Peter Euclide

and 6 more

Local adaptation is often facilitated by loci clustered in relatively few regions of the genome, termed genomic islands of divergence. However, the mechanisms that create, mold, and maintain these islands are poorly understood. Here, we use sockeye salmon as a model species to investigate the mechanisms responsible for creating islands of divergence linked to adaptive variation. Previous research suggests that multiple islands are involved in adaptive radiation of sockeye salmon. However, these studies were based on low-density genomic methods that genotyped tens to thousands of loci, making it difficult to elucidate the mechanisms responsible for islands. We used whole genome resequencing to genotype millions of loci to investigate these mechanisms. We discovered 64 islands, 16 of which were shared between two isolated populations; these 16 islands were clustered in four genomic regions. Characterization of the shared regions suggested that three of four were likely created by chromosomal inversions, while the other was created by processes not involving structural variation. Additionally, all four regions were relatively small (< 600 kb), suggesting inversions and other low recombination regions do not have to span megabases to be important for adaptive divergence. In sum, our study demonstrates that heterogeneous selection can lead to a mosaic of islands created by different mechanisms within the same genome. Future studies should continue to investigate how gene flow, selection, and the architecture of genetic traits interact to influence the genomic landscape of adaptive divergence.

Peter Euclide

and 7 more

Conservation and management professionals often works across jurisdictional boundaries to identify broad ecological patterns. These collaborations help to protect populations whose distributions span political borders. One common limitation to multijurisdictional collaboration is consistency in data recording and reporting. This limitation can impact genetic research which relies on data about specific markers in an organism’s genome. Incomplete overlap of markers between separate studies can prevent direct comparisons. Standardized marker panels can reduce the impact this issue and provide a common starting place for new research. Genotyping-in-thousands (GTSeq) is one approach used to create standardized marker panels for non-model organisms. Here we describe the development, optimization, and early assessments of a new GTSeq panel for use with walleye (Sander vitreus) from the Great Lakes region of North America. High genome-coverage sequencing conducted using RAD-capture provided genotypes for thousands of single nucleotide polymorphisms (SNPs). From these markers, SNP and microhaplotype makers were chosen that were informative for genetic stock identification (GSI) and kinship analysis. The final GTSeq panel contained 500 markers, including 197 microhaplotypes and 303 SNPs. Leave-one-out GSI simulations indicated that GSI accuracy should be greater than 80% in most jurisdictions. The false-positive rates of parent-offspring and full-sibling kinship identification was found to be low. Finally, genotypes could be consistently scored among separate sequencing runs >94% of the time. Results indicate that the GTSeq panel we developed should perform well for multijurisdictional research throughout the Great Lakes region.