
Received <day> <Month>, <year>; Revised <day> <Month>, <year>; Accepted <day> <Month>, <year>

DOI: xxx/xxxx

ARTICLE TYPE

Reduction of discrete-time infectious disease models

Rafael Bravo de la Parra*

1U.D. Matemáticas, Universidad de Alcalá,
Alcalá de Henares, Madrid, Spain

Correspondence
*Rafael Bravo de la Parra, U.D.
Matemáticas, Ciencias, 28871 Alcalá de
Henares, Spain. Email: rafael.bravo@uah.es

Abstract

In this work we propose the construction of discrete-time systems with two time
scales in which infectious diseases dynamics are involved. We deal with two gen-
eral situations. In the first, we consider that individuals affected by the disease move
between generalized sites on a faster time scale than the dynamics of the disease
itself. The second situation includes the dynamics of the disease acting faster together
with another slower general process.
Once the models have been built, conditions are established so that the analysis of the
asymptotic behavior of their solutions can be carried out through reduced models.
This is done using known reduction results for discrete-time systems with two time
scales. These results are applied in the analysis of two new models. The first of them
illustrates the first proposed situation, being the local dynamics of the SIS-type dis-
ease. Conditions are found for the eradication or global endemicity of the disease. In
the second model, a case of co-infection with a primary disease and an opportunistic
disease is treated, the latter acting faster than the former. Conditions for eradication
and endemicity of co-infection are proposed.
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1 INTRODUCTION1

Mathematical models in epidemiology already have a long history. Recent events worldwide have shown that they are a very2

useful tool, both theoretical and practical. It has been widely understood that their contribution in the management of epidemics3

is practically essential.4

Most mathematical models in epidemiology are built in continuous time. However, so far this century, the number of discrete-5

time models has been growing steadily. Important authors within this area have published articles presenting discrete-time6

0Abbreviations: DFE, Disease free equilibrium; EE, Endemic equilibrium; GAS, Globally asymptotically stable; LAS, Locally asymptotically stable; SIS,
Susceptible–Infectious-Susceptible; SEIRS, Susceptible–Exposed–Infectious–Recovered-Susceptible
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models1,2,5,13,28,29,14. The recognized advantages of discrete-time models over continuous-time models have to do with their7

better implementation in numerical simulations and their better adaptation to data, normally collected periodically16.8

In basic epidemiological models demographic and spatial issues are not considered19,6. Individuals in the population are clas-9

sified into large compartments that reflect their disease status (Susceptible, Exposed, Infected, Recovered, etc.). The introduction10

of demography, or space, or both is a very natural second step to gain realism. These models can entail the existence of different11

time scales when the different processes involved in the dynamics act at speeds of different order.12

In this work we propose a general framework for discrete-time models with two time scales in which the dynamics of some13

infectious disease intervene. The type of discrete-time model with two time scales that we use can be seen developed in7,23. The14

slow process is assumed to be defined by a map 𝐿 that gives its result after a slow unit of time. In turn, the effect of the fast15

process on a fast unit of time is defined by another map 𝐹 . In a slow unit of time, the fast process acts 𝑘 times, where 𝑘 represents16

the ratio between the time scales. The model that combines the two processes is defined on the slow time scale considering that17

the fast process acts 𝑘 times followed by an episode of the slow process. As a function of 𝐿 and 𝐹 , and denoting by 𝑋 the state18

vector of the population and by 𝑡 the slow time variable, the model has the following expression19

𝑋(𝑡 + 1) = 𝐿
(

𝐹 (𝑘)(𝑋(𝑡)
)

)

, (1)

where the superscript (𝑘) represents the 𝑘-th iterate. We will see that the existence of time scales in the same system allows20

us, in some cases, to simplify its analysis.21

We want to deal here with two basic situations: (I) Slow disease dynamics (SDD), it includes rapid transitions of individuals22

between sites, understood in a generalized way, together with an epidemiological or eco-epidemiological process that acts on a23

slower time scale; (II) Fast disease dynamics (FDD), it includes the epidemiological process acting this time on the fast scale,24

while a second process does so on the slow time scale.25

The aim of this work is the construction and analysis of discrete-time models with two time scales that include the dynamics26

of a disease. The analysis of the models is done with the help of known reduction results23,7. These results propose, from the27

initial models, new reduced models, which are easier to study. In addition, they establish how to study some relevant issues of28

the asymptotic behavior of the solutions of the initial model from this same study in the reduced model. As an illustration of29

this, two new models are presented. In one of them the dynamics of the disease develops on the slow time scale, and in the other30

on the fast time scale.31

Although it is recognized and systematized the multiscale modeling in epidemiology12,15, few of these models end up taking32

the form of a single system, continuous or discrete, including two time scales. In continuous time, we could cite a few recent33

works17,18,22,25 and, in discrete time, our publications8,9,10,11.34
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To introduce situation (I), SDD, with fast movements we will use models of metapopulations. These are very useful mathe-35

matical models to understand the spatio-temporal spread of infectious diseases27,3,4, either in humans, animals or plants. In them36

the space is considered discrete, divided into a finite number of sites. These sites, depending on the model, can range from a37

house or small natural environment to a country or a continent. Usually, in these models, the movements are considered explic-38

itly. On the one hand, locally, in each site, the model defines the dynamics of the disease together with demography and, on the39

other hand, globally, the movements of individuals between sites. A detailed review of this topic in continuous time, without40

considering time scales, is carried out in3. In11 a discrete-time model with two time scales of the mentioned characteristics is41

presented and analyzed. The local model used is a SEIRS model and the movement rates are considered constant.42

Returning to the second basic situation, FDD, fast disease dynamics together with another slower process, we try to establish43

a framework, as general as possible, in which already published works8,9,10 can be included. In the first two of these works, a44

parasite affects one of the two populations that make up the community, and in the third, the parasite affects both. The fast part45

of the models describes the dynamics of the disease associated with the parasite and the slow part includes the demography of46

the community, in which individuals are distinguished by their disease status. In the proposed framework we consider a general47

compartmental model for the dynamics of the disease and a general process for slow dynamics represented by a general map.48

This work is organised as follows. First, in Section 2 the general models of the SDD and FDD types are built. Also, particular49

cases of each of these two types of models are proposed, and will be studied later. Section 3 is dedicated to the construction of50

the reduced models associated with the original models of Section 2, and to state the results that relate the asymptotic behavior51

of the original and reduced models. Sections 4 and 5 carry out the analysis of the particular models proposed in Section 2 with52

the techniques presented in Section 3. Finally, Section 6 presents some conclusion and perspectives.53

2 MODELS54

We consider discrete-time models with two time scales (1). This type of model can be understood in a general way as containing55

two processes, one that acts on the fast scale, represented by 𝐹 , and the other on the slow scale, represented by 𝐿. Thus, we will56

talk about fast process and slow process, and also about fast dynamics and slow dynamics.57

In this section we will present two types of discrete-time models with two time scales. The first type, called SDD, includes as58

a rapid process the transitions of individuals between spatial sites or, more generally, between different activities that establish59

a partition of the set of individuals. Along with this rapid process, the dynamics of an infectious disease is included as a slow60

process. The second type of model, called FDD, considers the dynamics of a disease as a fast process, and a general slow process,61

which may be related to demography, behavior, another disease, etc.62
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2.1 SDD: Fast movements-Slow disease63

The population can be considered divided into 𝑚 groups, which we call sites thinking of a kind of generalized metapopulation.64

In many applications these sites will represent actual spatial sites. Individuals move between the 𝑚 sites. At each site, the disease65

dynamics is described by the same model, in which parameters values can change to fit the local situation. We consider the66

disease model as a general compartmental model. The generic notation for each of the compartments of the model is 𝐶 , and the67

set of all of them will be denoted .68

For 𝐶 ∈ , 𝑗 ∈ {1,… , 𝑚}, and 𝑡 ∈ {0, 1, 2,…}, we define the state variables of the model as69

𝑛𝐶𝑗 (𝑡) = density of individuals with disease state 𝐶 , at site 𝑗, at time 𝑡.

The total population at site 𝑗 is denoted70

𝑛𝑗 =
∑

𝐶∈
𝑛𝐶𝑗 .

The vector of individuals in compartment 𝐶 ∈  across the 𝑚 sites is denoted �̄�𝐶 = col
(

𝑛𝐶1 ,… , 𝑛𝐶𝑚
)

. The population state71

vector is called72

𝑋 = col
(

�̄�𝐶
)

𝐶∈ .

In the next section, reduced models will be built associated with the models with two time scales that we are presenting in this73

section. The state variables of these reduced models will be, in the SDD case, the total number of individuals in each disease74

compartment across all sites. For each 𝐶 ∈ 75

𝑛𝐶 =
𝑚
∑

𝑗=1
𝑛𝐶𝑗 (𝑡),

that we collect in the vector of global variables76

𝑌 = col
(

𝑛𝐶
)

𝐶∈ ,

whose sum yields the total number of individuals in the population77

𝑁 =
∑

𝐶∈
𝑛𝐶 =

𝑚
∑

𝑗=1
𝑛𝑗 .

We can express the global variables in terms of the state variables with the help of matrix 𝑈 = diag
(

1̄, (𝑝)…, 1̄
)

∈ ℝ𝑝×𝑝⋅𝑚
+ , where78

1̄ = (1, (𝑚)…, 1) ∈ ℝ𝑚
+ is a row vector, and 𝑝 is the number of disease compartments, i.e. the cardinal of set :79
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𝑌 = 𝑈𝑋.

Once we have established the necessary notations, we first define the fast process of the model, which is associated with the80

movements of individuals between sites. Although we could define movement rates between sites more generally, we are going81

to assume that they depend just on global variables 𝑌 . This will ensure the existence of a reduced model with good properties.82

For each disease compartment, movements are represented by a regular stochastic matrix depending on 𝑌 ∈ ℝ𝑝
+:83

𝑀𝐶 (𝑌 ) ∈ ℝ𝑚×𝑚
+ , for every 𝐶 ∈ .

The movements of the whole population are then defined through the following matrix84

𝑀(𝑌 ) = diag
(

𝑀𝐶 (𝑌 )
)

𝐶∈ ∈ ℝ𝑝⋅𝑚×𝑝⋅𝑚
+ .

The state 𝑋 of the population after one movement episode is defined by the following map85

𝐹 (𝑋) = 𝑀(𝑈𝑋)𝑋,

that represents the fast process in system (1).86

The slow process corresponds to the dynamics of the disease. As we have already discussed, we consider the same disease87

model, possibly with different parameter values, at each site. Due to the order that we have established in the state variables, it88

is not obvious how to write the global dynamics of the disease from the local dynamics. Therefore, we will simply denote 𝐷 the89

map that defines a disease episode along a slow unit of time, and write model (1), for the SDD case, in the following form:90

𝑋(𝑡 + 1) = 𝐷
(

𝐹 (𝑘)(𝑋(𝑡)
)

)

.

The effect of the fast process is to exchange individuals between sites while maintaining their disease state. This implies that91

the global variables, 𝑛𝐶 , are invariant for movements between sites. It can be shown in the following form92

𝑈𝐹 (𝑋) = 𝑈𝑀(𝑈𝑋)𝑋 = 𝑈𝑋.

A consequence of it is that the k-th iterate of 𝐹 can be expressed in terms of the k-power 𝑀(𝑌 )𝑘 of matrix 𝑀(𝑌 ):93

𝐹 (𝑘)(𝑋) = 𝑀(𝑈𝑋)𝑘𝑋,

and so the complete model, for the SDD case, can be expressed as:94
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𝑋(𝑡 + 1) = 𝐷
(

𝑀
(

𝑈𝑋(𝑡)
)𝑘𝑋(𝑡)

)

. (2)

A model that fits the framework of (2) is analyzed in11. The local dynamics is of SEIRS type and the movements are made95

between two sites.96

SIS model in an m-site environment.97

Next, we introduce an example of model (2). We generally assume that the individuals in the population move between 𝑚98

different sites on a faster time scale than that associated with the local dynamics of the disease. We assume that the disease99

develops locally according to a SIS model1 with specific parameters for each site.100

As we are considering only two disease compartments, susceptible and infective, we can simplify the notation that we have101

presented in a general way. Thus, the system state variables, 𝑆𝑗 and 𝐼𝑗 (𝑗 = 1,… , 𝑚), represent the density of susceptible and102

infective individuals, respectively, at site 𝑗. The total population at site 𝑗 is 𝑛𝑗 = 𝑆𝑗 + 𝐼𝑗 . We denote �̄�𝑆 = col
(

𝑆1,… , 𝑆𝑚
)

, and103

�̄�𝐼 = col
(

𝐼1,… , 𝐼𝑚
)

, the state vectors of susceptible and infective individuals across the 𝑚 sites. The population state vector is104

𝑋 = col
(

𝑆1,… , 𝑆𝑚, 𝐼1,… , 𝐼𝑚
)

.

The global variables, that will serve as state variables of the associated reduced system, are the total number of susceptible105

individuals 𝑆 =
∑𝑚

𝑗=1 𝑆𝑗 and the total number of infective individuals 𝐼 =
∑𝑚

𝑗=1 𝐼𝑗 . Thus, the vector of global variables is as106

follows107

𝑌 = col (𝑆, 𝐼) ,

The fast process, movements between sites, is defined by two regular stochastic matrices, 𝑀𝑆 and 𝑀𝐼 , which represent the108

movements of susceptible and infective individuals, respectively. As we mentioned above, these matrices could be considered109

dependent on global variables, but in this case we assume that they are constant:110

𝐹 (𝑋) =
(

𝑀𝑆 �̄�𝑆 ,𝑀𝐼 �̄�𝐼
)

= 𝑀𝑋,

where 𝑀 = diag
(

𝑀𝑆 ,𝑀𝐼
)

. Its k-th iterate is expressed as 𝐹 (𝑘)(𝑋) = 𝑀𝑘𝑋.111

The slow process, the disease dynamics, is defined locally, i.e., in each site 𝑗 ∈ {1,… , 𝑚}, by an SIS model1:112

𝑆𝑗(𝑡 + 1) = 𝑆𝑗(𝑡) − 𝛽𝑗
𝑆𝑗(𝑡)𝐼𝑗(𝑡)

𝑆𝑗(𝑡) + 𝐼𝑗(𝑡)
+ 𝛾𝑗𝐼𝑗(𝑡),

𝐼𝑗(𝑡 + 1) = 𝐼𝑗(𝑡) + 𝛽𝑗
𝑆𝑗(𝑡)𝐼𝑗(𝑡)

𝑆𝑗(𝑡) + 𝐼𝑗(𝑡)
− 𝛾𝑗𝐼𝑗(𝑡),

(3)
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where we assume that transmission and recovery coefficients satisfy 𝛽𝑗 , 𝛾𝑗 ∈ (0, 1). By rearranging the equations (3) to adjust113

the order of the state variables in 𝑋, we can define the map 𝐷 in (2) that represents the slow process:114

𝐷(𝑋) =
(

𝑆1 − 𝛽1
𝑆1𝐼1

𝑆1 + 𝐼1
+ 𝛾1𝐼1,… , 𝑆𝑚 − 𝛽𝑚

𝑆𝑚𝐼𝑚
𝑆𝑚 + 𝐼𝑚

+ 𝛾𝑚𝐼𝑚, 𝐼1 + 𝛽1
𝑆1𝐼1

𝑆1 + 𝐼1
− 𝛾1𝐼1,… ,… , 𝐼𝑚 + 𝛽𝑚

𝑆𝑚𝐼𝑚
𝑆𝑚 + 𝐼𝑚

− 𝛾𝑚𝐼𝑚

)

(4)

Finally, the complete two time scale model takes the form of system (2)115

𝑋(𝑡 + 1) = 𝐷
(

𝑀𝑘𝑋(𝑡)
)

. (5)

2.2 FDD: Slow process-Fast disease116

In this case we are going to keep to the largest possible framework. In fact, except for the fact that the fast process is represented117

by the dynamics of a disease, the approach corresponds to the general one of a discrete-time system with two time scales7,23.118

Some models of this type already exist in the literature. In8, the slow process corresponds to the demography associated to119

a predator-prey community. A disease affects the prey population. The fast process causes prey to change disease status, while120

leaving predators unchanged. A similar model is treated in9, where the relationship of the community is one of competition.121

In10, on a similar scheme, the fast dynamics is more complicated because the populations that make up the community share122

the disease.123

To establish a broad framework we consider the population divided into groups, and each of these groups divided into sub-124

groups. The choice of groups and subgroups is linked to the two processes that take place on different time scales. The fast125

process occurs within each group with transfers of individuals between the corresponding subgroups. On the other hand, the126

slow process has to do with transfers between groups.127

The state of the population at time 𝑡 with 𝑝 groups is represented by a vector128

𝑋(𝑡) ∶= col(�̄�1(𝑡),… , �̄�𝑝(𝑡)) ∈ ℝ𝑁×𝑁
+ ,

where vector129

�̄�𝑖(𝑡) ∶= col
(

𝑛𝑖1(𝑡),… , 𝑛𝑖𝑁 𝑖(𝑡)
)

∈ ℝ𝑁 𝑖

+ , for 𝑖 = 1,… , 𝑝,

represents the state of the 𝑖 group which is divided into 𝑁 𝑖 subgroups. 𝑁 = 𝑁1 +⋯ +𝑁𝑝 is the number of state variables of130

the model.131
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In8 there are two groups, prey and predators, and the prey group is divided into two subgroups, susceptible and infected132

individuals, while the predator group itself constitutes its only subgroup. The fast process, disease dynamics, concerns the133

subgroups and the slow process, demography, will be finally related to the groups prey and predators. A similar structure is used134

in8. In10, still there are two groups, but each of them is subdivided into two subgroups because the disease affects in this case135

both populations.136

Starting from model (1), if we call 𝐷 the map, linked to the dynamics of the disease, that defines the fast process, and we137

keep the notation 𝐿 for the map that represents the general slow process, then the complete model, for the FDD case, has the138

following form:139

𝑋(𝑡 + 1) = 𝐿
(

𝐷(𝑘)(𝑋(𝑡)
)

)

. (6)

Opportunistic disease model.140

To illustrate the case FDD, fast disease dynamics, we consider a discrete-time version of a particular model of coinfection141

that it is studied by means of a continuous time model in20. The population is affected by a primary disease and those indi-142

viduals infected by it can then contract a second so-called opportunistic disease. Coinfected individuals can recover from the143

opportunistic disease and only then from the primary disease. We divide the population being studied into three classes labeled144

𝑆, 𝐼 , and 𝐶 . Let 𝑆(𝑡) denote the number of individuals who are susceptible to the primary disease at time 𝑡. 𝐼(𝑡) denotes the145

number of infected individuals by the primary disease that are susceptible to, but not yet infected by, the opportunistic disease.146

Finally, 𝐶(𝑡) denotes the number of coinfected individuals, that is, those who have been infected by both diseases.147

The discrete-time model includes the dynamics of each disease at a different time scale. The slow one is associated to the148

primary disease, and the fast one to the opportunistic disease. We consider no demography. The opportunistic disease dynamics149

is described by means of an SIS model,1 , with frequency-dependent transmission and constant recovery fraction. Let 𝛽𝑜𝑝, 𝛾𝑜𝑝 ∈150

(0, 1) be, respectively, the transmission and recovery coefficients. The map defining the dynamics of the opportunistic disease151

at the fast time scale is then152

(𝐼, 𝐶) ←→
(

𝐼 −
𝛽𝑜𝑝𝐼𝐶
𝐼 + 𝐶

+ 𝛾𝑜𝑝𝐶,𝐶 +
𝛽𝑜𝑝𝐼𝐶
𝐼 + 𝐶

− 𝛾𝑜𝑝𝐶
)

.

The primary disease dynamics is also represented by an SIS model. Susceptible individuals can be infected, at different rates,153

by infected and coinfected individuals. Let 𝛽𝐼 , 𝛽𝐶 ∈ (0, 1) be the respective transmission coefficients. The recovery coefficient154

is 𝛾 ∈ (0, 1). The corresponding map defining its dynamics at the slow time scale, for constant 𝐶 , is155



9

(𝑆, 𝐼) ←→
(

𝑆 −
(𝛽𝐼𝐼 + 𝛽𝐶𝐶)𝑆
𝑆 + 𝐼 + 𝐶

+ 𝛾𝐼, 𝐼 +
(𝛽𝐼𝐼 + 𝛽𝐶𝐶)𝑆
𝑆 + 𝐼 + 𝐶

− 𝛾𝐼
)

.

Let us next write the two time scales dicrete-time system in the form of system (6). Considering that 𝑆 does not change at the156

fast time scale, we define the map 𝐷 representing the fast dynamics157

𝐷(𝑆, 𝐼, 𝐶) =
(

𝑆, 𝐼 −
𝛽𝑜𝑝𝐼𝐶
𝐼 + 𝐶

+ 𝛾𝑜𝑝𝐶,𝐶 +
𝛽𝑜𝑝𝐼𝐶
𝐼 + 𝐶

− 𝛾𝑜𝑝𝐶
)

, (7)

and, considering the changes of 𝐶 only at the fast time scale, we define the map 𝐿 to describe the slow dynamics158

𝐿(𝑆, 𝐼, 𝐶) =
(

𝑆 −
(𝛽𝐼𝐼 + 𝛽𝐶𝐶)𝑆
𝑆 + 𝐼 + 𝐶

+ 𝛾𝐼, 𝐼 +
(𝛽𝐼𝐼 + 𝛽𝐶𝐶)𝑆
𝑆 + 𝐼 + 𝐶

− 𝛾𝐼, 𝐶
)

. (8)

Denoting 𝑋(𝑡) =
(

𝑆(𝑡), 𝐼(𝑡), 𝐶(𝑡)
)

, the proposed model has the following form:159

𝑋(𝑡 + 1) = 𝐿
(

𝐷(𝑘)(𝑋(𝑡))
)

. (9)

3 REDUCTION OF THE MODELS160

In this section we present the reduction techniques of the models (2) and (6) introduced in Section 2. These techniques require161

two steps. The first consists in the construction of a reduced model that is, therefore, easier to study than the original model. This162

model will necessarily only give us approximate information about the initial model. The second necessary step in the reduction163

is to specify what we can find out about the initial model through the study of the reduced model.164

The characteristic of the models that allows us to address their reduction is the existence of two time scales. Discrete-time165

models like (2) and (6) propose the superposition of two processes, one slow and one fast. The unit of time chosen to formulate166

the model is the one associated with the slow process. Thus, the action of the fast process in a slow unit of time is reflected in the167

iteration of the map that defines it. The arguments to approximately reduce the initial model will be supported by the possible168

existence of a limit for these iterates. This limit will decide part of the dynamics of the initial model, leaving the other part to be169

leaded by the slow process. The reduced model can be seen as a model in which the fast process has already acted and which170

reflects what remains to be decided by the slow process. Obviously, this can only be an approximation, since the passage to the171

limit is equivalent to considering that the ratio between the time scales tends to infinity.172

The reduction process is easier to understand in the case of SDD models. The hypotheses for its reduction are already included173

in the construction of the models (2). With the help of these hypotheses we will formulate, in a more abstract way, those174

corresponding to the FDD models (6). These hypotheses are generally not easy to test. We will see, however, how to do it in the175

model on opportunistic diseases (9).176
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3.1 SDD: Fast movements-Slow disease177

We start with the reduction of SDD. In system (2) we assume that both 𝐷 and 𝑀 are smooth enough.178

As we have commented before, we are going to first look for the limit of the iterates of the fast process. In this case, it suffices179

to calculate the limit of the powers of the matrix 𝑀(𝑈𝑋). We have that 𝑀(𝑈𝑋) = diag
(

𝑀𝐶 (𝑈𝑋)
)

𝐶∈ ∈ ℝ𝑝⋅𝑚×𝑝⋅𝑚
+ and that180

𝑀𝐶 (𝑈𝑋) is a regular stochastic matrix for any 𝑋 ∈ ℝ𝑝⋅𝑚
+ and 𝐶 ∈ .181

With the help of the Perron-Frobenius theorem we know that 1 is the strictly dominant eigenvalue of 𝑀𝐶 (𝑈𝑋) , 1̄ =182

(1, (𝑚)…, 1) ∈ ℝ𝑚
+ its associated row left-eigenvector, and there exists an unique �̄�𝐶 (𝑈𝑋) = (𝑣𝐶1 (𝑈𝑋),… , 𝑣𝐶𝑚(𝑈𝑋)) ∈ ℝ𝑚

+183

associated strictly positive column right-eigenvector whose entries sum up to 1:184

𝑀𝐶 (𝑈𝑋)�̄�𝐶 (𝑈𝑋) = �̄�𝐶 (𝑈𝑋), 1̄�̄�𝐶 (𝑈𝑋) = 1. (10)

Moreover, the limit of the powers of matrices 𝑀𝐶 (𝑈𝑋) and 𝑀(𝑈𝑋) are easily expressed in terms of these eigenelements:185

lim
𝑘→∞

(

𝑀𝐶 (𝑈𝑋)
)𝑘 = �̄�𝐶 (𝑈𝑋)1̄,

from where, taking into account that 𝑈 = diag
(

1̄, (𝑝)…, 1̄
)

and calling 𝑉 (𝑈𝑋) ∶= diag
(

�̄�𝐶 (𝑈𝑋)
)

𝐶∈ , we obtain186

lim
𝑘→∞

(

𝑀(𝑈𝑋)
)𝑘 = 𝑉 (𝑈𝑋)𝑈. (11)

From system (2) to arrive at expression (11), it is enough to calculate the eigenvectors �̄�𝐶 (𝑈𝑋). These eigenvectors have a clear187

interpretation. The fast process, the movements between sites, tends to distribute the individuals of each compartment 𝐶 ∈ 188

among the sites according to the proportions indicated by �̄�𝐶 (𝑈𝑋). For each compartment 𝐶 , the fast dynamics keeps its total189

density constant. These constants are nothing but what we called global variables, 𝑌 = 𝑈𝑋. Therefore, the fast process drives190

the distribution between sites but does not act on the global densities. The dynamics of these global variables will be driven by191

the slow process and will be represented by a reduced system.192

Reaching this reduced model is now straightforward. If in system (2) we replace the iterates of the fast process by its limit,193

𝑋(𝑡 + 1) = 𝐷
(

𝑉 (𝑈𝑋(𝑡))𝑈𝑋(𝑡)
)

, we arrive at the following reduced system for the global variables194

𝑌 (𝑡 + 1) = 𝑈𝐷
(

𝑉 (𝑌 (𝑡))𝑌 (𝑡)
)

(12)

The fast process effect is already included in the parameters of this new reduced system.195

The following theorem, that establishes the relationship between the asymptotic behavior of the solutions of system (12) and196

system (2), is published in21 as a special case of the general results appeared in23. In order to make the statement clearer, it is197

exposed in the case of equilibrium points, but an analogous result is valid in the case of periodic solutions.198
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Theorem 1. Let 𝑌 ∗ ∈ ℝ𝑝
+ be a hyperbolic equilibrium point of system (12). Then, there exists an integer 𝑘0 ≥ 0 such that for199

all 𝑘 ≥ 𝑘0 system (2) has an equilibrium point 𝑋∗
𝑘 which is hyperbolic and satisfies200

lim
𝑘→∞

𝑋∗
𝑘 = 𝑋∗, with 𝑋∗ ∶= 𝐷

(

𝑉 (𝑌 ∗)𝑌 ∗).

Moreover, the following holds:201

1. 𝑋∗
𝑘 is asymptotically stable (resp. unstable) if and only if 𝑌 ∗ is asymptotically stable (resp. unstable).202

2. Let 𝑌 ∗ be asymptotically stable and let 𝑋0 be such that the solution 𝑌 (𝑡) to (12) corresponding to the initial data 𝑌 (0) =203

𝑈𝑋0 satisfies that lim
𝑡→∞

𝑌 (𝑡) = 𝑌 ∗. Then, for all 𝑘 ≥ 𝑘0, the solution 𝑋(𝑡) to (2) with 𝑋(0) = 𝑋0 satisfies that lim
𝑡→∞

𝑋(𝑡) =204

𝑋∗
𝑘 .205

If the reduced model (12) has a hyperbolic equilibrium, the initial model (2), for 𝑘 large enough, has a hyperbolic equilibrium206

that can be approximated by the expression 𝐷
(

𝑉 (𝑌 ∗)𝑌 ∗). This expression is built from the equilibrium of the reduced system,207

the equilibrium distributions of the fast process and the map of the slow process. In addition, the stability of the equilibrium and208

its basin of attraction, if it is stable, can be studied in the reduced model.209

I repeat that the same result is true for a periodic solution rather than an equilibrium.210

SIS model in an m-site environment. Reduced model.211

As an illustration of the reduction process that we have just presented, we are going to build the reduced model associated212

with model (5). To do this, we must start from the column right-eigenvectors whose entries sum up to 1 of the matrices 𝑀𝑆 and213

𝑀𝐼 . Suppose that �̄�𝑆 = col
(

𝑣𝑆1 ,… , 𝑣𝑆𝑚
)

and �̄�𝐼 = col
(

𝑣𝐼1 ,… , 𝑣𝐼𝑚
)

are these vectors that verify 𝑀𝑆 �̄�𝑆 = �̄�𝑆 and 1̄�̄�𝑆 = 1, and214

𝑀𝐼 �̄�𝐼 = �̄�𝐼 and 1̄�̄�𝐼 = 1, then the (2m)-dimensional system (5) has an associated 2-dimensional system, for the state variables215

𝑆 and 𝐼 (total number of susceptible and infected individuals), with the form (12)216

⎛

⎜

⎜

⎜

⎝

𝑆(𝑡 + 1)

𝐼(𝑡 + 1)

⎞

⎟

⎟

⎟

⎠

= 𝑌 (𝑡 + 1) = 𝑈𝐷
(

𝑉 (𝑌 (𝑡))𝑌 (𝑡)
)

=

⎛

⎜

⎜

⎜

⎝

1̄ 0̄

0̄ 1̄

⎞

⎟

⎟

⎟

⎠

𝐷

(⎛

⎜

⎜

⎜

⎝

�̄�𝑆 0̄

0̄ �̄�𝐼

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝑆(𝑡)

𝐼(𝑡)

⎞

⎟

⎟

⎟

⎠

)

,

that yields the following system:217

𝑆(𝑡 + 1) = 𝑆(𝑡) −

( 𝑚
∑

𝑗=1

𝛽𝑗𝑣𝑆𝑗 𝑣
𝐼
𝑗

𝑣𝑆𝑗 𝑆(𝑡) + 𝑣𝐼𝑗 𝐼(𝑡)

)

𝑆(𝑡)𝐼(𝑡) +

( 𝑚
∑

𝑗=1
𝑣𝐼𝑗 𝛾𝑗

)

𝐼(𝑡),

𝐼(𝑡 + 1) = 𝐼(𝑡) +

( 𝑚
∑

𝑗=1

𝛽𝑗𝑣𝑆𝑗 𝑣
𝐼
𝑗

𝑣𝑆𝑗 𝑆(𝑡) + 𝑣𝐼𝑗 𝐼(𝑡)

)

𝑆(𝑡)𝐼(𝑡) −

( 𝑚
∑

𝑗=1
𝑣𝐼𝑗 𝛾𝑗

)

𝐼(𝑡).

(13)
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3.2 FDD: Slow process-Fast disease218

We proceed with the reduction of the FDD model (6). For that, we establish hypotheses that allow us to reproduce the two219

characteristics of the SDD model that allowed its reduction. The first one is that the iterates of the fast process have a limit that220

decides part of the dynamics. The second is that the rest of the dynamics can be decided from a smaller number of variables,221

those that we have called global variables, that are invariant for the fast dynamics.222

Hypothesis 1. The sequence of iterates of 𝐷, {𝐷(𝑘)}𝑘∈ℕ, converges pointwise on Ω𝑁 ⊂ ℝ𝑁
+ to a map �̄� ∶ Ω𝑁 → Ω𝑁 , such223

that �̄� ∈ 𝐶1(Ω𝑁 ).224

Hypothesis 2. There exist a non-empty open subset Ω𝑞 ⊂ ℝ𝑞 with 𝑞 < 𝑁 and two maps 𝐺 ∶ Ω𝑁 ←→ Ω𝑞 and 𝐸 ∶ Ω𝑞 ←→ Ω𝑁225

with 𝐺 ∈ 𝐶1(Ω𝑁 ), 𝐸 ∈ 𝐶1(Ω𝑞), such that the map �̄� can be expressed as �̄� = 𝐸◦𝐺.226

Now, if we substitute the k-th iterate of 𝐷 for its limit in the right-hand side of system (6), 𝐿
(

𝐸◦𝐺(𝑋(𝑡))
)

, we see that we227

can obtain a reduced system for the global variables 𝑌 = 𝐺(𝑋) ∈ ℝ𝑞:228

𝑌 (𝑡 + 1) = (𝐺◦𝐿◦𝐸)(𝑌 (𝑡)) ∶= �̄�(𝑌 (𝑡)). (14)

The reduction of the SDD case could also be thought through an 𝐸◦𝐺 decomposition of the limit of the iterates of its fast229

process. In that case, the reduction would be done with 𝐸(𝑌 ) = 𝑉 (𝑌 )𝑌 and 𝐺(𝑋) = 𝑈𝑋.230

The following theorem,23, contains a result with the same thesis as Theorem 1. On the other hand, to achieve it, it is necessary231

to impose some conditions on the convergence of the iterates of 𝐷 that can be difficult to verify depending on the cases. The232

iterates of 𝐷 and their differentials must converge uniformly on compact sets.233

Theorem 2. Let us assume that 𝐷 verify Hypotheses 1 and 2, and that234

lim
𝑘←→∞

𝐷(𝑘) = �̄� and lim
𝑘←→∞

𝑑(𝐷(𝑘)) = 𝑑(�̄�)

uniformly on any compact set 𝐾 ⊂ Ω𝑁 .235

Let 𝑌 ∗ ∈ Ω𝑞 be a hyperbolic equilibrium point of system (14). Then, there exists an integer 𝑘0 ≥ 0 such that for each 𝑘 ≥ 𝑘0236

system (6) has an equilibrium point 𝑋∗
𝑘 which is hyperbolic and satisfies237

lim
𝑘→∞

𝑋∗
𝑘 = 𝑋∗, with 𝑋∗ = (𝐿◦𝐸)(𝑌 ∗).

Moreover, the following holds:238

1. 𝑋∗
𝑘 is asymptotically stable (resp. unstable) if and only if 𝑌 ∗ is asymptotically stable (resp. unstable).239



13

2. Let 𝑌 ∗ be asymptotically stable and let 𝑋0 ∈ Ω𝑁 be such that the solution 𝑌 (𝑡) to (14) corresponding to the initial data240

𝑌 (0) = 𝐺(𝑋0) satisfies that lim
𝑡→∞

𝑌 (𝑡) = 𝑌 ∗. Then, for all 𝑘 ≥ 𝑘0, the solution 𝑋(𝑡) to (6) with 𝑋(0) = 𝑋0 satisfies that241

lim
𝑡→∞

𝑋(𝑡) = 𝑋∗
𝑘 .242

The theorem states that, for large enough time scales ratio, we can approximate equilibrium points of the complete system and243

study their stability, together with their domains of attraction, performing the corresponding analysis in the aggregated system.244

An analogous result can be stated for periodic solutions, see23.245

The hypotheses of the theorem are in general difficult to check in practical applications, particularly the uniform convergence246

of the differentials of de iterates of map 𝐷. In24 (Theorem 2) a result of these same characteristics is presented that avoids the247

hypothesis of convergence of the differentials. On the other hand, in the thesis it cannot be ensured that the solutions of the248

initial system tend to the attractors (equilibria or periodic solutions) that are obtained from the reduced system. However, it does249

prove that the dynamics remains as close to these attractors as desired, as long as k is large enough. From the point of view of250

eco-epidemiological models this last property is good enough to obtain valuable qualitative results.251

Opportunistic disease model. Reduced model.252

Before proceeding to the reduction of the system associated with the opportunistic disease model (9), let us observe that both253

map 𝐷 and map 𝐿 leave the total number of individuals in the population, 𝑁 , invariant, so that254

𝑆(𝑡) + 𝐼(𝑡) + 𝐶(𝑡) = 𝑆(0) + 𝐼(0) + 𝐶(0) = 𝑁.

This allows us to make the substitution 𝑆(𝑡) = 𝑁 − 𝐼(𝑡) −𝐶(𝑡), transforming the system (9) into a 2-dimensional system for the255

variables 𝐼 and 𝐶 . The associated reduced system will turn out to be 1-dimensional for the global variable 𝐼 = 𝐼 + 𝐶 .256

In variables 𝐼 and 𝐶 the map �̃� defining the fast dynamics, that of the opportunistic disease, is257

�̃�(𝐼, 𝐶) =
(

𝐼 −
𝛽𝑜𝑝𝐼𝐶
𝐼 + 𝐶

+ 𝛾𝑜𝑝𝐶,𝐶 +
𝛽𝑜𝑝𝐼𝐶
𝐼 + 𝐶

− 𝛾𝑜𝑝𝐶
)

, (15)

and the map �̃� defining the slow dynamics associated with the primary disease is258

�̃�(𝐼, 𝐶) =
(

𝐼 + 1
𝑁

(𝛽𝐼𝐼 + 𝛽𝐶𝐶)(𝑁 − 𝐼 − 𝐶) − 𝛾𝐼, 𝐶
)

, (16)

Denoting �̃�(𝑡) =
(

𝐼(𝑡), 𝐶(𝑡)
)

, the 2-dimensional model equivalent to model (9) has the following form:259

�̃�(𝑡 + 1) = �̃�
(

�̃�(𝑘)(�̃�(𝑡))
)

. (17)
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To build the reduced system associated with the opportunistic disease model (17), we have to start by finding the limit of the260

iterates of �̃� (15).261

The analysis of the discrete-time SIS model involved in the definition of �̃� is carried out in1. Defining the basic reproduction262

number as the ratio transmission coefficient to recovery coefficient, in the case of the opportunistic disease263

𝑅𝑜𝑝
0 =

𝛽𝑜𝑝

𝛾𝑜𝑝
, (18)

we have that if 𝑅𝑜𝑝
0 ≤ 1 then the opportunistic disease is eradicated with 𝐶(𝑡) tending to zero, on the other hand, if 𝑅𝑜𝑝

0 > 1 then264

the disease becomes endemic with stable fractions of 𝐼 and 𝐶 infividuals being 1
𝑅𝑜𝑝

0

=
𝛾𝑜𝑝

𝛽𝑜𝑝
and 1− 1

𝑅𝑜𝑝
0

= 1−
𝛾𝑜𝑝

𝛽𝑜𝑝
, respectively.265

From this result we can readily obtain the following266

lim
𝑘→∞

�̃�(𝑘)(𝐼, 𝐶) = �̄�(𝐼, 𝐶) ∶=
(

𝜈(𝐼 + 𝐶), (1 − 𝜈)(𝐼 + 𝐶)
)

, (19)

where, 𝜈 = 1 if 𝑅𝑜𝑝
0 ≤ 1, and 𝜈 = 1

𝑅𝑜𝑝
0

if 𝑅𝑜𝑝
0 > 1.267

We can observe in the expression of �̄� that it depends on only one variable 𝐼 + 𝐶 . This allow us to establish the 𝐸◦𝐺268

decomposition of �̄� necessary for the reduction of the system. If we define 𝐼 = 𝐼 +𝐶 as the global variable, 𝐺(𝐼, 𝐶) = 𝐼 +𝐶 ,269

it is straightforward that defining 𝐸(𝐼) =
(

𝜈𝐼, (1 − 𝜈)𝐼
)

we get �̄� = 𝐸◦𝐺. Therefore, the reduced system associated to (17) is270

𝐼(𝑡 + 1) = �̄�(𝐼(𝑡)) ∶=
(

𝐺◦�̃�◦𝐸
)

(𝐼(𝑡)).

In detailed form271

𝐼(𝑡 + 1) = 𝐼(𝑡) +
(𝛽𝐼𝜈 + 𝛽𝐶 (1 − 𝜈))

𝑁
𝐼(𝑡)

(

𝑁 − 𝐼(𝑡)
)

− 𝛾𝜈𝐼(𝑡). (20)

4 SIS MODEL IN AN M-PATCH ENVIRONMENT.272

In this section we study the SIS model in an m-site environment (5) with the help of the reduced system (13) and Theorem 1.273

In system (13) it is immediate to check that the total number of individuals is constant 𝑆(𝑡) + 𝐼(𝑡) = 𝑆(0) + 𝐼(0) = 𝑁 , which274

allows us to reduce it to a scalar equation. To do it, in the 𝐼 equation we eliminate the variable 𝑆 replacing it with 𝑁 − 𝐼 . The275

equation to be studied is276

𝐼(𝑡 + 1) = 𝐼(𝑡) +

( 𝑚
∑

𝑗=1

𝛽𝑗𝑣𝑆𝑗 𝑣
𝐼
𝑗

𝑣𝑆𝑗
(

𝑁 − 𝐼(𝑡)
)

+ 𝑣𝐼𝑗 𝐼(𝑡)

)

(

𝑁 − 𝐼(𝑡)
)

𝐼(𝑡) −

( 𝑚
∑

𝑗=1
𝑣𝐼𝑗 𝛾𝑗

)

𝐼(𝑡). (21)

Let us introduce the following notation277
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𝛽 ∶=
𝑚
∑

𝑗=1
𝑣𝐼𝑗 𝛽𝑗 and �̄� ∶=

𝑚
∑

𝑗=1
𝑣𝐼𝑗 𝛾𝑗 . (22)

In Appendix 6.1, the analysis of equation (21) is carried out. The discussion of the asymptotic behavior of its solutions is278

characterised in terms of the basic reproduction number defined as follows279

�̄�0 =
𝛽
�̄�
. (23)

The analysis tells us that if �̄�0 < 1 then the disease is eradicated, while if �̄�0 > 1 the endemicity of the disease follows from280

the existence of a hyperbolic and asymptotically stable endemic equilibrium.281

Proposition 1. Let it be 𝐼(𝑡) be equation (21). Then282

1. If �̄�0 < 1 then the equilibrium 𝐼∗
0 = 0 is hyperbolic and asymptotically stable and lim

𝑡→∞
𝐼(𝑡) = 0 for any solution with283

initial data 𝐼(0) > 0.284

2. If �̄�0 > 1 then there exists an unique hyperbolic and asymptotically stable equilibrium 𝐼∗
+ ∈ (0, 𝑁).285

Proof. See Appendix 6.1.286

This result can be transferred to the SIS model in an m-site environment (5) with the help of Theorem 1:287

Theorem 3. Let 𝑋(𝑡) be the solution to system (5) for any initial data 𝑋(0) ∈ ℝ2𝑚
+ with 𝐼(0) =

∑𝑚
𝑗=1 𝐼𝑗(0) > 0, and 𝑁 =288

𝑆(0) + 𝐼(0) =
∑𝑚

𝑗=1(𝑆𝑗(0) + 𝐼𝑗(0)). Then289

1. If �̄�0 < 1 then there exists an integer 𝑘0 ≥ 0 such that for all 𝑘 ≥ 𝑘0 system (5) has an equilibrium 𝑋∗
𝑘 which is hyperbolic290

and asymptotically stable, that satisfies291

lim
𝑘→∞

𝑋∗
𝑘 = 𝑋∗ = 𝐷

(

diag(�̄�𝑆 , �̄�𝐼 )col(𝑁, 0)
)

= col
(

𝑣𝑆1𝑁,… , 𝑣𝑆𝑚𝑁, 0, (𝑚)…, 0
)

and292

lim
𝑡→∞

𝑋(𝑡) = 𝑋∗
𝑘 .

2. If �̄�0 > 1 then there exists an integer 𝑘0 ≥ 0 such that for all 𝑘 ≥ 𝑘0 system (5) has an equilibrium 𝑋∗
𝑘 which is hyperbolic293

and asymptotically stable, that satisfies294

lim
𝑘→∞

𝑋∗
𝑘 = 𝑋∗ = 𝐷

(

diag(�̄�𝑆 , �̄�𝐼 )col(𝑁 − 𝐼∗
+, 𝐼

∗
+)
)

= 𝐷
(

𝑣𝑆1 (𝑁 − 𝐼∗
+),… , 𝑣𝑆𝑚(𝑁 − 𝐼∗

+), 𝑣
𝐼
1𝐼

∗
+,… , 𝑣𝐼𝑚𝐼

∗
+
)

.
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Moreover, if the solution 𝐼(𝑡) to (21) with 𝐼(0) =
∑𝑚

𝑗=1 𝐼𝑗(0) > 0 satisfies that lim
𝑡→∞

𝐼(𝑡) = 𝐼∗
+ then lim

𝑡→∞
𝑋(𝑡) = 𝑋∗

𝑘 .295

It can be seen that �̄�0 plays the role of basic reproduction number for model (5).296

When �̄�0 < 1 we can consider that the disease is driven to extinction. The non-negative solutions of system (5) tend towards297

a disease-free equilibrium (DFE) that has approximately the following form:298

𝑋∗
0 =

(

𝑣𝑆1𝑁,… , 𝑣𝑆𝑚𝑁, 0, (𝑚)…, 0
)

.

On the other hand, if �̄�0 > 1 , we could consider the disease to be endemic. In this case, there exists an asymptotically stable299

endemic equilibrium (EE) close to:300

𝑋∗
+ = 𝐷

(

𝑣𝑆1 (𝑁 − 𝐼∗
+),… , 𝑣𝑆𝑚(𝑁 − 𝐼∗

+), 𝑣
𝐼
1𝐼

∗
+,… , 𝑣𝐼𝑚𝐼

∗
+
)

,

whose domain of attraction can be calculated with the help of the domain of attraction of equilibrium 𝐼∗
+ in equation (21).301

A simple case where equilibrium 𝐼∗
+ is GAS, and therefore also 𝑋∗

+, is where movements bring susceptible and infective302

individuals to the same spatial distribution, 𝜈𝑆𝑗 = 𝜈𝐼𝑗 (𝑗 = 1,… , 𝑚). Equation (21) reduces to303

𝐼(𝑡 + 1) = 𝐼(𝑡) +
𝛽
𝑁

(

𝑁 − 𝐼(𝑡)
)

𝐼(𝑡) − �̄�𝐼(𝑡),

which is a classical SIS model, whose positive equilibrium 𝐼∗
+ = (1 − �̄�∕𝛽)𝑁 is GAS whenever �̄�0 = 𝛽∕�̄� > 11.304

It should be noted that the previous statements can be assured for k large enough, that is, if the ratio between time scales is305

large enough.306

From the analysis of system (5) we can try to answer some questions about the effect of rapid movements between sites on the307

dynamics of the disease. For this, it is enough to take into account that, globally, �̄�0 decides between eradication or endemicity308

of the disease, and that, locally, in each site, the corresponding basic reproduction number, 𝑅𝑗
0 = 𝛽𝑗∕𝛾𝑗 , plays this same role.309

We are going to limit ourselves to giving two examples of these possible questions. Is it possible to have a locally endemic310

disease in every site that is nonetheless eradicated when the sites are connected by the right fast movements? Or, the other way311

around, can we go from local eradication to global endemicity?312

The answer to both questions is negative. Let us see it with the first one. Endemic disease at each site means that 𝑅𝑗
0 > 1 for313

all 𝑗 or, equivalently, that 𝛽𝑗 > 𝛾𝑗 . We now have to see the consequences of this hypothesis on the global basic reproduction314

number �̄�0, but it is straightforward that315

𝛽 − �̄� =
𝑚
∑

𝑗=1
𝑣𝐼𝑗 𝛽𝑗 −

𝑚
∑

𝑗=1
𝑣𝐼𝑗 𝛾𝑗 =

𝑚
∑

𝑗=1
𝑣𝐼𝑗 (𝛽𝑗 − 𝛾𝑗) > 0,

and, thus, �̄�0 > 1.316
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In11, a model similar to (5) is studied with a local dynamic that corresponds to an SEIRS model. The fact of having two states317

of infected individuals, exposed and infective, to which different movement patterns can be associated allows an affirmative318

answer to the previous question.319

A second example of question is the following. If locally only one of the sites eradicates the disease while it is endemic320

everywhere else, can patterns of movement be found that lead to global eradication of the disease?321

Suppose that it is site 1 in which the disease is driven to extinction, 𝑅1
0 < 1, and that the opposite occurs in the rest of the322

sites, 𝑅𝑗
0 > 1 for 𝑗 = 2,… , 𝑚. We are going to reflect the movement pattern in a single parameter 𝛼 ∈ (0, 1). To do this, we323

suppose that the vector �̄�𝐼 can be written as follows324

�̄�𝐼 =
(

𝛼, (1 − 𝛼)𝑣2,… , (1 − 𝛼)𝑣𝑚
)

where 𝑣𝑖 ∈ (0, 1) and 𝑣2 +⋯ + 𝑣𝑚 = 1. To get a positive answer to our question we need to find values of 𝛼 ∈ (0, 1) that make325

�̄�0 < 1. We can prove that they exist by solving the inequality 𝛽 < �̄�:326

𝛼𝛽1 + (1 − 𝛼)
𝑚
∑

𝑗=2
𝑣𝑗𝛽𝑗 < 𝛼𝛾1 + (1 − 𝛼)

𝑚
∑

𝑗=2
𝑣𝑗𝛾𝑗 ,

whose solution is327

𝛼 >

𝑚
∑

𝑗=2
𝑣𝑗(𝛽𝑗 − 𝛾𝑗)

𝛾1 − 𝛽1 +
𝑚
∑

𝑗=2
𝑣𝑗(𝛽𝑗 − 𝛾𝑗)

∈ (0, 1).

5 OPPORTUNISTIC DISEASE MODEL.328

We complete in this section the analysis of the opportunistic disease model (9) by means of the reduced system (20) and Theorem329

2.330

Considering 𝛽 = 𝛽𝐼𝜈 + 𝛽𝐶 (1 − 𝜈) as the transmission coefficient and �̄� = 𝜈𝛾 as the recovery coefficient, the reduced system331

(20) turns out to be an SIS model of the form studied in1 expressed in terms of the infective individuals variable 𝐼 :332

𝐼(𝑡 + 1) = 𝐼(𝑡) +
𝛽
𝑁

𝐼(𝑡)
(

𝑁 − 𝐼(𝑡)
)

− �̄�𝐼(𝑡). (24)

We recall that 𝜈 = 1 if 𝑅𝑜𝑝
0 ≤ 1, and 𝜈 = 1∕𝑅𝑜𝑝

0 if 𝑅𝑜𝑝
0 > 1, with 𝑅𝑜𝑝

0 = 𝛽𝑜𝑝∕𝛾𝑜𝑝 being the basic reproduction number333

associated to the opportunistic disease.334

The asymptotic behavior of the solutions of equation (24) depends on the ratio 𝛽 to �̄� , which we denote335
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�̄�0 =
𝛽
�̄�
, (25)

and which can be considered as the basic reproductive number of the complete opportunistic disease model (9).336

Proposition 2. Let 𝐼(𝑡) be the solution to equation (24) for any initial data 𝐼(0) > 0 and 𝑁 = 𝑆(0) + 𝐼(0). Then337

1. If �̄�0 < 1, the equilibrium 𝐼∗
0 = 0 is hyperbolic and asymptotically stable and lim

𝑡→∞
𝐼(𝑡) = 0.338

2. If �̄�0 > 1, 𝐼∗
+ = 𝑁

(

1 − 1
�̄�0

)

is a hyperbolic and asymptotically stable equilibrium such that lim
𝑡→∞

𝐼(𝑡)
)

= 𝐼∗
+.339

Proof. See1 Section 4.340

As stated in the previous proposition, the asymptotic behavior of the solutions of equation (24) is defined by hyperbolic and341

asymptotically stable equilibria, with regions of attraction that contain the interval (0, 𝑁].342

This allows us to apply Theorem 2 to obtain the same type of result on the solutions of system (17) and, therefore, of the343

opportunistic disease model (9). To do this, we first need to ensure that the hypotheses of the theorem hold. It remains for us344

to check that the convergence of the iterates of map �̃� (19), and their differentials, to map �̄�, and its differential, is uniform on345

compact sets. The proof of this question can be found in8 Lemma A.1.346

Before applying Theorem 2, let us note that, as the reproduction number �̄�0 depends on 𝜈, we have two different cases in347

Proposition 2.348

One corresponds to the opportunistic disease being rapidly eradicated, 𝑅𝑜𝑝
0 < 1, then 𝜈 = 1, and equation (20) is nothing but349

the SIS model associated to the primary disease in the absence of the opportunistic disease, expressed in terms of the infective350

variable 𝐼 :351

𝐼(𝑡 + 1) = 𝐼(𝑡) +
𝛽𝐼
𝑁

𝐼(𝑡)
(

𝑁 − 𝐼(𝑡)
)

− 𝛾𝐼(𝑡).

Using the basic reproduction number of the primary disease352

𝑅𝑝𝑟
0 ∶=

𝛽𝐼
𝛾
, (26)

and assuming 𝑅𝑜𝑝
0 ≤ 1, we can expressed the asymptotic behaviour of the solutions of equation (20) with 𝐼(0) > 0, and353

𝑁 = 𝑆(0) + 𝐼(0) in the following form:354

1. If 𝑅𝑝𝑟
0 ≤ 1,355

lim
𝑡→∞

𝐼(𝑡) = 0. (27)
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2. If 𝑅𝑝𝑟
0 > 1,356

lim
𝑡→∞

𝐼(𝑡) = 𝑁
(

1 − 1
𝑅𝑝𝑟

0

)

. (28)

The second case is where the opportunistic disease rapidly attains a positive equilibrium, 𝑅𝑜𝑝
0 > 1 and 𝜈 = 1∕𝑅𝑜𝑝

0 . In this case357

𝛽 = 𝛽𝐼∕𝑅
𝑜𝑝
0 + (1 − 1∕𝑅𝑜𝑝

0 )𝛽𝐶 and �̄� = 𝛾∕𝑅𝑜𝑝
0 . So, the basic reproduction number (25) of equation (20), that we call 𝑅𝑐𝑜𝑖

0 , is358

𝑅𝑐𝑜𝑖
0 =

𝛽𝐼
𝛾

+
(

𝑅𝑜𝑝
0 − 1

)𝛽𝐶
𝛾

= 𝑅𝑝𝑟
0

(

1 +
(

𝑅𝑜𝑝
0 − 1

)𝛽𝐶
𝛽𝐼

)

. (29)

The asymptotic behaviour of the solutions of equation (20) with 𝐼(0) > 0, and 𝑁 = 𝑆(0) + 𝐼(0) is the following:359

1. If 𝑅𝑐𝑜𝑖
0 ≤ 1 then360

lim
𝑡→∞

𝐼(𝑡) = 0. (30)

2. If 𝑅𝑐𝑜𝑖
0 > 1 then361

lim
𝑡→∞

𝐼(𝑡) = 𝑁
(

1 − 1
𝑅𝑐𝑜𝑖

0

)

. (31)

When 𝑅𝑜𝑝
0 < 1 the opportunistic disease is eradicated and the basic reproductive number of the primary disease 𝑅𝑝𝑟

0 decides362

what happens to it, either it is eradicated or it becomes endemic. On the other hand, if the opportunistic disease becomes endemic363

among those infected with the primary disease, 𝑅𝑜𝑝
0 > 1, it is then the basic reproductive number of the co-infection 𝑅𝑐𝑜𝑖

0 that364

leads either to the endemicity of the co-infection or to the eradication of both diseases.365

If we return to the initial opportunistic disease model (9) with three variables, the application of the reduction method tells us366

that the asymptotic behavior of its solutions can be described with a good approximation (the better the greater the ratio between367

the time scales) through one of the following steady state situations:368

1. 𝐄0 = (𝑁, 0, 0); both diseases are eradicated.369

2. 𝐄𝑝𝑟 = (𝑆∗
𝑝𝑟, 𝐼

∗
𝑝𝑟, 0) = (𝑁∕𝑅𝑝𝑟

0 , 𝑁(1−1∕𝑅𝑝𝑟
0 ), 0); the opportunistic disease is eradicated and the primary disease is endemic.370

3. 𝐄𝑐𝑜𝑖 = (𝑆∗
𝑐𝑜𝑖, 𝐼

∗
𝑐𝑜𝑖, 𝐶

∗
𝑐𝑜𝑖) = (𝑁∕𝑅𝑐𝑜𝑖

0 , 𝑁(1 − 1∕𝑅𝑐𝑜𝑖
0 )∕𝑅𝑜𝑝

0 , 𝑁(1 − 1∕𝑅𝑐𝑜𝑖
0 )(1 − 1∕𝑅𝑜𝑝

0 )); the coinfection becomes endemic.371

Using the asymptotic results (19), (27), (28), (30) and (31), and Theorem 2, we summarize the long-term behaviour of the372

solutions of system (9):373

Let 𝑋(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝐶(𝑡)) be any solution of system (9) with initial conditions verifying 𝑆(0) ≥ 0, 𝐼(0) > 0, 𝐶(0) > 0, and374

𝑆(0) + 𝐼(0) + 𝐶(0) = 𝑁 .375
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1. If 𝑅𝑜𝑝
0 < 1, then 𝑅𝑝𝑟

0 < 1 implies that 𝑋(𝑡) approaches 𝐄0 while 𝑅𝑝𝑟
0 > 1 implies that it approaches 𝐄𝑝𝑟.376

2. If 𝑅𝑜𝑝
0 > 1, then 𝑅𝑐𝑜𝑖

0 < 1 implies that 𝑋(𝑡) approaches 𝐄0 while 𝑅𝑐𝑜𝑖
0 > 1 implies that it approaches 𝐄𝑐𝑜𝑖.377

To draw some conclusions from the model analysis, we are going to focus on the potential impact of the opportunistic disease378

and, for this, we are left with the case of 𝑅𝑜𝑝
0 > 1 in which the isolated opportunistic disease becomes endemic.379

A first observation is that a sufficiently large recovery rate 𝛾 from the primary disease can always lead to disease-free status.380

For any 𝑅𝑜𝑝
0 > 1 both diseases are eradicated whenever 𝑅𝑐𝑜𝑖

0 < 1, that is, if381

𝛽𝐼 +
(

𝑅𝑜𝑝
0 − 1

)

𝛽𝐶 < 𝛾.

A sufficient reduction in the average period of infection of the primary disease, 1∕𝛾 , allows both diseases to be eradicated. This382

can be achieved by isolating the infected and devoting more resources to recovery. This might lead one to think that it is enough383

to concentrate on the treatment of the primary disease, but this is not the case. On the one hand, the average period of infection384

could be reduced but up to a certain value and, on the other hand, it is easy to see that no matter how small the basic number of385

reproduction of the primary disease, 𝑅𝑝𝑟
0 < 1, it can be compensated with a basic number of reproduction of the opportunistic386

disease large enough, 𝑅𝑜𝑝
0 , so that 𝑅𝑐𝑜𝑖

0 > 1, which implies the endemicity of co-infection:387

𝑅𝑜𝑝
0 > 1 +

(

1
𝑅𝑝𝑟

0

− 1

)

𝛽𝐼
𝛽𝐶

.

A sufficiently strong opportunistic disease can maintain co-infection in a population that, if only affected by the primary disease,388

would tend towards a disease-free state. The opportunistic disease acts as a reservoir for the primary disease that strengthens it.389

If we compare for the cases of co-infection and infection only through the primary disease, the number of susceptible individ-390

uals, those not affected by either of the two diseases, to which the dynamics of the model leads us we can clearly observe the391

aforementioned reservoir effect392

𝑆∗
𝑝𝑟

𝑆∗
𝑐𝑜𝑖

= 1 +
(

𝑅𝑜𝑝
0 − 1

) 𝛽𝐶
𝛽𝐼

,

which is reflected in the term
(

𝑅𝑜𝑝
0 − 1

) 𝛽𝐶
𝛽𝐼

.393

6 CONCLUSION AND PERSPECTIVES394

In this work, models have been presented including at least one infectious process together with a second process, these acting on395

different time scales. The models have been expressed in the form of discrete-time systems. Unlike what happens in continuous396

time, in discrete time the references including models with two time scales are very scarce.397
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The framework chosen to present these models has been intended to be general enough. However, two limitations have been398

observed. The first of these is a limitation introduced primarily for notational reasons. Infectious disease models have been399

proposed in the form of compartmental models. It is clear that extending this framework to more general models of infectious400

diseases is feasible.401

The other limitation has to do with the type of discrete-time system with two time scales that can be studied through a reduced402

system. The analysis of a discrete-time system is usually complicated to carry out. In the case of the systems presented in this403

work, even more so due to the possible high number of variables and the existence of time scales. Therefore, we have presented404

a framework of systems in which the existing reduction results23,24 can be applied. This does not ensure that a deep analysis of405

the model is feasible, but it does increase the chances that this will be the case.406

We have established two main types of models, depending on whether the infectious process acts on the slow or fast time407

scale. The first of these (SDD) consists of a disease process acting on a slow time scale together with a second process acting on408

a faster time scale. The disease process is represented by a general compartmental model. The second process has been given409

the form of individual movements between widely understood sites. This last choice has two fundamental reasons. The first of410

them is the significant number of applications that it can host. The second reason is that this type of fast dynamics makes it easier411

to reduce the entire model21. Sites can obviously be understood in very different ways (activities, behaviors, etc.), but the most412

common case of being spatial sites is highly relevant in the study of disease models. The reduction procedure for these models413

leads us to a disease model in which the sites no longer appear explicitly. The result of the fast dynamics is reflected within the414

parameters that appear in this last model. From it, a good approximation of the basic reproduction number of the complete model415

can be found and thus distinguish between eradication or endemicity of the disease at a global level. The reduction procedure has416

important value, not only in justifiably simplifying models of relative complexity, but also in offering explanations of simpler417

models that are directly presented in compact form.418

As an illustration of the reduction procedure in SDD models, a multi-site SIS model has been analyzed. Locally, at each site,419

the dynamics of the disease have been represented by a classical SIS model with specific parameters. The reduced model has420

turned out to be a global SIS model in which both the transmission coefficient and the recovery coefficient are obtained from421

the corresponding local ones and from the stable distribution of individuals as a result of their movements between sites. The422

eradication or global endemicity of the disease can then be characterized from a global basic reproduction number, �̄�0, and thus423

establish the influence of the movements in the development of the disease.424

The second type of established model (FDD) considers the disease process acting on a faster time scale than that of a second425

process that accompanies it. The disease process is still represented by a general compartmental model. The second process is426

represented in a general way because, unlike what happens in the SDD type, there is no clear advantage of choosing any particular427

case. Obviously, there is a toll to pay for such generality and the hypotheses to satisfy in order to carry out the reduction may428
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be too difficult, if not impossible, to establish. When the reduction can be carried out, it obviously has the same advantages as429

described above.430

As an illustration, we have analyzed a co-infection model in which the reduction procedure can be applied without major prob-431

lems. The rapid process is an opportunistic disease that acts when a primary disease has sufficiently weakened the individual’s432

immune system. The dynamics of the primary disease plays the role of a slow process with respect to that of the opportunistic433

disease. Both processes are represented by SIS models and the reduced global model of co-infection is also a SIS model. The434

latter can be defined from a single global variable, the sum of infected by the primary disease and co-infected. A simple analysis435

of the reduced model allows us to establish the conditions for the eradication of both diseases and the endemicity of co-infection.436

The presented reduction results allow establishing the stability of the equilibria of the initial model from the reduced model,437

including the attractive domains of the asymptotically stable equilibria. These results apply very well in the case of the disease438

free equilibrium (DFE). It is usually easy to find the DFE in the reduced model and even demonstrate that it is GAS when the439

basic global reproduction number is less than 1. Thus, there is a simple characterization of the eradication of the disease at a440

global level.441

As far as the endemicity of the disease is concerned, things are not so simple. If endemicity is characterized by a positive442

endemic equilibrium (EE) in the reduced model, then the reduction results allow us to characterize global endemicity in the443

initial model in the same way. A first difficulty that we frequently face is that of finding the EE in the reduced model. This may444

be infeasible and, even if it is, the difficulty will grow to establish its stability. Sometimes endemicity is not characterized by an445

EE but is established from the uniform persistence26 of infectious states. Studying the uniform persistence in the reduced model446

may be easier than finding the EE and proving its stability. This helps to overcome the previously proposed difficulty but leads447

us to propose a new theoretical work. At the moment, the reduction results do not allow us to conclude the uniform persistence448

of the initial model from that of the reduced model. In addition to this more specific task, in the proposed framework any result449

that simplifies the reduction hypotheses, such as the one that appears in24, would be of great help in the applications.450
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APPENDIX507

6.1 Analysis of equation (21)508

In this section we present the details of the study of the asymptotic behavior of the solutions of equation (21), which we recall509

to facilitate reading510

𝐼(𝑡 + 1) = 𝐼(𝑡) +

( 𝑚
∑

𝑗=1

𝛽𝑗𝑣𝑆𝑗 𝑣
𝐼
𝑗

𝑣𝑆𝑗
(

𝑁 − 𝐼(𝑡)
)

+ 𝑣𝐼𝑗 𝐼(𝑡)

)

(

𝑁 − 𝐼(𝑡)
)

𝐼(𝑡) −

( 𝑚
∑

𝑗=1
𝑣𝐼𝑗 𝛾𝑗

)

𝐼(𝑡). (32)

To simplify the writing, we introduce the following notation:511

𝐵(𝑆, 𝐼) =
𝑚
∑

𝑗=1

𝛽𝑗𝑣𝑆𝑗 𝑣
𝐼
𝑗

𝑣𝑆𝑗 𝑆 + 𝑣𝐼𝑗 𝐼

and use the defined parameters (22)512

𝛽 =
𝑚
∑

𝑗=1
𝑣𝐼𝑗 𝛽𝑗 and �̄� =

𝑚
∑

𝑗=1
𝑣𝐼𝑗 𝛾𝑗 .

Equation (32) can be written as513

𝐼(𝑡 + 1) = 𝐼(𝑡) + 𝐵
(

𝑁 − 𝐼(𝑡), 𝐼(𝑡)
)(

𝑁 − 𝐼(𝑡)
)

𝐼(𝑡) − �̄�𝐼(𝑡) = 𝑓 (𝐼(𝑡)) = 𝑔(𝐼(𝑡))𝐼(𝑡),

where 𝑔(𝐼) = 1 − �̄� + 𝐵(𝑁 − 𝐼, 𝐼)
(

𝑁 − 𝐼
)

and 𝑓 (𝐼) = 𝑔(𝐼)𝐼 .514

The equilibria of equation (32), that we are interested in, are 𝐼∗
0 = 0 (DFE) and the solutions to 𝑔(𝐼) = 1 in (0, 𝑁].515

As 𝑓 ′(𝐼) = 𝑔′(𝐼)𝐼 + 𝑔(𝐼), we have 𝑓 ′(0) = 𝑔(0) = 1 − �̄� + 𝛽. Recalling that 𝛾𝑗 , 𝛽𝑗 ∈ (0, 1), we also have �̄� , 𝛽 ∈ (0, 1). Thus,516

𝑓 ′(0) > 0. Now, 𝐼∗
0 is hyperbolic and asymptotically stable if 𝑓 ′(0) < 1, that is, if �̄� > 𝛽. This corresponds to the condition517

�̄�0 = 𝛽∕�̄� < 1. If this the case, we can prove that [0, 𝑁] is in the region of attraction of 𝐼∗
0 . Let 𝐼(0) ∈ [0, 𝑁]:518

𝐵(𝑁 − 𝐼, 𝐼)
(

𝑁 − 𝐼
)

=
𝑚
∑

𝑗=1

𝛽𝑗𝑣𝑆𝑗 𝑣
𝐼
𝑗 (𝑁 − 𝐼)

𝑣𝑆𝑗 (𝑁 − 𝐼) + 𝑣𝐼𝑗 𝐼
≤

𝑚
∑

𝑗=1

𝛽𝑗𝑣𝑆𝑗 𝑣
𝐼
𝑗 (𝑁 − 𝐼)

𝑣𝑆𝑗 (𝑁 − 𝐼)
= 𝛽,

therefore, 𝑓 (𝐼) ≤ (1 − �̄� + 𝛽)𝐼 , which implies519

𝐼(𝑡) ≤ (1 − �̄� + 𝛽)𝑡𝐼(0) = (𝑓 ′(0))𝑡𝐼(0) ←→
𝑡→∞

0.

We are now going to prove that when �̄�0 > 1 there exists an endemic equilibrium 𝐼∗
+ ∈ (0, 𝑁] which is hyperbolic and520

asymptotically stable.521

It is easy to express the derivative of 𝑔 as follows522
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𝑔′(𝐼) = −
𝑚
∑

𝑗=1

𝛽𝑗𝑣𝑆𝑗 (𝑣
𝐼
𝑗 )

2𝑁
(

𝑣𝑆𝑗 (𝑁 − 𝐼) + 𝑣𝐼𝑗 𝐼
)2
.

Since 𝑔′ is negative, 𝑔 is decreasing. Furthermore, 𝑔(0) = 1− �̄� + 𝛽 > 1 and 𝑔(𝑁) = 1− �̄� < 1, so that there exists an unique523

𝐼∗
+ ∈ (0, 𝑁] satysfying 𝑔(𝐼∗

+) = 1 as required.524

To prove the properties of 𝐼∗
+, we first set a lower bound on the derivative of f:525

𝑓 ′(𝐼) = 𝑔′(𝐼)𝐼 + 𝑔(𝐼) = −
𝑚
∑

𝑗=1

𝛽𝑗𝑣𝑆𝑗 (𝑣
𝐼
𝑗 )

2𝑁𝐼
(

𝑣𝑆𝑗 (𝑁 − 𝐼) + 𝑣𝐼𝑗 𝐼
)2

+ 1 − �̄� +
𝑚
∑

𝑗=1

𝛽𝑗𝑣𝑆𝑗 𝑣
𝐼
𝑗 (𝑁 − 𝐼)

𝑣𝑆𝑗 (𝑁 − 𝐼) + 𝑣𝐼𝑗 𝐼

= 1 − �̄� +
𝑚
∑

𝑗=1

(

𝛽𝑗𝑣𝑆𝑗 𝑣
𝐼
𝑗

𝑣𝑆𝑗 (𝑁 − 𝐼) + 𝑣𝐼𝑗 𝐼
⋅
𝑣𝑆𝑗 (𝑁 − 𝐼)2 − 𝑣𝐼𝑗 𝐼

2

𝑣𝑆𝑗 (𝑁 − 𝐼) + 𝑣𝐼𝑗 𝐼

)

.

We note that the second factor in the parenthesis can be written as the following convex combination526

𝑣𝑆𝑗 (𝑁 − 𝐼)2 − 𝑣𝐼𝑗 𝐼
2

𝑣𝑆𝑗 (𝑁 − 𝐼) + 𝑣𝐼𝑗 𝐼
=

𝑣𝑆𝑗 (𝑁 − 𝐼)

𝑣𝑆𝑗 (𝑁 − 𝐼) + 𝑣𝐼𝑗 𝐼
(𝑁 − 𝐼) +

𝑣𝐼𝑗 𝐼

𝑣𝑆𝑗 (𝑁 − 𝐼) + 𝑣𝐼𝑗 𝐼
(−𝐼),

and, thus, it admits the following lower bound527

−𝐼 <
𝑣𝑆𝑗 (𝑁 − 𝐼)2 − 𝑣𝐼𝑗 𝐼

2

𝑣𝑆𝑗 (𝑁 − 𝐼) + 𝑣𝐼𝑗 𝐼
.

Using this bounds in the expression of 𝑓 ′(𝐼) we obtain528

𝑓 ′(𝐼) > 1 − �̄� −
𝑚
∑

𝑗=1

𝛽𝑗𝑣𝑆𝑗 𝑣
𝐼
𝑗 𝐼

𝑣𝑆𝑗 (𝑁 − 𝐼) + 𝑣𝐼𝑗 𝐼
> 1 − �̄� −

𝑚
∑

𝑗=1

𝛽𝑗𝑣𝑆𝑗 𝑣
𝐼
𝑗 𝐼

𝑣𝐼𝑗 𝐼
= 1 − �̄� −

𝑚
∑

𝑗=1
𝛽𝑗𝑣

𝑆
𝑗 > −1.

In particular we have that 𝑓 ′(𝐼∗
+) > −1. So, to prove that 𝐼∗

+ (EE) is hyperbolic and asymptotically stable, we only have to529

show that 𝑓 ′(𝐼∗
+) < 1. This is readily obtained since 𝑓 ′(𝐼∗

+) = 𝑔′(𝐼∗
+)𝐼

∗
+ + 𝑔(𝐼∗

+) = 𝑔′(𝐼∗
+)𝐼

∗
+ + 1 and 𝑔′(𝐼∗

+) < 0.530
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