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Abstract

We consider a billiard system consisting on an infinite rod (a straight line) and
a ball (a massless point) on the plane. The rod uniformly rotates around one of its
points and experiences elastic collisions with the ball. We develop a mathematical
model for dynamics of such a system and study the main properties (including
asymptotics) of its motions.
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1 Introduction

Isaac Newton in 1687 [18] considered the problem of least resistance for a body moving in
a rarefied medium. He assumed that the medium is rare enough, so as mutual interaction
of particles of the medium can be neglected, and that collisions of the particles with the
body surface are perfectly elastic. These assumptions greatly simplify the optimization
problem.

Starting from 1993 [5], many mathematical papers studying various settings and ap-
proaches in Newton’s problem have appeared (see, e.g., [1, 4, 6, 12, 13, 20, 21, 22] among
others). Tt is generally assumed in these papers that the body translates in the medium;
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see, however, the papers [11, 19, 23, 24] where a combination of translational and rota-
tional motions is considered.

To the best of our knowledge, a regular study concerning free motion of a body (in-
volving both translation and rotation) in the framework of Newtonian aerodynamics has
never been carried out, even in the 2D case. Theorems of existence and uniqueness for
the dynamics have not been obtained, and free motion on the plane of special shapes,
even the simplest ones, such as an ellipse, a square, or even a line segment, has never
been studied.!

Here we start with the case which seems to be the simplest one: a line segment. By
simplifying further the problem, assume that the mass of the segment is infinite. Initially
it stays at rest in the horizontal position in the plane, and then it starts rotational motion
about its center counterclockwise.

Of course, the first hit of each particle is with the right half of the rod. It is assumed
that the medium particles do not mutually interact, so it suffices to consider the interaction
of a each individual particle with the rod. It also makes sense to suppose that the length
of the rod is infinite.

Thus, we have the billiard in a moving domain on the plane. The domain is a half-plane
rotating uniformly about a fixed point on its boundary. Note that the previous works on
billiards in moving boundaries are mainly motivated by studying the mechanism of Fermi
acceleration. By contrast, our motivation comes from Newton’s least resistance problem.

Apparently, the billiard in a rotating half-plane has never been studied. The system
looks very simple, but its study is far from being trivial, as will be seen in this paper later
on.
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Figure 1: Various trajectories of the ball in the rotating coordinate system. The rod
rotates counterclockwise.

!The only exception is the disk, whose dynamics is trivial: its motion is rectilinear, and its scalar

velocity satisfies a differential equation © = —cv?.



Figure 2: A trajectory of the ball in a resting coordinate system.

Without loss of generality, assume that the angular velocity of the rod equals 1 and
the rotation is counterclockwise. It is convenient to consider the dynamics in the rotating
coordinate system at the complex plane C, where the rod is represented by the real axis
R, with the fixed point being at the origin, and the position of the ball z(¢) at the instant
of time ¢ € R is always contained in the closed upper half-plane C§ := {z € C : Im z > 0}.
Between two neighbouring impacts, the ball moves uniformly according to the formula

z(t) = (z + wt) exp(—it), z, w € C, (1)

in the interior of the upper half-plane, C* := {z € C: Imz > 0}, and reflects elastically
when hitting the real line, that is, if z(¢) € R then

H(t+0) = 2(t — 0)* 2)

(asterisk means the complex conjugation and dot means the derivative in t).
If 2(t —0) € Rin (1), and therefore, the function z is differentiable at ¢,

2(t) = 2(t+0) = 2(t — 0),

then we say that a grazing impact takes place at the instant ¢.
The initial position and velocity of the ball are given by

(2(0),2(0)) = (20, %), 2 €C’, %eC.

Taking into account the nature of our problem, we assume that the first hit is from
the right half-axis, R™ := (0, 400), leaving the general case to the future.

Definition 1. A function z(t), 0 <t < T < 400 is called a billiard trajectory, if there
exists a finite or countable sequence of values 0 < ty...<t, <...<T such that



(a) for 0 <t <ty, t; <t <tg,... .ty <t <T, the function z(t) lies in C* and satisfies
(1), for certain complexr z = z, and w = wy,;

(b) z(tn) € R and the left and right derivatives 2(t,, — 0) and 2(t, + 0) satisfy (2) (except
of course for the case when n=m and t,, =T).

Remark 1. Note that there exist billiard trajectories that cannot be extended to the future
beyond a certain time instant. Namely, consider the function

) =l Hilt —t)]exp(—i(t — 1)), t€[0,t], r>0, 0<t;<t,, (3)

Here t, is the smallest positive solution of the equation t = tant, t, ~ 4,49341. This
choice of t, guarantees that the function z in (3) takes values in CT.

We have z(t1) = r, 2(t;—0) = 0. It is impossible to extend the function z to a right half-
neighborhood of t, to a function z(t) = (z1+w1t) exp(—it) satisfying z(t1) = r, 2(t1+0) =0
and taking values in CT. Indeed, the only function of this kind satisfying these conditions
coincides with the function in (3); however it takes values outside C*.

Remark 2. Observe that the condition Z(t, —0) = 0 is coarser than grazing (in the latter
case only the imaginary part is zero). The ’reqular’ grazing corresponds to a quadratic
tangency while the ’degenerate’ case corresponds to the cubic tangency provided it occurs
out of the origin.

Note that the initial conditions of the function in (3) are:
2(0) = r(1 —ity) exp(ity), 2(0) = —rty exp(ity),
and designate the set of all such initial conditions by
M = {r(1 —ir, —1)exp(it): >0, 0 <7 < t*} C C2

Sliding motion. The natural extension of the function (3) beyond ¢; should be the
following:
A1) :{ rll4i(t —t)]exp(—i(t —t1)), if 0<t<ty,
rcosh(t — t1), if t>t.

The second line in this equation means that that for ¢ > t; the ball moves along the
rod, being always subject to an inertial force from the rod in the normal direction. Since
the angular velocity of the rod equals 1, the motions along the rod satisfies the equation
Z = x where x in the right-hand side stands for the centrifugal force. Here we assume
the absence of friction (the presence of friction would make the impact inelastic). We call
such a regime of motion sliding. We observe that transitions from billiard to sliding and
vice-versa can only happen if @(t — 0) = y(¢t) = y(t — 0) = 0.

Model of the system. The free-flight billiard motion described by (1) corresponds to
the complex second order o.d.e

Z+4+2iz—2=0
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which can be rewritten as follows (recall that z = x + iy)

i—2—1=0
j+2i—y=0

The sliding regime corresponds to the equation & —z =0, y = 0.
Taking into account impacts, we follow the approach, formulated by Paoli and Schatz-
mann [17] and, also, in the earlier paper by Moreau [14]:

T—=2y—xz=0
{y—i—Zﬂb—y:,u (4)

Here p is a locally finite measure supported on the set [ = I; | I where

L ={reR:y(r)=0,9(t —0) < 0};
L={reR:y(r)=y(r—=0)=0 and (&(r) >0 or @(r)=0, xz(r)>0)}.

Observe that the set [; is countable. The measure is defined by the formula

dy = (-2 > 6t —T)i(r = 0) + 2xs, (t)) i(t) dt.

Tel

Here 0 stands for the Dirac function and x, for the indicator function of the set Is.
The second equation of (4) can be treated as follows:

t t

) =)+ [ s+ 0 s, it +0) = ita) + 20(6), = [ 9(s)ds-+ T (art),
0 0

for any t,ty € R, t > .

Observe that in the instant ¢, of billiard-to-sliding transition we have Z(t) > 0, so z(t)
increases for t > ty and no further transition to the billiard motion is possible. Moreover,
in sliding regime, one must have z(t) > 0, otherwise, the solution switches to the billiard
mode immediately.

Notice that our model of interaction is friction-less both in impact and sliding modes.
If the friction is there, the pattern becomes much more sophisticated. For instance, if
the dry friction is there, in order to exclude undesirable effects, one has to add stochastic
terms (see [2, 7, 8, 9, 10, 14, 15, 16, 17, 25] for various particular cases of this approach).
We postpone these studies to the future.

The main result of this paper is the following theorem.

Theorem 1. Consider a function z(t) = (20 + wot) exp(—it), t € [0, t1], t1 > 0, with
the initial conditions (2(0),2(0)) € M and such that z(t) € C* for 0 < t < t; and
z(t1) € R*. Then this function can be uniquely extended to a billiard trajectory z(t), t > 0.
Additionally, the instants of hits tq, tg, t3,... are such that



(a) Only the impact at the moment t; may be grazing.
(b) The sequence {r, = z(t,)} C R is strictly monotone increasing, and tends to infinity
as n — 0o. Moreover

rn = o(exp(an)) (5)

for any a > 0.
(¢) Denote 6, := t, 1 — t,. The sequence {9,} is monotone decreasing, besides

D 6, = oo (6)

Remark 3. We study motion with the first collision with the positive half-line postponing
the case of the first impact with the negative half-line to the future.

Remark 4. Observe that the unboundedness of the rod is the reason for the ball to speed
up infinitely. This is the principal difference of the current result and, for instance, that
of the paper [3] where the velocities of particles are bounded. However, in some cases (see,
for example, [26]), the billiard in a bounded domain with moving boundary may cause
motions with exponentially increasing velocities.

2 Proof of Theorem 1

Lemma 1. Let z(t) be a billiard motion on [0,t]. Either ImZ(t;—0) < 0, or ImZ2(t,—0) =
0 and Rez(t; —0) < 0.

Recall that the equality Im 2(¢; — 0) = 0 implies grazing.

Proof. Change the time variable, s =t — t;, and denote
f(s) == z(t1 +s) = r(1 + ws) exp(—is), s € [—ty, 0],

where w = a + ib is a complex value. Clearly, f(0) =r > 0.

~ One has f(s) = 7(w —i—iws) exp(—is) and f(s) = —r(2iw +1+ws) exp(—is), hence
f(07) =r(w—i)and f(07) = —r(2iw+1). Using that f(0~) = Re 2(t1—0)+¢ Im 2(¢, —0),
we obtain

ReZ(ty —0)=ra and Imz(t; —0)=r(b—1). (7)

Taking into account that ITm f (s) > 0 for s < 0 and using the Taylor decomposition
f(s) = f(0)+sf(0)+5s?f(0)+..., we conclude that either b < 1, or b =1 and a < 0. The

case b =1, a = 0 should be excluded, since in this case (2(0), 2(0)) = (f(—t1), f(—t1)) =
rexp(ity)(1 —ity, —t1) € M. Using (7), one obtains the statement of Lemma 1. O



Lemma 2. There is an infinite sequence t; < to < ... of hits such that z(t) can be uniquely
extended to a billiard trajectory on each interval [0, t,), n = 1,2,..., so as the values
rn = z(t,) are positive and form a strictly monotone increasing sequence. Additionally,
formn >2, ImZ(t,.1 —0) <0 and ReZ(t,.1 — 0) > 0; hence grazing may take place only
at tq.

In particular this lemma claims that the motion, once switching from sliding to billiard
mode cannot switch to sliding again.

Proof. Let us prove by induction that for any natural n there are t; <ty < ... <, such
that z(t) can be extended to a billiard trajectory on [0, t,], with r, = z(t;), k =1,...,n
being real positive values and z(t) € C* for the resting values of ¢, and Tm 2(¢;, — 0) < 0
for k # 1. It will be clear from the proof that the extension is unique.

The claim is obviously true for n = 1. Assume that it is true for a certain n > 1, that
is, z(t) is extended to [0, t,], r, > 0, and either Im (¢, — 0) < 0, or Im2(¢,, —0) = 0
and Re z(t,, — 0) < 0. Let us show that z(¢) can be uniquely extended to [t,, t,+1], with
Tpne1 > 0 and Im (¢, — 0) < 0.

Denote f(s) := z(t, + s). As yet, the function f is defined for [—t,, 0], with either
Im £(07) < 0, or Im f(07) = 0 and Re f(0~) < 0. We are going to extend it to an interval
0, 0,,], with &, = t,.1 — ¢, to be defined, and look for the function in the form

f(s) = ful(s) = (1 + wys) exp(—is), s € [0, 0,

We have f(07) = r,(w, — 1), and by (2), f(0%) = f(07)*. Thus, the value w, = a, + ib,
is defined by the initial conditions

1 1
a, = —ReZz(t, —0) and b,=1— —Imz(t, —0). (8)
Tn T'n
It follows that either b, > 1, or b, = 1 and a,, < 0.
We have
f(s) =rn(1+ a,s+ib,s)(coss —isins), 9)

and so,
f(s)eR <= bpscoss— (1 +a,s)sins =0.

We define 4,, as the smallest positive value satisfying

on 1+ aud,

= 1
tand, b, (10)

In Fig. 3, there are shown the functions s/tans and (1 + a,s)/b,. The function ¢(s) :=
s/tans is concave on [0, 7), ¢(0) =1, ¢/(0) = 0, and ¢(s) - —oo as s — 7. The case
b, > 1 is shown in the left figure, and the case b, = 1, a,, < 0, in the right figure. In both



cases, there is a unique solution s = 4,, of equation (10) in the interval (0, 7). Besides,
for 0 < s < 0y,

s 1+ a,s
tan s b,
and so, Im f(s) > 0.
1 1 N
0 T, 8 0 T, §

Figure 3: The functions ¢(s) = s/tans and (1 + a,s)/b,. In the left figure, b, > 1. In
the right figure, b, =1 and a,, < 0.

Let us check that 7,41 > r,. Indeed,

Tone1 = f(0n) =1y [(1 + a,0,) cos 0, + b6, sin 5n} (11)

= 7,b,0,, sin 6y, {1 + andn €050 + 1]

b, 0, Sin 0,
5,  cosd, N 1}

tan d,, 9, sind,

= r,b,0, sin o, [

= r,b,0,, sin 4, (cot2 On + 1) =7r,b, 815— >,
The velocity of the ball equals
f(s) = rpfwy — i(1 + wys)] exp(—is) = rplan + iby, — i(1 + (an + iby)s)] exp(—is).
We have
Z(tper — 0) = f(én) =7, [(an + b,0,) cos 0, + (b, — 1 — aydy,) sin 5n}
+ir, [(bn —1—a,d,) cosd, — (an + bpdy,) sin 5n}
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Let us show that Im 2(¢,,41 — 0) < 0 and Re 2(¢,,41 — 0) > 0. By (10) we have

1
an, :bncotén—(s—, (12)
and using that b, > 1 we get
1
- Im 2(t,1 — 0) = (b, — 1 — a,0,) cos b, — (a, + b,0,) sind, (13)
B O, sin o, _ On N sin 6, <0
"sin g, 0, — sind, On '
Further, utilizing (10) and (12) we have
1
— ReZ(tys1 — 0) = (a, + b,0,) cos o, + (b, — 1 — a,0,,) sind, (14)

T'n

b, cos 0, 1 cosd, 20, — sin(24,)
= — — > - — = - > 0.
sin 6, O sin o, O, 20,, sin 6,

]

We maintain the notation adopted in the proof of Lemma 2; namely, the part of the
trajectory in [t,, t,4+1] has the form

f(s) = z(tn + s) = (1 + wys) exp(—is), s € [0, 0], with w, = a, + ib,.
The following Corollary follows immediately from Lemma 2 and (8).
Corollary 1. Forn > 2, a, >0 and b, > 1.
Further, using (8), (11), (13), and (14), one comes to the iterative formulas

(an + bydy) cos o, + (b, — 1 — a,d,) sind,
(1+ a,d,) cos o, + b,0, sin o,

Apy1 =

a,, oS 0, + b, sin o,

" (1 + andn) cOS 8, + bndy Sin G, (15)
- % - % (16)
by = 2 — b, cos d,, — a,, sin ‘
(1+ and,) o8 0, + by6, sin 4,
=255 (17)

9



Lemma 3. The time intervals 0,, strictly monotonically converge to 0: 9, | 0 asn — oo.

. 1+a,i18 S
Proof. By (10), the funct = gn(s) = =
roof. By (10), the function g(s) = gn(s) b p—

Besides, g(s) < 0 for 0 < s < d,,41 and g(s) > 0 for 6,41 < s < 7. Using (16) and (17),
one easily checks that

vanishes at s = 0,41.

cos 0y, sin 6,

9 _ —2n>7n
1+ apg16, on b0, O, COS Oy,
g(5n> - bTL+1 o tan 511 o 9 _ i<81n5n)2 B Sin 5n > O; (18>
bn 677,

hence 0,11 < 0y,.

According to (17), b, 41 < 2. Using (16), one has 1+ ap410,41 < 14+ a,110, < 2. Thus,
we conclude that

1 1 nOn
for n>2, 1<b, <2, O<an<5—, and +b—a<1.

The sequence {6, } is monotone decreasing, and therefore, converges to a value ¢ > 0.
It remains to prove that ¢ = 0.
1+ ayd, R c

< 1asn — oo. Since
by, tanc

Assume the contrary, that is, 0 < ¢ < m; then

1
0<a, < —and1l<b, <2, there exist partial limits limj_,~ a,, and limy_, b,, =: 3.

Using (16) and (17), one obtains

COS Oy —1 SN Oy, —1

2 —
L+ an, 0, - bny,—10n,— Ony,—
T Oy Ot _ omoitmeel s, _mel (19)
b, 9 _ (Sm nk_1> tan d,, —1
bnk—l 5nk—1
Using that limy_,o 6,, = ¢ > 0 and
lim —OrOmel gy 2 OO g S
k—00 e k—00 b, k—oo tand,,  tanc
and passing to the limit £ — oo in (19), we get
coscsinc
9 _ PERTE
c Be c
= - > .
tanc 5 l(SIHC>2 ~ tanc
B\ ¢

10



Thus,

coscsinc
9g_ 2>
Be _ccosc
1 /sinc\2 sine ’
1)
B\ ¢
and therefore, sinc = ccose. This equation does not have solutions for ¢ € (0, 7). We
come to a contradiction. O]

The following statement excludes the possibility of the so-called chatter (infinitely
many impacts over a finite interval of time).

Lemma 4. Let {t, : n € N} be a sequence of successive impacts of a billiard trajectory
z(t). Then Eq. (6) takes place.

Remark 5. From Lemmas 3 and 4 it follows that the billiard trajectory is defined for
all t > 0 unless a degenerate grazing occurs. The ball keeps moving infinite time, mak-
ing infinitely many reflections from the rod, with the time intervals between reflections
monotonically going to zero.

14 ay. t ¢
Proof. Recall that the function g = g, is defined by ¢(t) = t+ it . Recall that
bni1 tant
1 /sind,\?2
1 < b, <2, hence 2 — b—<81§ ) > 1. We have
1+ apy10p41 Ont1
5n = - ::07
900n+1) b1 tan d,41

and by (18) and using that T nln _

— 1 as n — 00, we get

b, ~ tand,
cos 0y, sin o,
— bndn 5” _ 2 5n
g(6n) = 5 i(sin(5n>2 - tand, 5 _ l(sin&n)z (1 — tan5n>
b, \ 0, b\ On
On 252
< 2(1 — tan5n> = 7" +a(0?), where % —0 as £—0.
/ an+1 an+1 .
On the other hand, ¢'(t) > b for all . Further, using (15), one finds
n+1
1 1
= bt
Api1 * a, + b, tand,
1
and so, taking ng sufficiently large, so as d,, < 7/2, for n > ny we have < Op+ —.
An41 Qp,

11



Assume that

(o)
Z(Sn:c<oo.
n=1

Then for n > ng + 1,
11 - 1
—<— 4> < — -+
Un Gy 4m g

1 /1 -1
hence a,/2 > ¢; > 0 for all n, where ¢; = 5 (— + c) is a positive value. Thus,

&no
¢(t) = gi(t) > c1, and

9<5n) — g(5n+1) 2 o 1 2
— < < — + — .
571 5n+1 = Hgf g,(t) = 361 571, o a(én)

It follows that for co > 2/(3¢;) and for n sufficiently large,

1 1
Opi1 > 0p — 20, = < —+ce(l+0(1), n— oo,
5n+1 571
1 00
and so, §, > —(1+o0(1)), and > §,, = co. We come to a contradiction. O

Can n=1

Lemma 5. We have a,, —+ 1 and b,, — 1 as n — o0.

Proof. Using that 9§, — 0 as n — oo, b, > 1, and taking account of (17), one obtains

1
bn+1 =2- E—i_&n;
where &, — 0 as n — oco. Hence we have
1
b, > 2 — b= bpi1 — &n. (20)

n

Let 8 = limy_,o by, be the limit superior of b,. Taking n = ng — 1 in (20), we see that
limy,_, o by, —1 exists and coincides with 8. Passing to the limit £ — oo in the equality

ﬁnkZZ

1
- + nE—1
6nk—1 § kot
one finds § =2 —1/3, whence g = 1. It follows that lim, ., b, = 1.
1+ a,0,)sind,
Since by (10), b, = (1 + andn) sin

0, COS Oy
by Corollary 1, a,, > 0 for n > 2, after some algebra one obtains

, making this substitution in (16) and using that

+ 6. (21)

cos® §,, sin d,,\ 2 a,
Apt+1 = n

R 5. 1+ a0,

12



Hence we have )

y,
Aan = Qpg1 — ap < (5n <1 - m) < 571

Since 0, — 0, for any 0 < € < 1 there exists ng = ng(¢) such that for all n > ng, 9, < ¢,

< —E. It follows that

and therefore, for ¢ > 1 + ¢ holds 1 —
1+ ad, 3

if n>ny and a,>1+¢, then Aa, <0. (22)

Let us prove that a,, < 1+ 2¢ for n sufficiently large. First, for some n; > ng holds
a,, < 1+¢; otherwise the sequence a,,, n > ng is monotone decreasing with the increments
Aay, < —%0,, and therefore, tends to —oc.

Second, for n > n; the inequality holds a, < 1 + 2¢. Otherwise let ny > n; be
the smallest value that does not satisfy this inequality; then we have Aa,,_; > 0, and
therefore, by (22), an,—1 < 1+ . On the other hand, Aa,, 1 < 0n,—1 < €, hence
an, < 1+ 2¢, in contradiction with our assumption.

It follows that limsupa, < 1.

Further, from (21) one derives

sin® § sin 0, \ 2 a’?
Aa — —q S0 n\_ _
Ap an1+an6n+5n |:< 5n ) 1+@n5n:|
sind,\2
> 6y, {—an on + ( 5 ) — an] : (23)

Let us show that for all 0 < ¢ < 1 there exist infinitely many values of n for which
a, > 1 —¢e. Indeed, otherwise all a,, for n sufficiently large lie in [0, 1 — €], and the sum
over n of the right hand sides in (23) is greater than ) J,(1 + o(1)), and therefore,
diverges to +o0. It follows that a,, — 400, which is impossible.

Fix 0 < € < 1. Using (23), we see that there exists mg such that for all n > my, the
inequality 0 < a, < 1 — ¢ implies Aa,, > 59, > 0. Additionally, since both sequences
a, and ¢, are bounded, there exists a constant ¢ > 0 such that Aa, > —cd,. Choose a
subsequence my < ny; < ng < ...n, < ...such that a, >1—¢ for all k.

Let a,, be the smallest value among {an, 41, anyt2,- -, an,,, ;- If a5, < 1 — ¢ then
as,—1 > 1 —e€. Indeed, if s = ny + 1, this is obvious, and if s > ng + 2 then Aa,, 1 <0,
and hence as,—1 > 1 —¢e. We have

as, = Qg —1 + Aag, 1 >1—€—cds,1 > 1 —€— oy,

Since 9,,, converges to zero, we conclude that the limit inferior of a,, is > 1 —¢, and taking
into account that ¢ is arbitrarily small, liminf a,, > 1. Lemma 5 is proved. O

Corollary 2. The sequence r,, tends to infinity and r,41/m, — 1.

13



Proof. Using formula (9) one has

Tn+1
T'n

= (14 and, +ib,0,)(cos b, —isind,) =14 6, + o(dy,).

Here we used the statement of Lemma 5. The sum of §,, diverges due to Lemma 4, so
r, — 00. Besides, the last formula implies Eq.(5). O

Overall, Claim (a) of Theorem 1 follows from Lemma 2. Claim (b) follows from Lemma
2 and Corollary 2. Claim (c) follows from Lemmas 3 and 4. [J

Conclusion

In a nutshell, the dynamics can be regarded as follows: there are the billiard mode and
the sliding one. If the initial conditions for the solution are such that the billiard motion is
possible (a neighbourhood of the corresponding positive semi-trajectory lies in the upper
half-plane), the ball moves this way, even if the sliding motion is possible.

The solutions are defined for any initial conditions and unique as time increases. The
so-called chattering (infinitely many impacts on a finite interval of time) is impossible for
the considered system.

There might be the following scenarios of forward-in-time motion with the first collision
taking place with positive half-line.

1. A billiard motion, extendable to [0,00) going to infinity as time increases.

2. A billiard motion which switches to a sliding regime without any further switches
to billiard mode.

3. A sliding motion which switches to a billiard mode.

4. A sliding motion which never switches to billiard regime.

For billiard motions, extendable to infinity, the solutions and their velocities tend to
infinity while time intervals between neighbour impacts tend to zero.

Our studies will be continued. Later on, we are going to consider the motions having
impacts with the negative half-line, to study the extensions of the solutions to negative
values of time and, also, to give an asymptotic estimate of the function z(¢) corresponding
to the billiard motion (we conjecture that z(t) = exp(t + o(t))).
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