Croccolo, D., De Agostinis, M. and Olmi, G., 2013. Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30. Computational Materials Science, 79, pp.506-518.
[41] Coogan, T.J. and Kazmer, D.O., 2017. Bond and part strength in fused deposition modeling. Rapid Prototyping Journal.