Semi-analytic approach to the background evolution of $f(R)$-gravity theories in the metric formalism

Beethoven Santos1

1Observatório Nacional Rio de Janeiro

February 14, 2019

Abstract

Context: ...

Aims: An approximation of the modified Friedmann equation in the metric $f(R)$-gravity context is proposed.

Methods: It is applied the Differential Transformation Method to obtain the approximation to the modified Friedmann equations.

Results: ...

Conclusions: ...

Introduction

...

Background evolution for $f(R)$-gravity in the metric formalism

...

The Differential Transformation Method

The differential transform of some function $f(x)$ is given by

\begin{equation}
F(k) \equiv D[f(x)](k) = \frac{1}{k!} \left. \frac{d^k f(x)}{dx^k} \right|_{x_i}.
\end{equation}

(1)
The inverse differential transform is then

\[
f(x) = D^{-1}[F(k)](x) = \sum_{k=0}^{\infty} F(k)(x-x_i)^k = \sum_{k=0}^{\infty} \frac{(x-x_i)^k}{k!} \frac{d^k f(x)}{dx^k} |_{x_i}.
\]

(2)

It can be clearly seen that the DTM is the Taylor expansion of a function \(f(x) \) around \(x_i \). In practice, since it is impossible to extend the summation to \(\infty \), one must break the summation at some desired \(N \) terms so that the expansion above converges. Table 1 shows some properties and particular cases of the differential transform.

<table>
<thead>
<tr>
<th>Function (f(x))</th>
<th>Transform (F(k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha u(x)) + (\beta v(x))</td>
<td>(\alpha U(k) + \beta V(k)^1)</td>
</tr>
<tr>
<td>(\frac{d^n u(x)}{dx^n})</td>
<td>(\frac{(k+n)!}{(k+n)^n} U(k+n))</td>
</tr>
<tr>
<td>(u_1(x) u_2(x) \ldots u_{n-1}(x) u_n(x))</td>
<td>(\sum_{k_{n-1}=0}^{\infty} \sum_{k_{n-2}=0}^{k_{n-1}} \ldots \sum_{k_2=0}^{k_3} \sum_{k_1=0}^{k_2} U(k_1) U_2(k_2-k_1) \ldots U_{n-2}(k_{n-2}-k_{n-3}) U_n(k-k_{n-1}))</td>
</tr>
<tr>
<td>(x^n)</td>
<td>(\frac{1}{(n-k)!} x^{n-k}) for (n, k = 0, 1, \ldots) and (n = k = n) and (k > n), respectively(^2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function (f(x))</th>
<th>Transform (F(k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha u(x)) + (\beta v(x))</td>
<td>(\alpha U(k) + \beta V(k)^1)</td>
</tr>
<tr>
<td>(\frac{d^n u(x)}{dx^n})</td>
<td>(\frac{(k+n)!}{(k+n)^n} U(k+n))</td>
</tr>
<tr>
<td>(u_1(x) u_2(x) \ldots u_{n-1}(x) u_n(x))</td>
<td>(\sum_{k_{n-1}=0}^{\infty} \sum_{k_{n-2}=0}^{k_{n-1}} \ldots \sum_{k_2=0}^{k_3} \sum_{k_1=0}^{k_2} U(k_1) U_2(k_2-k_1) \ldots U_{n-2}(k_{n-2}-k_{n-3}) U_n(k-k_{n-1}))</td>
</tr>
<tr>
<td>(x^n)</td>
<td>(\frac{1}{(n-k)!} x^{n-k}) for (n, k = 0, 1, \ldots) and (n = k = n) and (k > n), respectively(^2)</td>
</tr>
</tbody>
</table>

Apply DTM to the modified Friedmann equation

The transformed terms up to \(k = 3 \) are:

\[
U(0) = u_i
\]

(3)

\[
U(1) = u_i^{(4)}
\]

\[
U(2) = -\frac{1}{108x_0^8 U(0) D[f_v u](0)} \left\{ 4x_0^3 D[f](0) + x_0^3 D[f](1) - 3x_0^3 \left[8U(0) + 7x_0 U(1) + 2x_0^2 U(2) \right] D[f_v u](0) - 3x_0^4 [2U(0) + x_0 U(1)] \right\}
\]

\[
U(3) = -\frac{1}{108x_0^8 U(0) D[f_v u](0)} \left\{ 4x_0^3 D[f](0) + x_0^3 D[f](1) - 3x_0^3 \left[8U(0) + 7x_0 U(1) + 2x_0^2 U(2) \right] D[f_v u](0) - 3x_0^4 [2U(0) + x_0 U(1)] \right\}
\]

\[
V(k) = 12U(k) + 3 \sum_{k_i=0}^{k} \frac{x_i^{1-k_i}}{(1-k_i)!k_i!} (k - k_i + 1) U(k - k_i + 1)
\]

(7)

\[
V(1) = 15U(1) + 6x_0 U(2)
\]

(8)

\(^1\)\(\alpha \) and \(\beta \) are constants.

\(^2\)The result is \(\delta(k) \) when \(n = 0 \), where \(\delta(k) \) is the Kronecker delta symbol.
\[D[f](1) = V(1)f_v(v_i) \]
\[D[f_v](1) = V(1)f_{vv}(v_i) \]
\[D[f_{vv}](1) = V(1)f_{vve}(v_i) \]

Some \(f(R) \) examples

...

Conclusions

...