References
1. Yang, X., Nambou, K., Wei, L. J., Hua, Q. (2016) Heterologous production of alpha-farnesene in metabolically engineered strains of Yarrowia lipolytica. Bioresource Technology , 216 , 1040-1048.
2. Liu, S.-C., Liu, Z., Wei, L.-J., Hua, Q. (2020) Pathway engineering and medium optimization for α-farnesene biosynthesis in oleaginous yeast Yarrowia lipolytica. Journal of Biotechnology ,319 , 74-81.
3. Liu, H., Chen, S. L., Xu, J. Z., Zhang, W. G. (2021) Dual Regulation of Cytoplasm and Peroxisomes for Improved Ay-Farnesene Production in Recombinant Pichia pastoris. Acs Synthetic Biology ,10 (6), 1563-1573.
4. Liu, Y., Wang, Z., Cui, Z., Qi, Q., Hou, J. (2022) Progress and perspectives for microbial production of farnesene. Bioresour Technol , 347 , 126682.
5. You, S. P., Chang, H. X., Zhang, C. Y., Gao, L., Qi, W., Tao, Z. P., Su, R. X., He, Z. M. (2019) Recycling Strategy and Repression Elimination for Lignocellulosic-Based Farnesene Production with an Engineered Escherichia coli. Journal of Agricultural and Food Chemistry , 67 (35), 9858-9867.
6. Liu, Y. H., Jiang, X., Cui, Z. Y., Wang, Z. X., Qi, Q. S., Hou, J. (2019) Engineering the oleaginous yeast Yarrowia lipolytica for production of alpha-farnesene. Biotechnology for Biofuels , 12 (1).
7. Tang, R. H., Wen, Q. F., Li, M. J., Zhang, W., Wang, Z. B., Yang, J. M. (2021) Recent Advances in the Biosynthesis of Farnesene Using Metabolic Engineering. Journal of Agricultural and Food Chemistry , 69 (51), 15468-15483.
8. Liu, G. S., Li, T., Zhou, W., Jiang, M., Tao, X. Y., Liu, M., Zhao, M., Ren, Y. H., Gao, B., Wang, F. Q., Wei, D. Z. (2020) The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction. Metabolic Engineering , 57 , 151-161.
9. Meadows, A. L., Hawkins, K. M., Tsegaye, Y., Antipov, E., Kim, Y., Raetz, L., Dahl, R. H., Tai, A., Mahatdejkul-Meadows, T., Xu, L., Zhao, L. S., Dasika, M. S., Murarka, A., Lenihan, J., Eng, D., Leng, J. S., Liu, C. L., Wenger, J. W., Jiang, H. X., Chao, L. L., Westfall, P., Lai, J., Ganesan, S., Jackson, P., Mans, R., Platt, D., Reeves, C. D., Saija, P. R., Wichmann, G., Holmes, V. F., Benjamin, K., Hill, P. W., Gardner, T. S., Tsong, A. E. (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature , 537(7622), 694-+.
10. Sandoval, C. M., Ayson, M., Moss, N., Lieu, B., Jackson, P., Gaucher, S. P., Horning, T., Dahl, R. H., Denery, J. R., Abbott, D. A., Meadows, A. L. (2014) Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae. Metabolic Engineering , 25 , 215-226.
11. Tomas-Gamisans, M., Andrade, C. C. P., Maresca, F., Monforte, S., Ferrer, P., Albiol, J. (2020) Redox Engineering by Ectopic Overexpression of NADH Kinase in Recombinant Pichia pastoris (Komagataella phaffii): Impact on Cell Physiology and Recombinant Production of Secreted Proteins. Applied and Environmental Microbiology , 86 (6).
12. Blank, L. M., Lehmbeck, F., Sauer, U. (2005) Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. Fems Yeast Research , 5 (6-7), 545-558.
13. Grabowska, D., Chelstowska, A. (2003) The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. Journal of Biological Chemistry , 278 (16), 13984-13988.
14. Lu, S. R., Zhou, C. Y., Guo, X. N., Du, Z. D., Cheng, Y. F., Wang, Z. Y., He, X. P. (2022) Enhancing fluxes through the mevalonate pathway in Saccharomyces cerevisiae by engineering the HMGR and beta-alanine metabolism. Microbial Biotechnology .
15. Zhang, L. T., Zhang, C. H., Xu, R., Yu, W. J., Liu, J. G. (2022) A strategy for promoting carbon flux into fatty acid and astaxanthin biosynthesis by inhibiting the alternative oxidase respiratory pathway in Haematococcus pluvialis. Bioresource Technology ,344 .
16. Liu, H., Wang, F., Deng, L., Xu, P. (2020) Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica.Bioresour Technol , 317 , 123991.
17. Ng, C. Y., Farasat, I., Maranas, C. D., Salis, H. M. (2015) Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration. Metab Eng , 29 , 86-96.
18. Nie, Y. S., Huang, M. Z., Lu, J. J., Qian, J. C., Lin, W. L., Chu, J., Zhuang, Y. P., Zhang, S. L. (2014) Impacts of high beta-galactosidase expression on central metabolism of recombinant Pichia pastoris GS115 using glucose as sole carbon source via C-13 metabolic flux analysis. Journal of Biotechnology ,187 , 124-134.
19. Celton, M., Sanchez, I., Goelzer, A., Fromion, V., Camarasa, C., Dequin, S. (2012) A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation. BMC Genomics , 13 , 317.
20. Man, Z., Rao, Z., Xu, M., Guo, J., Yang, T., Zhang, X., Xu, Z. (2016) Improvement of the intracellular environment for enhancing l-arginine production of Corynebacterium glutamicum by inactivation of H2O2-forming flavin reductases and optimization of ATP supply.Metab Eng , 38 , 310-321.
21. Chung, B. K., Selvarasu, S., Andrea, C., Ryu, J., Lee, H., Ahn, J., Lee, H., Lee, D. Y. (2010) Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microb Cell Fact , 9 , 50.
22. Zelle, E., Pfelzer, N., Oldiges, M., Koch-Koerfges, A., Bott, M., Noh, K., Wiechert, W. (2021) An energetic profile of Corynebacterium glutamicum underpinned by measured biomass yield on ATP. Metab Eng , 65 , 66-78.
23. Faijes, M., Mars, A. E., Smid, E. J. (2007) Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microb Cell Fact , 6 , 27.
24. Ni, L., Miao, P., Jiang, J., Wan, F., Li, J., Ai, M., Kong, L., Tu, S. (2022) Glycyrrhiza uralensis promote the metabolism of toxic components of Aconitum carmichaeli by CYP3A and alleviate the development of chronic heart failure. PLoS One ,17 (6), e0270069.
25. Prabhu, A. A., Veeranki, V. D. (2018) Metabolic engineering of Pichia pastoris GS115 for enhanced pentose phosphate pathway (PPP) flux toward recombinant human interferon gamma (hIFN-gamma) production.Mol Biol Rep , 45 (5), 961-972.
26. Nocon, J., Steiger, M., Mairinger, T., Hohlweg, J., Russmayer, H., Hann, S., Gasser, B., Mattanovich, D. (2016) Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris. Appl Microbiol Biotechnol , 100 (13), 5955-63.
27. Nocon, J., Steiger, M. G., Pfeffer, M., Sohn, S. B., Kim, T. Y., Maurer, M., Russmayer, H., Pflugl, S., Ask, M., Haberhauer-Troyer, C., Ortmayr, K., Hann, S., Koellensperger, G., Gasser, B., Lee, S. Y., Mattanovich, D. (2014) Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production. Metab Eng , 24 , 129-38.
28. Paramasivan, K., Mutturi, S. (2017) Regeneration of NADPH Coupled with HMG-CoA Reductase Activity Increases Squalene Synthesis in Saccharomyces cerevisiae. J Agric Food Chem , 65(37), 8162-8170.
29. Brown, S., Clastre, M., Courdavault, V., O’Connor, S. E. (2015) De novo production of the plant-derived alkaloid strictosidine in yeast.Proceedings of the National Academy of Sciences of the United States of America , 112 (11), 3205-3210.
30. Rebnegger, C., Graf, A. B., Valli, M., Steiger, M. G., Gasser, B., Maurer, M., Mattanovich, D. (2014) In Pichia pastoris, growth rate regulates protein synthesis and secretion, mating and stress response.Biotechnology Journal , 9 (4), 511-525.
31. Kim, J. E., Jang, I. S., Sung, B. H., Kim, S. C., Lee, J. Y. (2018) Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in Saccharomyces cerevisiae. Sci Rep ,8 (1), 15820.
32. Larochelle, M., Drouin, S., Robert, F., Turcotte, B. (2006) Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production. Molecular and Cellular Biology , 26 (17), 6690-6701.
33. Cadiere, A., Galeote, V., Dequin, S. (2010) The Saccharomyces cerevisiae zinc factor protein Stb5p is required as a basal regulator of the pentose phosphate pathway. Fems Yeast Research ,10 (7), 819-827.
34. Qin, N., Li, L., Ji, X., Li, X., Zhang, Y., Larsson, C., Chen, Y., Nielsen, J., Liu, Z. (2020) Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production. ACS Synth Biol , 9 (12), 3236-3244.
35. Zhang, Q., Wang, X., Luo, H., Wang, Y., Wang, Y., Tu, T., Qin, X., Su, X., Huang, H., Yao, B., Bai, Y., Zhang, J. (2022) Metabolic engineering of Pichia pastoris for myo-inositol production by dynamic regulation of central metabolism. Microb Cell Fact ,21 (1), 112.
36. Aguilera, A., Zimmermann, F. K. (1986) Isolation and molecular analysis of the phosphoglucose isomerase structural gene of Saccharomyces cerevisiae. Mol Gen Genet , 202 (1), 83-9.
37. Heux, S., Cadiere, A., Dequin, S. (2008) Glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains. FEMS Yeast Res , 8 (2), 217-24.
38. Fiaux, J., Cakar, Z. P., Sonderegger, M., Wuthrich, K., Szyperski, T., Sauer, U. (2003) Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell , 2 (1), 170-80.
39. Rigoulet, M., Aguilaniu, H., Averet, N., Bunoust, O., Camougrand, N., Grandier-Vazeille, X., Larsson, C., Pahlman, I. L., Manon, S., Gustafsson, L. (2004) Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Mol Cell Biochem , 256-257 (1-2), 73-81.
40. Yukawa, T., Bamba, T., Guirimand, G., Matsuda, M., Hasunuma, T., Kondo, A. (2021) Optimization of 1,2,4-butanetriol production from xylose in Saccharomyces cerevisiae by metabolic engineering of NADH/NADPH balance. Biotechnol Bioeng , 118 (1), 175-185.
41. Xu, J. Z., Yang, H. K., Zhang, W. G. (2018) NADPH metabolism: a survey of its theoretical characteristics and manipulation strategies in amino acid biosynthesis. Critical Reviews in Biotechnology , 38 (7), 1061-1076.
42. Xu, J. Z., Ruan, H. Z., Chen, X. L., Zhang, F., Zhang, W. G. (2019) Equilibrium of the intracellular redox state for improving cell growth and L-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping. Microbial Cell Factories , 18 .
43. Delic, M., Mattanovich, D., Gasser, B. (2013) Repressible promoters - a novel tool to generate conditional mutants in Pichia pastoris.Microb Cell Fact , 12 , 6.
44. Stadlmayr, G., Mecklenbrauker, A., Rothmuller, M., Maurer, M., Sauer, M., Mattanovich, D., Gasser, B. (2010) Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production. J Biotechnol , 150 (4), 519-29.
45. Vogl, T., Glieder, A. (2013) Regulation of Pichia pastoris promoters and its consequences for protein production. N Biotechnol , 30 (4), 385-404.
46. Koch-Koerfges, A., Kabus, A., Ochrombel, I., Marin, K., Bott, M. (2012) Physiology and global gene expression of a Corynebacterium glutamicum DeltaF(1)F(O)-ATP synthase mutant devoid of oxidative phosphorylation. Biochim Biophys Acta , 1817 (2), 370-80.
47. Glockzin, K., Meek, T. D., Katzfuss, A. (2022) Characterization of adenine phosphoribosyltransferase (APRT) activity in Trypanosoma brucei brucei: Only one of the two isoforms is kinetically active. Plos Neglected Tropical Diseases , 16 (2).
48. Ebert, B. E., Kurth, F., Grund, M., Blank, L. M., Schmid, A. (2011) Response of Pseudomonas putida KT2440 to Increased NADH and ATP Demand.Applied and Environmental Microbiology , 77 (18), 6597-6605.
49. He, W. J., Ye, S. C., Xue, T., Xu, S. Y., Li, W. Y., Lu, J. H., Cao, L. Y., Ye, B. Y., Chen, Y. Q. (2014) Silencing the glycerol-3-phosphate dehydrogenase gene in Saccharomyces cerevisiae results in more ethanol being produced and less glycerol. Biotechnology Letters ,36 (3), 523-529.
50. Albertyn, J., Vantonder, A., Prior, B. A. (1992) Purification and Characterization of Glycerol-3-Phosphate Dehydrogenase of Saccharomyces-Cerevisiae. Febs Letters , 308 (2), 130-132.
51. Wang, J. H., Jiang, W., Liang, C. J., Zhu, L. H., Li, Y. R., Mo, Q., Xu, S., Chu, A., Zhang, L., Ding, Z. Y., Shi, G. Y. (2021) Overproduction of alpha-Farnesene in Saccharomyces cerevisiae by Farnesene Synthase Screening and Metabolic Engineering. Journal of Agricultural and Food Chemistry , 69 (10), 3103-3113.
52. Yang, X., Liu, J., Zhang, J., Shen, Y., Qi, Q., Bao, X., Hou, J. (2021) Quorum sensing-mediated protein degradation for dynamic metabolic pathway control in Saccharomyces cerevisiae. Metab Eng ,64 , 85-94.
53. Liu, S. C., Liu, Z. J., Wei, L. J., Hua, Q. (2020) Pathway engineering and medium optimization for alpha-farnesene biosynthesis in oleaginous yeast Yarrowia lipolytica. Journal of Biotechnology , 319 , 74-81.
54. Liu, Y. H., Wang, Z. X., Cui, Z. Y., Qi, Q. S., Hou, J. (2021) alpha-Farnesene production from lipid by engineered Yarrowia lipolytica.Bioresources and Bioprocessing , 8 (1).
55. Lee, H. J., Choi, J. I., Woo, H. M. (2021) Biocontainment of Engineered Synechococcus elongatus PCC 7942 for Photosynthetic Production of alpha-Farnesene from CO2. J Agric Food Chem , 69 (2), 698-703.
56. Lim, H., Park, J., Woo, H. M. (2020) Overexpression of the Key Enzymes in the Methylerythritol 4-phosphate Pathway in Corynebacterium glutamicum for Improving Farnesyl Diphosphate-Derived Terpene Production. J Agric Food Chem , 68 (39), 10780-10786.