References
Abrams J, Eickwort G. 1981. Nest switching and guarding by the communal
sweat bee Agapostemon virescens (Hymenoptera, Halictidae).Insectes Sociaux 28 :105–116.
Arnold W. 1988. Social thermoregulation during hibernation in alpine
marmots (Marmota marmota). J Comp Physiol B158 :151–156. doi:10.1007/BF01075828
Banaszak-Cibicka W, Żmihorski M. 2012. Wild bees along an urban
gradient: winners and losers. J Insect Conserv16 :331–343. doi:10.1007/s10841-011-9419-2
Bartomeus I, Ascher JS, Wagner D, Danforth BN, Colla S, Kornbluth S,
Winfree R. 2011. Climate-associated phenological advances in bee
pollinators and bee-pollinated plants. Proc Natl Acad Sci108 :20645–20649. doi:10.1073/pnas.1115559108
Blumstein DT, Hayes LD, Pinter-Wollman N. 2022. Social consequences of
rapid environmental change. Trends Ecol Evol S0169534722002853.
doi:10.1016/j.tree.2022.11.005
Bogusch P, Bláhová E, Horák J. 2020. Pollen specialists are more
endangered than non-specialised bees even though they collect pollen on
flowers of non-endangered plants. Arthropod-Plant Interact14 :759–769. doi:10.1007/s11829-020-09789-y
Bohart G, Youssef N. 1976. The Biology and Behavior of Evylaeus
galpinsiae. Wasmann J Biol 34 :185–234.
Boomsma JJ. 1991. Adaptive Colony Sex Ratios in Primitively Eusocial
Bees. Trends Ecol Evol 6 .
Brady SG, Sipes S, Pearson A, Danforth B. 2006. Recent and simultaneous
origins of eusociality in halictid bees. Proc R Soc B273 :1643–1649. doi:10.1098/rspb.2006.3496
Brooks KC, Maia R, Duffy JE, Hultgren KM, Rubenstein DR. 2017.
Ecological generalism facilitates the evolution of sociality in snapping
shrimps. Ecol Lett 20 :1516–1525. doi:10.1111/ele.12857
Brothers D, Michener C. 1974. Interactions in colonies of primitively
social bees - III . Ethometry of division of labor in Lasioglossum
zephyrum (Hymenoptera: Halictidae). J Comp Physiol90 :129–168. doi:10.1007/BF00694482
Cornwallis CK, Botero CA, Rubenstein DR, Downing PA, West SA, Griffin
AS. 2017. Cooperation facilitates the colonization of harsh
environments. Nat Ecol Evol 1 :1–10.
doi:10.1038/s41559-016-0057
Cronin AL, Schwarz MP. 1999. Latitudinal variation in the life cycle of
allodapine bees (Hymenoptera; Apidae). Can J Zool77 :857–864.
da Silva CRB, Beaman JE, Dorey JB, Barker SJ, Congedi NC, Elmer MC,
Galvin S, Tuiwawa M, Stevens MI, Alton LA, Schwarz MP, Kellermann V.
2021. Climate change and invasive species: A physiological performance
comparison of invasive and endemic bees in Fiji. J Exp Biol224 . doi:10.1242/jeb.230326
da Silva CRB, Beaman JE, Youngblood JP, Kellermann V, Diamond SE. 2023.
Vulnerability to climate change increases with trophic level in
terrestrial organisms. Sci Total Environ 865 :161049.
doi:10.1016/j.scitotenv.2022.161049
da Silva CRB, Riginos C, Wilson RS. 2019. An intertidal fish shows
thermal acclimation despite living in a rapidly fluctuating environment.J Comp Physiol B 189 :385–398.
da Silva CRB, Stevens MI, Schwarz MP. 2016. Casteless sociality in an
allodapine bee and evolutionary losses of social hierarchies.Insectes Sociaux 63 :67–78.
doi:10.1007/s00040-015-0436-0
Danforth B. 1991. Female Foraging and Intranest Behavior of a Communal
Bee, Perdita portalis (Hymenoptera: Andrenidae). Ann Entomol Soc
Am 84 :537–548.
Danforth B, Minckley R, Neff J. 2019. The Solitary Bees: Biology,
Evolution, Conservation. Princeton, NJ: Princeton University Press.
Danforth B, Neff JL, Barretto-k P. 1996. Nestmate relatedness in a
communal bee, perdita texana (Hymenoptera: Andrenidae), based on DNA
fingerprinting. Evolution 50 :276–284.
Danforth BN, Conway L, Ji S. 2003. Phylogeny of eusocial Lasioglossum
reveals multiple losses of eusociality within a primitively eusocial
clade of bees (Hymenoptera: Halictidae). Syst Biol52 :23–36.
Davison PJ, Field J. 2018a. Environmental barriers to sociality in an
obligate eusocial sweat bee. Insectes Sociaux65 :549–559. doi:10.1007/s00040-018-0642-7
Davison PJ, Field J. 2018b. Limited social plasticity in the socially
polymorphic sweat bee Lasioglossum calceatum. Behav Ecol
Sociobiol 72 :56. doi:https://doi.org/10.1007/s00265-018-2475-9
Davison PJ, Field J. 2016. Social polymorphism in the sweat bee
Lasioglossum (Evylaeus) calceatum. Insectes Sociaux63 :327–338. doi:10.1007/s00040-016-0473-3
Debevec AH, Cardinal S, Danforth BN. 2012. Identifying the sister group
to the bees: a molecular phylogeny of Aculeata with an emphasis on the
superfamily Apoidea: Phylogeny of Aculeata. Zool Scr41 :527–535. doi:10.1111/j.1463-6409.2012.00549.x
Dew R, Shell W, Rehan S. 2018. Changes in maternal investment with
climate moderate social behaviour in a facultatively social bee.Behav Ecol Sociobiol 72 :69.
Dornhaus A, Chittka L. 2004. Why do honey bees dance? Behav Ecol
Sociobiol 55 :395–401. doi:10.1007/s00265-003-0726-9
Earls KN, Porter MS, Rinehart JP, Greenlee KJ. 2021. Thermal history of
alfalfa leafcutting bees affects nesting and diapause incidence. J
Exp Biol 224 :jeb243242. doi:10.1242/jeb.243242
Eickwort G, Eickwort J, Gordon J, Eickwort M. 1996. Solitary Behavior in
a High-Altitude Population of the Social Sweat Bee Halictus rubicundus
(Hymenoptera: Halictidae). Behav Ecol Sociobiol38 :227–233.
Fahrenholz L, Lamprecht I, Schricker B. 1989. Thermal investigations of
a honey bee colony: thermoregulation of the hive during summer and
winter and heat production of members of different bee castes. J
Comp Physiol B 159 :551–560.
Field J, Paxton RJ, Soro A, Bridge C. 2010. Cryptic Plasticity Underlies
a Major Evolutionary Transition. Curr Biol20 :2028–2031. doi:10.1016/j.cub.2010.10.020
Fisher DN, Kilgour RJ, Siracusa ER, Foote JR, Hobson EA, Montiglio P,
Saltz JB, Wey TW, Wice EW. 2021. Anticipated effects of abiotic
environmental change on intraspecific social interactions. Biol
Rev 96 :2661–2693. doi:10.1111/brv.12772
Forrest JRK. 2016. Complex responses of insect phenology to climate
change. Curr Opin Insect Sci 17 :49–54.
doi:10.1016/j.cois.2016.07.002
Forrest JRK, Thorp RW, Kremen C, Williams NM. 2015. Contrasting patterns
in species and functional-trait diversity of bees in an agricultural
landscape. J Appl Ecol 52 :706–715.
doi:10.1111/1365-2664.12433
Fründ J, Zieger SL, Tscharntke T. 2013. Response diversity of wild bees
to overwintering temperatures. Oecologia 73 :1639–1648.
doi:10.1007/s00442-013-2729-1
Gabriel W. 2005. How stress selects for reversible phenotypic
plasticity. J Evol Biol 18 :873–883.
doi:10.1111/j.1420-9101.2005.00959.x
Gadagkar R. 1990. Evolution of eusociality: the advantage of assured
fitness returns. Phil Trans R Soc B 329 :17–25.
doi:10.1098/rstb.1990.0146
Gerling D, Hurd Jr. PD, Hefetz A. 1981. In-Nest Behavior of the
Carpenter Bee, Xylocopa pubescens Spinola. J Kans Entomol Soc54 :209–218.
Gerling D, Hurd P, Hefetz A. 1983. Comparative behavioral biology of two
Middle East species of carpenter bees (Xylocopa Latreille)
(Hymenoptera:Apoidea). Smithson Contrib Zool 369 :1–33.
doi:10.5479/si.00810282.369
Graham KK, Gibbs J, Wilson J, May E, Isaacs R. 2021. Resampling of wild
bees across fifteen years reveals variable species declines and
recoveries after extreme weather. Agric Ecosyst Environ317 :107470. doi:10.1016/j.agee.2021.107470
Groom SVC, Rehan S. 2018. Climate-mediated behavioural variability in
facultatively social bees. Biol J Linn Soc 1–6.
doi:10.1093/biolinnean/bly101/5057788
Grüter C. 2020. Stingless Bees: Their Behaviour, Ecology and Evolution,
Fascinating Life Sciences. Cham: Springer International Publishing.
doi:10.1007/978-3-030-60090-7
Guevara J, Avilés L. 2015. Ecological predictors of spider sociality in
the Americas: Geographical patterns of spider sociality. Glob Ecol
Biogeogr 24 :1181–1191. doi:10.1111/geb.12342
Hall MA, Nimmo DG, Cunningham SA, Walker K, Bennett AF. 2019. The
response of wild bees to tree cover and rural land use is mediated by
species’ traits. Biol Conserv 231 :1–12.
doi:10.1016/j.biocon.2018.12.032
Hamblin AL, Youngsteadt E, Lopez-Uribe MM, Frank SD. 2017. Physiological
thermal limits predict differential responses of bees to urban
heat-island effects. Biol Lett 0125.
Harrison T, Gibbs J, Winfree R. 2018. Forest bees are replaced in
agricultural and urban landscapes by native species with different
phenologies and life-history traits. Glob Change Biol24 :287–296. doi:10.1111/gcb.13921
Healy TM, Schulte PM. 2012. Thermal Acclimation Is Not Necessary to
Maintain a Wide Thermal Breadth of Aerobic Scope in the Common Killifish
(Fundulus heteroclitus). Physiol Biochem Zool85 :107–119. doi:10.1086/664584
Heinrich B. 1993. The hot-blooded insects: mechanisms and evolution of
thermoregulation. Cambrdige, Mass.: Harvard University Press.
Heinrich B. 1979. Bumblebee Economics. Cambridge, MA: Harvard University
Press.
Hirata M, Higashi S. 2008. Degree-day accumulation controlling
allopatric and sympatric variations in the sociality of sweat bees ,
Lasioglossum (Evylaeus) baleicum (Hymenoptera: Halictidae). Behav
Ecol Sociobiol 62 :1239–1247. doi:10.1007/s00265-008-0552-1
Hogendoorn K, Velthuis H. 1993. The sociality of Xylocopa pubescens:
does a helper really help? Behav Ecol Sociobiol32 :247–257. doi:10.1007/BF00166514
Hrncir M, Maia-Silva C, da Silva Teixeira-Souza VH, Imperatriz-Fonseca
VL. 2019. Stingless bees and their adaptations to extreme environments.J Comp Physiol A 205 :415–426.
doi:10.1007/s00359-019-01327-3
Hung K-LJ, Sandoval SS, Ascher JS, Holway DA. 2021. Joint Impacts of
Drought and Habitat Fragmentation on Native Bee Assemblages in a
California Biodiversity Hotspot. Insects 12 :135.
doi:10.3390/insects12020135
Hunt JH, Amdam GV. 2005. Bivoltinism as an antecedent to eusociality in
the paper wasp genus Polistes. Science 308 :264–267.
doi:10.1126/science.1109724
IPCC. 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability.
Cambridge: Cambridge University Press.
Jaboor SK, da Silva CRB, Kellermann V. 2022. The effect of environmental
temperature on bee activity at strawberry farms. Austral Ecol47 :1470–1479. doi:10.1111/aec.13228
Janzen DH. 1967. Why Mountain Passes are Higher in the Tropics. Am
Nat 101 :233–249. doi:10.1086/282487
Jetz W, Rubenstein DR. 2011. Environmental Uncertainty and the Global
Biogeography of Cooperative Breeding in Birds. Curr Biol21 :72–78. doi:10.1016/j.cub.2010.11.075
Jones JC, Helliwell P, Beekman M, Maleszka R, Oldroyd BP. 2005. The
effects of rearing temperature on developmental stability and learning
and memory in the honey bee, Apis mellifera. J Comp Physiol A191 :1121–1129. doi:10.1007/s00359-005-0035-z
Jones JC, Oldroyd BP. 2006. Nest Thermoregulation in Social
InsectsAdvances in Insect Physiology. Elsevier. pp. 153–191.
doi:10.1016/S0065-2806(06)33003-2
Kaluza BF, Wallace HM, Heard TA, Minden V, Klein A, Leonhardt SD. 2018.
Social bees are fitter in more biodiverse environments. Sci Rep8 :12353. doi:10.1038/s41598-018-30126-0
Kammerer M, Goslee SC, Douglas MR, Tooker JF, Grozinger CM. 2021. Wild
bees as winners and losers: Relative impacts of landscape composition,
quality, and climate. Glob Change Biol 27 :1250–1265.
doi:10.1111/gcb.15485
Kendall LK, Mola JM, Portman ZM, Cariveau DP, Smith HG, Bartomeus I.
2022. The potential and realized foraging movements of bees are
differentially determined by body size and sociality. Ecology .
doi:10.1002/ecy.3809
Kennedy P, Higginson AD, Radford AN, Sumner S. 2018. Altruism in a
volatile world. Nature 555 :359–362.
doi:10.1038/nature25965
Klok CJ, Chown SL. 1999. Assessing the benefits of aggregation: thermal
biology and water relations of anomalous Emperor Moth caterpillars.Funct Ecol 13 :417–427.
Kocher SD, Paxton RJ. 2014. Comparative methods offer powerful insights
into social evolution in bees. Apidologie 45 :289–305.
doi:10.1007/s13592-014-0268-3
Kocher SD, Veller C, Purcell J, Nowak MA, Chapuisat M, Pierce NE. 2014.
Transitions in social complexity along elevational gradients reveal a
combined impact of season length and development time on social
evolution.
Komdeur J, Ma L. 2021. Keeping up with environmental change: The
importance of sociality. Ethology 127 :790–807.
doi:10.1111/eth.13200
Kudo G, Ida TY. 2013. Early onset of spring increases the phenological
mismatch between plants and pollinators. Ecology94 :2311–2320. doi:10.1890/12-2003.1
Kukuk PF, Crozier RH. 1990. Trophallaxis in a communal halictine bee
Lasioglossum (Chilalictus) erythrurum. Proc Natl Acad Sci87 :5402–5404. doi:10.1073/pnas.87.14.5402
Kukuk PF, Ward SA, Jozwiak A. 1998. Mutualistic Benefits Generate an
Unequal Distribution of Risky Activities Among Unrelated Group Members.Naturwissenschaften 85 :445–449.
doi:10.1007/s001140050528
Lin N, Michener C. 1972. Evolution of Sociality in Insects. Q Rev
Biol 47 :131–159.
Liu M, Chan SF, Rubenstein DR, Sun SJ, Chen BF, Shen SF. 2020.
Ecological transitions in grouping benefits explain the paradox of
environmental quality and sociality. Am Nat195 :818–832. doi:10.1086/708185
López‐Uribe MM, Jha S, Soro A. 2019. A trait‐based approach to predict
population genetic structure in bees. Mol Ecol28 :1919–1929. doi:10.1111/mec.15028
Lukas D, Clutton-Brock T. 2017. Climate and the distribution of
cooperative breeding in mammals. R Soc Open Sci4 :160897.
Maia-Silva C, Limão AAC, Silva CI, Imperatriz-Fonseca VL, Hrncir M.
2020. Stingless Bees (Melipona subnitida) Overcome Severe Drought Events
in the Brazilian Tropical Dry Forest by Opting for High-Profit Food
Sources. Neotrop Entomol 49 :595–603.
doi:10.1007/s13744-019-00756-8
McNally LC, Schneider SS. 1992. Seasonal cycles of growth, development
and movement of the African honey bee, Apis mellifera scutettata, in
Africa. Insectes Sociaux 39 :167–179.
doi:10.1007/BF01249292
Meiners JM, Orr MC, Kristina R, Terry G, Simonis JL. 2020. The influence
of data type and functional traits on native bee phenology metrics:
Opportunistic versus inventory records (preprint). Ecology.
doi:10.1101/2020.04.16.044750
Menzel F, Feldmeyer B. 2021. How does climate change affect social
insects? Curr Opin Insect Sci 46 :10–15.
doi:10.1016/j.cois.2021.01.005
Michener C. 2007. The Bees of the World. Baltimore, MD: Johns Hopkins
University Press.
Michener C. 1990. Reproduction and Castes in Social Halictine Bees In:
Engel W, editor. Social Insects: An Evolutionary Approach to Castes and
Reproduction. New York: Springer Verlag. pp. 77–121.
Michener C. 1974. The Social Behavior of the Bees: A Comparative Study.
Cambrdige, Mass.: Harvard University Press.
Michener C, Brothers D. 1974. Were workers of eusocial hymenoptera
initially altruistic or oppressed? Proc Natl Acad Sci U S A71 :671–674. doi:10.1073/pnas.71.3.671
Mikát M, Černá K, Straka J. 2016. Major benefits of guarding behavior in
subsocial bees: implications for social evolution. Ecol Evol6 :6784–6797. doi:10.1002/ece3.2387
Minckley RL, Roulston TH, Williams NM. 2013. Resource assurance predicts
specialist and generalist bee activity in drought. Proc R Soc B
Biol Sci 280 . doi:10.1098/rspb.2012.2703
Moss JB, While GM. 2021. The thermal environment as a moderator of
social evolution. Biol Rev 96 :2890–2910.
doi:10.1111/brv.12784
Ollerton J, Winfree R, Tarrant S. 2011. How many flowering plants are
pollinated by animals? Oikos 120 :321–326.
doi:10.1111/j.1600-0706.2010.18644.x
Ostwald M, Fox T, Harrison J, Fewell J. 2021. Social consequences of
energetically costly nest construction in a facultatively social bee.Proc R Soc B 288 :20210033.
doi:https://doi.org/10.1098/rspb.2021.0033
Ostwald M, Fox TP, Hillery WS, Shaffer Z, Harrison JF, Fewell JH. 2022a.
Group-living carpenter bees conserve heat and body mass better than
solitary individuals in winter. Anim Behav 189 :59–67.
doi:10.1016/j.anbehav.2022.04.012
Ostwald M, Haney B, Fewell J. 2022b. Ecological Drivers of Non-Kin
Cooperation in the Hymenoptera. Front Ecol Evol10 :768392. doi:doi: 10.3389/fevo.2022.768392
Ostwald M, Smith ML, Seeley TD. 2016. The behavioral regulation of
thirst, water collection and water storage in honey bee colonies.J Exp Biol 219 :2156–2165. doi:10.1242/jeb.139824
Packer L. 1990. Solitary and eusocial nests in a population of
Augochlorella striata (Provaneher) (Hymenoptera; Halictidae) at the
northern edge of its range. Behav Ecol Sociobiol27 :339–344.
Packer L, Knerer G. 1986. The Biology of a Subtropical Population of
Halictus ligatus Say (Hymenoptera: Halictidae): I. Phenology and Social
Organisation. Behav Ecol Sociobiol 18 :363–375.
Park MG, Delphia CM, Prince C, Yocum GD, Rinehart JP, O’Neill KM, Burkle
LA, Bowsher JH, Greenlee KJ. 2022. Effects of Temperature and Wildflower
Strips on Survival and Macronutrient Stores of the Alfalfa Leafcutting
Bee (Hymenoptera: Megachilidae) Under Extended Cold Storage.Environ Entomol 51 :958–968. doi:10.1093/ee/nvac062
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE.
2010. Global pollinator declines: Trends, impacts and drivers.Trends Ecol Evol 25 :345–353.
doi:10.1016/j.tree.2010.01.007
Purcell J. 2011. Geographic patterns in the distribution of social
systems in terrestrial arthropods. Biol Rev 86 :475–491.
doi:10.1111/j.1469-185X.2010.00156.x
Queller D. 1994. Extended Parental Care and the Origin of Eusociality.Proc R Soc B 256 :105–111.
Rehan SM, Schwarz MP, Richards M. 2011. Fitness consequences of
ecological constraints and implications for the evolution of sociality
in an incipiently social bee. Biol J Linn Soc103 :57–67.
Requier F, Jowanowitsch KK, Kallnik K, Steffan‐Dewenter I. 2020.
Limitation of complementary resources affects colony growth, foraging
behavior, and reproduction in bumble bees. Ecology 101 .
doi:10.1002/ecy.2946
Richards M, Packer L. 1995. Annual variation in survival and
reproduction of the primitively eusocial sweat bee Halictus ligatus
(Hymenoptera: Halictidae). Can J Zool 73 :933–941.
Richards MH. 2011. Colony Social Organisation and Alternative Social
Strategies in the Eastern Carpenter Bee, Xylocopa virginica. J
Insect Behav 24 :399–411. doi:10.1007/s10905-011-9265-9
Richards MH, Packer L. 1996. The Socioecology of Body Size Variation in
the Primitively Eusocial Sweat Bee, Halictus ligatus (Hymenoptera:
Halictidae). Oikos 77 :68. doi:10.2307/3545586
Sakagami S, Laroca S. 1971. Observations on the Bionomics of Some
Neotropical Xylocopine Bees, with Comparative and Biofaunistic Notes
(Hymenoptera, Anthophoridae). J Fac Sci Hokkaido Univ Ser VI Zool18 :57–127.
Sakagami S, Munakata M. 1972. Distribution and Bionomics of a
Transpalaearctic Eusocial Halictine Bee, Lasioglossum (Evylaeus)
calceatum, in Northern Japan, with Reference to Its Solitary Life Cycle
at High Altitude. Jour Fac Sci Hokkaido Univ18 :411–439.
Schürch R, Accleton C, Field J. 2016. Consequences of a warming climate
for social organisation in sweat bees. Behav Ecol Sociobiol70 :1131–1139. doi:10.1007/s00265-016-2118-y
Schwarz MP, Woods RE. 1994. Order of adult eclosion is a major
determinant of reproductive dominance in the Allodapine beeExoneura bicolor . Anim Behav 47 :373–378.
Seeley TD. 1995. The Wisdom of the Hive: The Social Physiology of Honey
Bee Colonies. Cambridge, MA: Harvard University Press.
Seeley TD. 1985. Honeybee Ecology: A Study of Adaptation in Social Life.
Princeton, NJ.
Sheehan M, Botero C, Hendry T, Sedio B, Jandt J, Weiner S, Toth A,
Tibbetts E. 2015. Different axes of environmental variation explain the
presence vs . extent of cooperative nest founding associations in
Polistes paper wasps. Ecol Lett 18 :1057–1067.
doi:10.1111/ele.12488
Shell W, Rehan S. 2017. Behavioral and genetic mechanisms of social
evolution: insights from incipiently and facultatively social bees.Apidologie . doi:10.1007/s13592-017-0527-1
Slominski AH, Burkle LA. 2019. Solitary Bee Life History Traits and Sex
Mediate Responses to Manipulated Seasonal Temperatures and Season
Length. Front Ecol Evol 7 :314.
doi:10.3389/fevo.2019.00314
Smith A, Wcislo W, O’Donnell S. 2008. Body size shapes caste expression,
and cleptoparasitism reduces body size in the facultatively eusocial
bees Megalopta (Hymenoptera: Halictidae). J Insect Behav21 :394–406. doi:10.1007/s10905-008-9136-1
Smith A, Wcislo W, O’Donnell S. 2003. Assured fitness returns favor
sociality in a mass-provisioning sweat bee, Megalopta genalis
(Hymenoptera: Halictidae). Behav Ecol Sociobiol54 :14–21. doi:10.1007/s00265-003-0589-0
Soucy SL, Danforth BN. 2002. Phylogeography of the socially polymorphic
sweat bee Halictus rubicundus (Hymenoptera: Halictidae).Evolution 56 :330–341.
doi:10.1111/j.0014-3820.2002.tb01343.x
Stone GN, Willmer PG. 1989. Warm-up rates and body temperature in bees:
The importance of body size, thermal regime and phylogeny. J Exp
Biol 147 :303–328.
Tautz J, Maier S, Groh C, Rossler W, Brockmann A. 2003. Behavioral
performance in adult honey bees is influenced by the temperature
experienced during their pupal development. Proc Natl Acad Sci100 :7343–7347. doi:10.1073/pnas.1232346100
Trivers RL, Hare H. 1976. Haplodiploidy and the Evolution of the Social
Insects. Science 191 :249–263.
Vickruck J, Richards M. 2021. Competition Drives Group Formation and
Reduces Within Nest Relatedness in a Facultatively Social Carpenter Bee.Front Ecol Evol 9 :738809. doi:10.3389/fevo.2021.738809
Visser ME, Gienapp P. 2019. Evolutionary and demographic consequences of
phenological mismatches. Nat Ecol Evol 3 :879–885.
doi:10.1038/s41559-019-0880-8
von Frisch K. 1967. The dance language and orientation of bees.
Cambridge, MA: Harvard University Press.
Wcislo W. 1997. Behavioral environments of sweat bees (Halictinae) in
relation to variability in social organization In: Choe J, Crespi B,
editors. The Evolution of Social Behavior in Insects and Arachnids.
Cambridge: Cambridge University Press. pp. 316–332.
Wcislo W. 1993. Communal Nesting in a North American Pearly-Banded Bee,
Nomia tetrazonata, with Notes on Nesting Behavior of Dieunomia
heteropoda (Hymenoptera: Halictidae: Nomiinae). Ann Entomol Soc
Am 86 :813–821.
Wcislo W, Fewell J. 2017. Sociality in Bees In: Rubenstein DR, Abbot P,
editors. Comparative Social Evolution. Cambridge: Cambridge University
Press. pp. 50–83.
Wcislo W, Tierney S. 2009. The Evolution of Communal Behavior in Bees
and Wasps: An Alternative to EusocialityOrganization of Insect
Societies: From Genome to Sociocomplexity. Cambridge, Mass: Harvard
University Press. pp. 148–169.
Wilson E. 1971. The Insect Societies. Cambridge, MA: Harvard University
Press.
Yagi N, Hasegawa E. 2012. A halictid bee with sympatric solitary and
eusocial nests offers evidence for Hamilton’s rule. Nat Commun3 :939. doi:10.1038/ncomms1939
Yanega D. 1993. Environmental influences on male production and social
structure in Halictus rubicundus (Hymenoptera: Halictidae).Insectes Sociaux 40 :169–180. doi:10.1007/BF01240705
Zammit J, Hogendoorn K, Schwarz MP. 2008. Strong constraints to
independent nesting in a facultatively social bee: Quantifying the
effects of enemies-at-the-nest. Insectes Sociaux55 :74–78. doi:10.1007/s00040-007-0972-3