References
Auerbach, S. B., Minzenberg, M. J., & Wilkinson, L. O. (1989). Extracellular serotonin and 5-hydroxyindoleacetic acid in hypothalamus of the unanesthetized rat measured by in vivo dialysis coupled to high-performance liquid chromatography with electrochemical detection: dialysate serotonin reflects neuronal release. Brain research,499(2), 281–290.https://doi.org/10.1016/0006-8993(89)90776-2Bester-Meredith, J. K., Burns, J. N., Dang, M. N., Garcia, A. M., Mammarella, G. E., Rowe, M. E., & Spatacean, C. F. (2022). Blocking olfactory input alters aggression in male and female California mice (Peromyscus californicus). Aggressive behavior, 48(3), 290–297.https://doi.org/10.1002/ab.22004Berger M., Gray, J. A., & Roth, B. L. (2009). The expanded biology of serotonin. Annual review of medicine, 60, 355–366.https://doi.org/10.1146/annurev.med.60.042307.110802Bosman, L. W., Rosahl, T. W., & Brussaard, A. B. (2002). Neonatal development of the rat visual cortex: synaptic function of GABAA receptor alpha subunits. The Journal of Physiology, 545(1), 169–181.https://doi.org/10.1113/jphysiol.2002.026534Buhot, M. C., Martin, S., & Segu, L. (2000). Role of serotonin in memory impairment. Annals of medicine, 32(3), 210–221.https://doi.org/10.3109/07853890008998828Casas, S., García, S., Cabrera, R., Nanfaro, F., Escudero, C., & Yunes, R. (2011). Progesterone prevents depression-like behavior in a model of Parkinson’s disease induced by 6- hydroxydopamine in male rats. Pharmacology, biochemistry, and behavior, 99(4), 614–618.https://doi.org/10.1016/j.pbb.2011.06.012Cervantes, M. C., & Delville, Y. (2009). Serotonin 5-HT1A and 5-HT3 receptors in an impulsive-aggressive phenotype. Behavioral neuroscience, 123(3), 589–598.https://doi.org/10.1037/a0015333Chi, J. D., Odontiadis, J., & Franklin, M. (1999). Simultaneous determination of catecholamines in rat brain tissue by high-performance liquid chromatography. Journal of chromatography. B, Biomedical sciences and applications, 731(2), 361–367.https://doi.org/10.1016/s0378-4347(99)00255-8Corthell, J. T., Stathopoulos, A. M., Watson, C. C., Bertram, R., & Trombley, P. Q. (2013). Olfactory bulb monoamine concentrations vary with time of day. Neuroscience, 247, 234–241.https://doi.org/10.1016/j.neuroscience.2013.05.040Dringenberg, H. C., Hargreaves, E. L., Baker, G. B., Cooley, R. K., & Vanderwolf, C. H. (1995). p-chlorophenylalanine-induced serotonin depletion: reduction in exploratory locomotion but no obvious sensory-motor deficits. Behavioural brain research, 68(2), 229–237.https://doi.org/10.1016/0166-4328(94)00174-eFibiger, H. C., & Campbell, B. A. (1971). The effect of para-chlorophenylalanine on spontaneous locomotor activity in the rat.Neuropharmacology, 10(1), 25–32.https://doi.org/10.1016/0028-3908(71)90005-0Fukunaga, I., Berning, M., Kollo, M., Schmaltz, A., & Schaefer, A. T. (2012). Two distinct channels of olfactory bulb output. Neuron, 75(2), 320–329. https://doi.org/10.1016/j.neuron.2012.05.017 Guillot, P. V., & Chapouthier, G. (1996). Olfaction, GABAergic neurotransmission in the olfactory bulb, and intermale aggression in mice: modulation by steroids. Behavior genetics, 26(5), 497–504.https://doi.org/10.1007/BF02359754Goodell, D. J., Ahern, M. A., Baynard, J., Wall, V. L., & Bland, S. T. (2017). A novel escapable social interaction test reveals that social behavior and mPFC activation during an escapable social encounter are altered by post-weaning social isolation and are dependent on the aggressiveness of the stimulus rat. Behavioural brain research,317, 1–15.https://doi.org/10.1016/j.bbr.2016.09.025Harvey, J. D., & Heinbockel, T. (2018). Neuromodulation of Synaptic Transmission in the Main Olfactory Bulb. International journal of environmental research and public health, 15(10), 2194. https://doi.org/10.3390/ijerph15102194 Hernández-Vázquez, F., Garduño, J., & Hernández-López, S. (2018). GABAergic modulation of serotonergic neurons in the dorsal raphe nucleus. Reviews in neurosciences, 30(3), 289–303. https://doi.org/10.1515/revneuro-2018-0014 Hole, K., Johnson, G. E., & Berge, O. G. (1977). 5,7-Dihydroxytryptamine lesions of the ascending 5-hydroxytryptamine pathways: habituation, motor activity and agonistic behavior.Pharmacology, biochemistry, and behavior, 7(3), 205–210.https://doi.org/10.1016/0091-3057(77)90135-6Huang, Z., Thiebaud, N., & Fadool, D. A. (2017). Differential serotonergic modulation across the main and accessory olfactory bulbs. The Journal of Physiology, 595(11), 3515–3533. https://doi.org/10.1113/JP273945 Hritcu, L., Clicinschi, M., & Nabeshima, T. (2007). Brain serotonin depletion impairs short-term memory, but not long-term memory in rats. Physiology & behavior, 91(5), 652–657. https://doi.org/10.1016/j.physbeh.2007.03.028 Jéquier, E., Lovenberg, W., & Sjoerdsma, A. (1967). Tryptophan hydroxylase inhibition: the mechanism by which p-chlorophenylalanine depletes rat brain serotonin. Molecular Pharmacology, 3(3), 274–278. Kalén, P., Strecker, R. E., Rosengren, E., & Björklund, A. (1988). Endogenous release of neuronal serotonin and 5-hydroxyindoleacetic acid in the caudate-putamen of the rat as revealed by intracerebral dialysis coupled to high-performance liquid chromatography with fluorimetric detection. Journal of neurochemistry, 51(5), 1422–1435. https://doi.org/10.1111/j.1471-4159.1988.tb01107.x Keleta, Y. B., Lumia, A. R., Anderson, G. M., & McGinnis, M. Y. (2007). Behavioral effects of pubertal anabolic androgenic steroid exposure in male rats with low serotonin. Brain research, 1132(1), 129–138. https://doi.org/10.1016/j.brainres.2006.10.097 Khan, I. A., & Thomas, P. (2004). Aroclor 1254 inhibits tryptophan hydroxylase activity in the rat brain. Archives of toxicology, 78(6), 316–320. https://doi.org/10.1007/s00204-003-0540-1 Koe, B.K. and Weissman, A. (1966) p-Chlorophenylalanine: a specific depletion of brain serotonin. J. Pharmacol. Exp. Ther. 154: 499–516. Kohlert, J. G., Mangan, B. P., Kodra, C., Drako, L., Long, E., & Simpson, H. (2012). Decreased aggressive and locomotor behaviors in Betta splendens after exposure to fluoxetine. Psychological Reports, 110(1), 51–62. https://doi.org/10.2466/02.13.PR0.110.1.51-62 Koolhaas, J. M., Coppens, C. M., de Boer, S. F., Buwalda, B., Meerlo, P., & Timmermans, P. J. (2013). The resident-intruder paradigm: a standardized test for aggression, violence, and social stress. Journal of visualized experiments: JoVE, (77), e4367. https://doi.org/10.3791/4367 Kravitz, E. A., & Huber, R. (2003). Aggression in invertebrates. Current opinion in neurobiology, 13(6), 736–743. https://doi.org/10.1016/j.conb.2003.10.003 Kubala, K. H., McGinnis, M. Y., Anderson, G. M., & Lumia, A. R. (2008). The effects of an anabolic androgenic steroid and low serotonin on social and non-social behaviors in male rats. Brain research,1232, 21–29.https://doi.org/10.1016/j.brainres.2008.07.065Lesch, K. P., & Waider, J. (2012). Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron, 76(1), 175–191. https://doi.org/10.1016/j.neuron.2012.09.013 Linster, C., & Fontanini, A. (2014). Functional neuromodulation of chemosensation invertebrates. Current opinion in neurobiology, 29, 82–87. https://doi.org/10.1016/j.conb.2014.05.010 Lucki I. (1998). The spectrum of behaviors influenced by serotonin.Biological psychiatry, 44(3), 151–162.https://doi.org/10.1016/s0006-3223(98)00139-5Malek, Z. S., Dardente, H., Pevet, P., & Raison, S. (2005). Tissue-specific expression of tryptophan hydroxylase mRNAs in the rat midbrain: anatomical evidence and daily profiles. The European journal of neuroscience, 22(4), 895–901. https://doi.org/10.1111/j.1460-9568.2005.04264.x Matte, A. C., & Tornow, H. (1978). Parachlorophenylalanine produces dissociated effects on aggression ”emotionality” and motor activity.Neuropharmacology, 17(8), 555–558. https://doi.org/10.1016/0028-3908(78)90147-8 McLean, J. H., & Shipley, M. T. (1987). Serotonergic afferents to the rat olfactory bulb: I. Origins and laminar specificity of serotonergic inputs in the adult rat. The Journal of neuroscience: the official journal of the Society for Neuroscience, 7(10), 3016–3028. https://doi.org/10.1523/JNEUROSCI.07-10-03016.1987 Miczek, K. A., de Boer, S. F., & Haller, J. (2013). Excessive aggression as a model of violence: a critical evaluation of current preclinical methods. Psychopharmacology, 226(3), 445–458. https:// doi.org/10.1007/s00213-013-3008-x Miczek, K. A., Fish, E. W., De Bold, J. F., & De Almeida, R. M. (2002). Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine, and gamma-aminobutyric acid systems. Psychopharmacology, 163(3-4), 434–458. https://doi.org/10.1007/s00213-002-1139-6 Miguez, J., Martin, F., & Aldegunde, M. (1991). Differential effects of pinealectomy on amygdala and hippocampus serotonin metabolism. Journal of pineal research, 10(2), 100–103. https:// doi.org/10.1111/j.1600-079x.1991.tb00017.x Mittal, R., Debs, L. H., Patel, A. P., Nguyen, D., Patel, K., O’Connor, G., Grati, M., Mittal, J., Yan, D., Eshraghi, A. A., Deo, S. K., Daunert, S., & Liu, X. Z. (2017). Neurotransmitters: The Critical Modulators Regulating Gut-Brain Axis. Journal of cellular physiology, 232(9), 2359–2372. https://doi.org/10.1002/jcp.25518 Moeller, F. G., Dougherty, D. M., Swann, A. C., Collins, D., Davis, C. M., & Cherek, D. R. (1996). Tryptophan depletion and aggressive responding in healthy males. Psychopharmacology, 126(2), 97–103.https://doi.org/10.1007/BF02246343Mongillo, D. L., Kosyachkova, E. A., Nguyen, T. M., & Holmes, M. M. (2014). Differential effects of chronic fluoxetine on the behavior of dominant and subordinate naked mole-rats. Behavioral brain research, 258, 119–126. https://doi.org/10.1016/j.bbr.2013.10.023 Muroy, S. E., Long, K. L., Kaufer, D., & Kirby, E. D. (2016). Moderate Stress-Induced Social Bonding and Oxytocin Signaling are Disrupted by Predator Odor in Male Rats. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 41(8), 2160–2170. https://doi.org/10.1038/npp.2016.16 Muzerelle, A., Scotto-Lomassese, S., Bernard, J. F., Soiza-Reilly, M., & Gaspar, P. (2016). Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to the forebrain and brainstem. Brain structure & function, 221(1), 535–561. https://doi.org/10.1007/s00429-014-0924-4 Näslund, J., Studer, E., Pettersson, R., Hagsäter, M., Nilsson, S., Nissbrandt, H., & Eriksson, E. (2015). Differences in Anxiety-Like Behavior within a Batch of Wistar Rats Are Associated with Differences in Serotonergic Transmission, Enhanced by Acute SRI Administration, and Abolished By Serotonin Depletion. The international journal of neuropsychopharmacology, 18(8), pyv018.https://doi.org/10.1093/ijnp/pyv018Niederkofler, V., Asher, T. E., Okaty, B. W., Rood, B. D., Narayan, A., Hwa, L. S., Beck, S. G., Miczek, K. A., & Dymecki, S. M. (2016). Identification of Serotonergic Neuronal Modules that Affect Aggressive Behavior. Cell reports, 17(8), 1934–1949.https://doi.org/10.1016/j.celrep.2016.10.063Panzanelli, P., Perazzini, A.-Z., Fritschy, J.-M., & Sassoè-Pognetto, M. (2005). Heterogeneity of γ-aminobutyric acid types A receptors in mitral and tufted cells of the rat main olfactory bulb. Journal of Comparative Neurology, 484(1), 121–131. doi:10.1002/cne.20440 Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic acids research, 29(9), e45. https://doi.org/10.1093/nar/29.9.e45 Pelosi, B., Pratelli, M., Migliarini, S., Pacini, G., & Pasqualetti, M. (2015). Generation of a Tph2 Conditional Knockout Mouse Line for Time- and Tissue-Specific Depletion of Brain Serotonin. PloS one, 10(8), e0136422. https://doi.org/10.1371/journal.pone.0136422 Popova, N. K., Gilinsky, M. A., Amstislavski, T. G., Morosova, E. A., Seif, I., & De Maeyer, E. (2001). Regional serotonin metabolism in the brain of transgenic mice lacking monoamine oxidase A. Journal of neuroscience research, 66(3), 423–427. https://doi.org/10.1002/jnr.1234 Raghuveer, K., Sudhakumari, C. C., Senthilkumaran, B., Kagawa, H., Dutta-Gupta, A., & Nagahama, Y. (2011). Gender differences in tryptophan hydroxylase-2 mRNA, serotonin, and 5-hydroxytryptophan levels in the brain of catfish, Clarias gariepinus, during sex differentiation. General and comparative endocrinology, 171(1), 94–104. https://doi.org/10.1016/j.ygcen.2010.12.003 Scott, J. W., Wellis, D. P., Riggott, M. J., & Buonviso, N. (1993). Functional organization of the main olfactory bulb. Microscopy research and technique, 24(2), 142–156. https://doi.org/10.1002/jemt.1070240206 Ogawa, S., Tsuchimine, S., & Kunugi, H. (2018). Cerebrospinal fluid monoamine metabolite concentrations in depressive disorder: A meta-analysis of historic evidence. Journal of psychiatric research, 105, 137–146.https://doi.org/10.1016/j.jpsychires.2018.08.028Stanley, B., Molcho, A., Stanley, M., Winchel, R., Gameroff, M. J., Parsons, B., & Mann, J. J. (2000). Association of aggressive behavior with altered serotonergic function in patients who are not suicidal.The American journal of psychiatry, 157(4), 609–614.https://doi.org/10.1176/appi.ajp.157.4.609Si, Y., Wei, W., Chen, X., Xie, X., Guo, T., Sasaki, Y., Zhang, Y., Wang, L., Zhang, F., & Feng, S. (2022). A comprehensive study on the relieving effect of Lilium brownii on the intestinal flora and metabolic disorder in p-chlorphenylalanine induced insomnia rats.Pharmaceutical biology, 60(1), 131–143.https://doi.org/10.1080/13880209.2021.2019283Steinfeld, R., Herb, J. T., Sprengel, R., Schaefer, A. T., & Fukunaga, I. (2015). Divergent innervation of the olfactory bulb by distinct raphe nuclei. The Journal of comparative neurology, 523(5), 805–813. https://doi.org/10.1002/cne.23713 Stenfors, C., & Ross, S. B. (2004). Changes in extracellular 5-HIAA concentrations as measured by in vivo microdialysis technique in relation to changes in 5-HT release. Psychopharmacology,172(2), 119–128. https://doi.org/10.1007/s00213-003-1736-z Strüder, H. K., & Weicker, H. (2001). Physiology and pathophysiology of the serotonergic system and its implications on mental and physical performance. Part II. International journal of sports medicine, 22(7), 482–497.https://doi.org/10.1055/s-2001-17606 Takahashi, A., Quadros, I. M., de Almeida, R. M., & Miczek, K. A. (2012). Behavioral and pharmacogenetics of aggressive behavior. Current topics in behavioral neurosciences, 12, 73–138. https://doi.org/10.1007/7854_2011_191 Takahashi, A., Quadros, I. M., de Almeida, R. M., & Miczek, K. A. (2011). Brain serotonin receptors and transporters: initiation vs. termination of escalated aggression. Psychopharmacology, 213(2-3), 183–212. https://doi.org/10.1007/s00213-010-2000-y Takahashi A and Miczek KA. (2014) Neurogenetics of Aggressive Behavior – Studies in Rodents. Curr Top Behav Neurosci. 2014; 17: 3–44.https://doi.org/10.1007/7854_2013_263 Toth, M., Tulogdi, A., Biro, L., Soros, P., Mikics, E., & Haller, J. (2012). The neural background of hyper-emotional aggression induced by post-weaning social isolation. Behavioral brain research, 233(1), 120–129. https://doi.org/10.1016/j.bbr.2012.04.025 Trujillo, V., Valentim-Lima, E., Mencalha, R., Carbalan, Q., Dos-Santos, R. C., Felintro, V., Girardi, C., Rorato, R., Lustrino, D., Reis, L. C., & Mecawi, A. S. (2021). Neonatal Serotonin Depletion Induces Hyperactivity and Anxiolytic-like Sex-Dependent Effects in Adult Rats.Molecular neurobiology, 58(3), 1036–1051.https://doi.org/10.1007/s12035-020-02181-0Urban, N. N., & Arevian, A. C. (2009). Computing with dendrodendritic synapses in the olfactory bulb. Annals of the New York Academy of Sciences, 1170, 264–269. https://doi.org/10.1111/j.1749-6632.2009.03899.x van Erp, A. M., & Miczek, K. A. (2000). Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. The Journal of neuroscience : the official journal of the Society for Neuroscience, 20(24), 9320–9325.https://doi.org/10.1523/JNEUROSCI.20-24-09320.2000Vergnes, M., Depaulis, A., Boehrer, A., & Kempf, E. (1988). Selective increase of offensive behavior in the rat following intrahypothalamic 5,7-DHT-induced serotonin depletion. Behavioural brain research,29(1-2), 85–91.https://doi.org/10.1016/0166-4328(88)90055-1Vergnes, M., & Kempf, E. (1982). Effect of hypothalamic injections of 5,7-dihydroxytryptamine on elicitation of mouse-killing in rats.Behavioral brain research, 5(4), 387–397. https://doi.org/10.1016/0166-4328(82)90042-0 Wang, M., Li, N., Jing, S., Wang, C., Sun, J., Li, H., Liu, J., & Chen, J. (2020). Schisandrin B exerts hypnotic effects in PCPA-treated rats by increasing hypothalamic 5-HT and γ-aminobutyric acid levels.Experimental and therapeutic medicine, 20(6), 142.https://doi.org/10.3892/etm.2020.9271Walther, D. J., & Bader, M. (2003). A unique central tryptophan hydroxylase isoform. Biochemical pharmacology, 66(9), 1673–1680. https://doi.org/10.1016/s0006-2952(03)00556-2 Yu, H. L., Chen, Z. J., Zhao, J. W., Duan, S. R., & Zhao, J. K. (2019). Olfactory Impairment and Hippocampal Volume in a Chinese MCI Clinical Sample. Alzheimer’s disease and associated disorders, 33(2), 124–128. https://doi.org/10.1097/WAD.0000000000000305 Zajicek, K. B., Price, C. S., Shoaf, S. E., Mehlman, P. T., Suomi, S. J., Linnoila, M., & Higley, J. D. (2000). Seasonal variation in CSF 5-HIAA concentrations in male rhesus macaques.Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 22(3), 240–250.https://doi.org/10.1016/S0893-133X(99)00097-4Zepf, F. D., Stadler, C., Demisch, L., Schmitt, M., Landgraf, M., & Poustka, F. (2008). Serotonergic functioning and trait-impulsivity in attention-deficit/hyperactivity-disordered boys (ADHD): influence of rapid tryptophan depletion. Human psychopharmacology,23(1), 43–51.https://doi.org/10.1002/hup.896Zill, P., Büttner, A., Eisenmenger, W., Möller, H. J., Ackenheil, M., & Bondy, B. (2007). Analysis of tryptophan hydroxylase I and II mRNA expression in the human brain: a post-mortem study. Journal of psychiatric research, 41(1-2), 168–173. https://doi.org/10.1016/j.jpsychires.2005.05.004 Zhang, J. H., Araki, T., Sato, M., & Tohyama, M. (1991). Distribution of GABAA-receptor alpha 1 subunit gene expression in the rat forebrain.Brain research. Molecular brain research, 11(3-4), 239–247.https://doi.org/10.1016/0169-328x(91)90032-s