References
1. Yang, X., Nambou, K., Wei, L. J., Hua, Q. (2016) Heterologous
production of alpha-farnesene in metabolically engineered strains of
Yarrowia lipolytica. Bioresource Technology , 216 ,
1040-1048.
2. Liu, S.-C., Liu, Z., Wei, L.-J., Hua, Q. (2020) Pathway engineering
and medium optimization for α-farnesene biosynthesis in oleaginous yeast
Yarrowia lipolytica. Journal of Biotechnology ,319 , 74-81.
3. Liu, H., Chen, S. L., Xu, J. Z., Zhang, W. G. (2021) Dual Regulation
of Cytoplasm and Peroxisomes for Improved Ay-Farnesene Production in
Recombinant Pichia pastoris. Acs Synthetic Biology ,10 (6), 1563-1573.
4. Liu, Y., Wang, Z., Cui, Z., Qi, Q., Hou, J. (2022) Progress and
perspectives for microbial production of farnesene. Bioresour
Technol , 347 , 126682.
5. You, S. P., Chang, H. X., Zhang, C. Y., Gao, L., Qi, W., Tao, Z. P.,
Su, R. X., He, Z. M. (2019) Recycling Strategy and Repression
Elimination for Lignocellulosic-Based Farnesene Production with an
Engineered Escherichia coli. Journal of Agricultural and Food
Chemistry , 67 (35), 9858-9867.
6. Liu, Y. H., Jiang, X., Cui, Z. Y., Wang, Z. X., Qi, Q. S., Hou, J.
(2019) Engineering the oleaginous yeast Yarrowia lipolytica for
production of alpha-farnesene. Biotechnology for
Biofuels , 12 (1).
7. Tang, R. H., Wen, Q. F., Li, M. J., Zhang, W., Wang, Z. B., Yang, J.
M. (2021) Recent Advances in the Biosynthesis of Farnesene Using
Metabolic Engineering. Journal of Agricultural and Food
Chemistry , 69 (51), 15468-15483.
8. Liu, G. S., Li, T., Zhou, W., Jiang, M., Tao, X. Y., Liu, M., Zhao,
M., Ren, Y. H., Gao, B., Wang, F. Q., Wei, D. Z. (2020) The yeast
peroxisome: A dynamic storage depot and subcellular factory for squalene
overproduction. Metabolic Engineering , 57 ,
151-161.
9. Meadows, A. L., Hawkins, K. M., Tsegaye, Y., Antipov, E., Kim, Y.,
Raetz, L., Dahl, R. H., Tai, A., Mahatdejkul-Meadows, T., Xu, L., Zhao,
L. S., Dasika, M. S., Murarka, A., Lenihan, J., Eng, D., Leng, J. S.,
Liu, C. L., Wenger, J. W., Jiang, H. X., Chao, L. L., Westfall, P., Lai,
J., Ganesan, S., Jackson, P., Mans, R., Platt, D., Reeves, C. D., Saija,
P. R., Wichmann, G., Holmes, V. F., Benjamin, K., Hill, P. W., Gardner,
T. S., Tsong, A. E. (2016) Rewriting yeast central carbon metabolism for
industrial isoprenoid production. Nature , 537(7622), 694-+.
10. Sandoval, C. M., Ayson, M., Moss, N., Lieu, B., Jackson, P.,
Gaucher, S. P., Horning, T., Dahl, R. H., Denery, J. R., Abbott, D. A.,
Meadows, A. L. (2014) Use of pantothenate as a metabolic switch
increases the genetic stability of farnesene producing Saccharomyces
cerevisiae. Metabolic Engineering , 25 , 215-226.
11. Tomas-Gamisans, M., Andrade, C. C. P., Maresca, F., Monforte, S.,
Ferrer, P., Albiol, J. (2020) Redox Engineering by Ectopic
Overexpression of NADH Kinase in Recombinant Pichia pastoris
(Komagataella phaffii): Impact on Cell Physiology and Recombinant
Production of Secreted Proteins. Applied and Environmental
Microbiology , 86 (6).
12. Blank, L. M., Lehmbeck, F., Sauer, U. (2005) Metabolic-flux and
network analysis in fourteen hemiascomycetous yeasts. Fems Yeast
Research , 5 (6-7), 545-558.
13. Grabowska, D., Chelstowska, A. (2003) The ALD6 gene product is
indispensable for providing NADPH in yeast cells lacking
glucose-6-phosphate dehydrogenase activity. Journal of Biological
Chemistry , 278 (16), 13984-13988.
14. Lu, S. R., Zhou, C. Y., Guo, X. N., Du, Z. D., Cheng, Y. F., Wang,
Z. Y., He, X. P. (2022) Enhancing fluxes through the mevalonate pathway
in Saccharomyces cerevisiae by engineering the HMGR and beta-alanine
metabolism. Microbial Biotechnology .
15. Zhang, L. T., Zhang, C. H., Xu, R., Yu, W. J., Liu, J. G. (2022) A
strategy for promoting carbon flux into fatty acid and astaxanthin
biosynthesis by inhibiting the alternative oxidase respiratory pathway
in Haematococcus pluvialis. Bioresource Technology ,344 .
16. Liu, H., Wang, F., Deng, L., Xu, P. (2020) Genetic and bioprocess
engineering to improve squalene production in Yarrowia lipolytica.Bioresour Technol , 317 , 123991.
17. Ng, C. Y., Farasat, I., Maranas, C. D., Salis, H. M. (2015) Rational
design of a synthetic Entner-Doudoroff pathway for improved and
controllable NADPH regeneration. Metab Eng , 29 ,
86-96.
18. Nie, Y. S., Huang, M. Z., Lu, J. J., Qian, J. C., Lin, W. L., Chu,
J., Zhuang, Y. P., Zhang, S. L. (2014) Impacts of high
beta-galactosidase expression on central metabolism of recombinant
Pichia pastoris GS115 using glucose as sole carbon source via C-13
metabolic flux analysis. Journal of Biotechnology ,187 , 124-134.
19. Celton, M., Sanchez, I., Goelzer, A., Fromion, V., Camarasa, C.,
Dequin, S. (2012) A comparative transcriptomic, fluxomic and metabolomic
analysis of the response of Saccharomyces cerevisiae to increases in
NADPH oxidation. BMC Genomics , 13 , 317.
20. Man, Z., Rao, Z., Xu, M., Guo, J., Yang, T., Zhang, X., Xu, Z.
(2016) Improvement of the intracellular environment for enhancing
l-arginine production of Corynebacterium glutamicum by inactivation of
H2O2-forming flavin reductases and optimization of ATP supply.Metab Eng , 38 , 310-321.
21. Chung, B. K., Selvarasu, S., Andrea, C., Ryu, J., Lee, H., Ahn, J.,
Lee, H., Lee, D. Y. (2010) Genome-scale metabolic reconstruction and in
silico analysis of methylotrophic yeast Pichia pastoris for strain
improvement. Microb Cell Fact , 9 , 50.
22. Zelle, E., Pfelzer, N., Oldiges, M., Koch-Koerfges, A., Bott, M.,
Noh, K., Wiechert, W. (2021) An energetic profile of Corynebacterium
glutamicum underpinned by measured biomass yield on ATP. Metab
Eng , 65 , 66-78.
23. Faijes, M., Mars, A. E., Smid, E. J. (2007) Comparison of quenching
and extraction methodologies for metabolome analysis of Lactobacillus
plantarum. Microb Cell Fact , 6 , 27.
24. Ni, L., Miao, P., Jiang, J., Wan, F., Li, J., Ai, M., Kong, L., Tu,
S. (2022) Glycyrrhiza uralensis promote the metabolism of toxic
components of Aconitum carmichaeli by CYP3A and alleviate the
development of chronic heart failure. PLoS One ,17 (6), e0270069.
25. Prabhu, A. A., Veeranki, V. D. (2018) Metabolic engineering of
Pichia pastoris GS115 for enhanced pentose phosphate pathway (PPP) flux
toward recombinant human interferon gamma (hIFN-gamma) production.Mol Biol Rep , 45 (5), 961-972.
26. Nocon, J., Steiger, M., Mairinger, T., Hohlweg, J., Russmayer, H.,
Hann, S., Gasser, B., Mattanovich, D. (2016) Increasing pentose
phosphate pathway flux enhances recombinant protein production in Pichia
pastoris. Appl Microbiol Biotechnol , 100 (13),
5955-63.
27. Nocon, J., Steiger, M. G., Pfeffer, M., Sohn, S. B., Kim, T. Y.,
Maurer, M., Russmayer, H., Pflugl, S., Ask, M., Haberhauer-Troyer, C.,
Ortmayr, K., Hann, S., Koellensperger, G., Gasser, B., Lee, S. Y.,
Mattanovich, D. (2014) Model based engineering of Pichia pastoris
central metabolism enhances recombinant protein production. Metab
Eng , 24 , 129-38.
28. Paramasivan, K., Mutturi, S. (2017) Regeneration of NADPH Coupled
with HMG-CoA Reductase Activity Increases Squalene Synthesis in
Saccharomyces cerevisiae. J Agric Food Chem , 65(37), 8162-8170.
29. Brown, S., Clastre, M., Courdavault, V., O’Connor, S. E. (2015) De
novo production of the plant-derived alkaloid strictosidine in yeast.Proceedings of the National Academy of Sciences of the United
States of America , 112 (11), 3205-3210.
30. Rebnegger, C., Graf, A. B., Valli, M., Steiger, M. G., Gasser, B.,
Maurer, M., Mattanovich, D. (2014) In Pichia pastoris, growth rate
regulates protein synthesis and secretion, mating and stress response.Biotechnology Journal , 9 (4), 511-525.
31. Kim, J. E., Jang, I. S., Sung, B. H., Kim, S. C., Lee, J. Y. (2018)
Rerouting of NADPH synthetic pathways for increased protopanaxadiol
production in Saccharomyces cerevisiae. Sci Rep ,8 (1), 15820.
32. Larochelle, M., Drouin, S., Robert, F., Turcotte, B. (2006)
Oxidative stress-activated zinc cluster protein Stb5 has dual
activator/repressor functions required for pentose phosphate pathway
regulation and NADPH production. Molecular and Cellular
Biology , 26 (17), 6690-6701.
33. Cadiere, A., Galeote, V., Dequin, S. (2010) The Saccharomyces
cerevisiae zinc factor protein Stb5p is required as a basal regulator of
the pentose phosphate pathway. Fems Yeast Research ,10 (7), 819-827.
34. Qin, N., Li, L., Ji, X., Li, X., Zhang, Y., Larsson, C., Chen, Y.,
Nielsen, J., Liu, Z. (2020) Rewiring Central Carbon Metabolism Ensures
Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic
Acid Production. ACS Synth Biol , 9 (12),
3236-3244.
35. Zhang, Q., Wang, X., Luo, H., Wang, Y., Wang, Y., Tu, T., Qin, X.,
Su, X., Huang, H., Yao, B., Bai, Y., Zhang, J. (2022) Metabolic
engineering of Pichia pastoris for myo-inositol production by dynamic
regulation of central metabolism. Microb Cell Fact ,21 (1), 112.
36. Aguilera, A., Zimmermann, F. K. (1986) Isolation and molecular
analysis of the phosphoglucose isomerase structural gene of
Saccharomyces cerevisiae. Mol Gen Genet , 202 (1),
83-9.
37. Heux, S., Cadiere, A., Dequin, S. (2008) Glucose utilization of
strains lacking PGI1 and expressing a transhydrogenase suggests
differences in the pentose phosphate capacity among Saccharomyces
cerevisiae strains. FEMS Yeast Res , 8 (2),
217-24.
38. Fiaux, J., Cakar, Z. P., Sonderegger, M., Wuthrich, K., Szyperski,
T., Sauer, U. (2003) Metabolic-flux profiling of the yeasts
Saccharomyces cerevisiae and Pichia stipitis. Eukaryot
Cell , 2 (1), 170-80.
39. Rigoulet, M., Aguilaniu, H., Averet, N., Bunoust, O., Camougrand,
N., Grandier-Vazeille, X., Larsson, C., Pahlman, I. L., Manon, S.,
Gustafsson, L. (2004) Organization and regulation of the cytosolic NADH
metabolism in the yeast Saccharomyces cerevisiae. Mol Cell
Biochem , 256-257 (1-2), 73-81.
40. Yukawa, T., Bamba, T., Guirimand, G., Matsuda, M., Hasunuma, T.,
Kondo, A. (2021) Optimization of 1,2,4-butanetriol production from
xylose in Saccharomyces cerevisiae by metabolic engineering of
NADH/NADPH balance. Biotechnol Bioeng , 118 (1),
175-185.
41. Xu, J. Z., Yang, H. K., Zhang, W. G. (2018) NADPH metabolism: a
survey of its theoretical characteristics and manipulation strategies in
amino acid biosynthesis. Critical Reviews in
Biotechnology , 38 (7), 1061-1076.
42. Xu, J. Z., Ruan, H. Z., Chen, X. L., Zhang, F., Zhang, W. G. (2019)
Equilibrium of the intracellular redox state for improving cell growth
and L-lysine yield of Corynebacterium glutamicum by optimal cofactor
swapping. Microbial Cell Factories , 18 .
43. Delic, M., Mattanovich, D., Gasser, B. (2013) Repressible promoters
- a novel tool to generate conditional mutants in Pichia pastoris.Microb Cell Fact , 12 , 6.
44. Stadlmayr, G., Mecklenbrauker, A., Rothmuller, M., Maurer, M.,
Sauer, M., Mattanovich, D., Gasser, B. (2010) Identification and
characterisation of novel Pichia pastoris promoters for heterologous
protein production. J Biotechnol , 150 (4),
519-29.
45. Vogl, T., Glieder, A. (2013) Regulation of Pichia pastoris promoters
and its consequences for protein production. N
Biotechnol , 30 (4), 385-404.
46. Koch-Koerfges, A., Kabus, A., Ochrombel, I., Marin, K., Bott, M.
(2012) Physiology and global gene expression of a Corynebacterium
glutamicum DeltaF(1)F(O)-ATP synthase mutant devoid of oxidative
phosphorylation. Biochim Biophys Acta , 1817 (2),
370-80.
47. Glockzin, K., Meek, T. D., Katzfuss, A. (2022) Characterization of
adenine phosphoribosyltransferase (APRT) activity in Trypanosoma brucei
brucei: Only one of the two isoforms is kinetically active. Plos
Neglected Tropical Diseases , 16 (2).
48. Ebert, B. E., Kurth, F., Grund, M., Blank, L. M., Schmid, A. (2011)
Response of Pseudomonas putida KT2440 to Increased NADH and ATP Demand.Applied and Environmental Microbiology , 77 (18),
6597-6605.
49. He, W. J., Ye, S. C., Xue, T., Xu, S. Y., Li, W. Y., Lu, J. H., Cao,
L. Y., Ye, B. Y., Chen, Y. Q. (2014) Silencing the glycerol-3-phosphate
dehydrogenase gene in Saccharomyces cerevisiae results in more ethanol
being produced and less glycerol. Biotechnology Letters ,36 (3), 523-529.
50. Albertyn, J., Vantonder, A., Prior, B. A. (1992) Purification and
Characterization of Glycerol-3-Phosphate Dehydrogenase of
Saccharomyces-Cerevisiae. Febs Letters , 308 (2),
130-132.
51. Wang, J. H., Jiang, W., Liang, C. J., Zhu, L. H., Li, Y. R., Mo, Q.,
Xu, S., Chu, A., Zhang, L., Ding, Z. Y., Shi, G. Y. (2021)
Overproduction of alpha-Farnesene in Saccharomyces cerevisiae by
Farnesene Synthase Screening and Metabolic Engineering. Journal of
Agricultural and Food Chemistry , 69 (10), 3103-3113.
52. Yang, X., Liu, J., Zhang, J., Shen, Y., Qi, Q., Bao, X., Hou, J.
(2021) Quorum sensing-mediated protein degradation for dynamic metabolic
pathway control in Saccharomyces cerevisiae. Metab Eng ,64 , 85-94.
53. Liu, S. C., Liu, Z. J., Wei, L. J., Hua, Q. (2020) Pathway
engineering and medium optimization for alpha-farnesene biosynthesis in
oleaginous yeast Yarrowia lipolytica. Journal of
Biotechnology , 319 , 74-81.
54. Liu, Y. H., Wang, Z. X., Cui, Z. Y., Qi, Q. S., Hou, J. (2021)
alpha-Farnesene production from lipid by engineered Yarrowia lipolytica.Bioresources and Bioprocessing , 8 (1).
55. Lee, H. J., Choi, J. I., Woo, H. M. (2021) Biocontainment of
Engineered Synechococcus elongatus PCC 7942 for Photosynthetic
Production of alpha-Farnesene from CO2. J Agric Food
Chem , 69 (2), 698-703.
56. Lim, H., Park, J., Woo, H. M. (2020) Overexpression of the Key
Enzymes in the Methylerythritol 4-phosphate Pathway in Corynebacterium
glutamicum for Improving Farnesyl Diphosphate-Derived Terpene
Production. J Agric Food Chem , 68 (39),
10780-10786.