Semi-analytic approach to the background evolution of $f(R)$-gravity theories in the metric formalism

Beethoven Santos ${ }^{1}$
${ }^{1}$ Observatório Nacional Rio de Janeiro
February 14, 2019

Abstract

Context: ... Aims: An approximation of the modified Friedmann equation in the metric $f(R)$-gravity context is proposed. Methods: It is applied the Differential Transformation Method to obtain the approximation to the modified Friedmann equations. Results: ... Conclusions: ...

Introduction

Background evolution for $f(R)$-gravity in the metric formalism

The Differential Transformation Method

The differential transform of some function $f(x)$ is given by

$$
\begin{equation*}
F(k) \equiv D[f(x)](k)=\left.\frac{1}{k!} \frac{\mathrm{d}^{k} f(x)}{\mathrm{d} x^{k}}\right|_{x_{i}} \tag{1}
\end{equation*}
$$

The inverse differential transform is then

$$
\begin{equation*}
f(x)=D^{-1}[F(k)](x)=\sum_{k=0}^{\infty} F(k)\left(x-x_{i}\right)^{k}=\left.\sum_{k=0}^{\infty} \frac{\left(x-x_{i}\right)^{k}}{k!} \frac{\mathrm{d}^{k} f(x)}{\mathrm{d} x^{k}}\right|_{x_{i}} . \tag{2}
\end{equation*}
$$

It can be clearly seen that the DTM is the Taylor expansion of a function $f(x)$ around x_{i}. In practice, since it is impossible to extend the summation to ∞, one must break the summation at some desired N terms so that the expansion above converges. Table 1 shows some properties and particular cases of the differential transform.

Table 1: Some DTM properties.

Function $f(x)$	Transform $F(k)$
$\alpha u(x)+\beta v(x)$	$\alpha U(k)+\beta V(k)^{1}$
$\frac{\mathrm{~d}^{n} u(x)}{\mathrm{d} x^{n}}$	$\frac{(k+n)!}{k!} U(k+n)$
$u_{1}(x) u_{2}(x) \ldots u_{n-1}(x) u_{n}(x)$	$\sum_{k_{n-1}=0}^{k} \sum_{k_{n-2}=0}^{k_{n-1}} \ldots \sum_{k_{2}=0}^{k_{3}} \sum_{k_{1}=0}^{k_{2}} U_{1}\left(k_{1}\right) U_{2}\left(k_{2}-k_{1}\right) \ldots U_{n-2}\left(k_{n-2}-k_{n-1}\right) U_{n}\left(k-k_{n-1}\right)$
x^{n}	$\frac{n!}{(n-k)!k!} x_{i}^{n-k}\left(=x_{i}, 1 \text { and } 0 \text { for } k=0, k=n \text { and } k>n, \text { respectively }\right)^{2}$

Applying DTM to the modified Friedmann equation

The transformed terms up to $k=3$ are:

$$
\begin{equation*}
U(0)=u_{i} \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
\mathrm{U}(1)=\mathrm{u}_{i}^{\prime(4)} \\
\mathrm{U}(2)=-\frac{1}{36 x_{i}^{6} U(0) D\left[f_{v v}\right](0)}\left\{x_{i}^{4} D[f](0)-3 x_{i}^{4}\left[x_{i} U(1)+2 U(0)\right] D\left[f_{v}\right](0)+90 x_{i}^{5} U(0) U(1) D\left[f_{v v}\right](0)-6\left(\Omega_{\mathrm{m}, 0} x_{i}+\Omega_{\mathrm{r}, 0}\right)\right\}(5) \\
\mathrm{U}(3)=-\frac{1}{108 x_{i}^{6} U(0) D\left[f_{v v}\right](0)}\left\{4 x_{i}^{3} D[f](0)+x_{i}^{4} D[f](1)-3 x_{i}^{3}\left[8 U(0)+7 x_{i} U(1)+2 x_{i}^{2} U(2)\right] D\left[f_{v}\right](0)-3 x_{i}^{4}\left[2 U(0)+x_{i} U(1)\right]\right. \\
V(k)=12 U(k)+3 \sum_{k_{1}=0}^{k} \frac{x_{i}^{1-k_{1}}}{\left(1-k_{1}\right)!k_{1}!}\left(k-k_{1}+1\right) U\left(k-k_{1}+1\right) \tag{7}\\
V(1)=15 U(1)+6 x_{i} U(2) \tag{8}
\end{gather*}
$$

[^0]\[

$$
\begin{align*}
D[f](1) & =V(1) f_{v}\left(v_{i}\right) \tag{9}\\
D\left[f_{v}\right](1) & =V(1) f_{v v}\left(v_{i}\right) \tag{10}\\
D\left[f_{v v}\right](1) & =V(1) f_{v v v}\left(v_{i}\right) \tag{11}
\end{align*}
$$
\]

Some $f(R)$ examples

Conclusions

[^0]: ${ }^{1} \alpha$ and β are constants.
 ${ }^{2}$ The result is $\delta(k)$ when $n=0$, where $\delta(k)$ is the Kronecker delta symbol.

