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Abstract

This paper considers the real-time control of a class of complex continuous nonlinear systems

with an increasing requirement on control accuracy and unknown dynamics at the start time due

to their complex dynamics and uncertainties. A Koopman approximate model-based adaptive

MPC design using the Lyapunov technique is explored. Specifically, the nonlinear system is

modeled/transformed into a linear model in a lifting space with the Koopman operator. A

recursive update of the approximator is provided by which the parameters set of the approximator

is in a nested form and a shrinking of the boundary of the approximator’s mismatch from

the real system is obtained. Also, based on the Koopman model and its mismatch boundary,

a sufficient condition that ensures the states of the nonlinear system eventually converge to

a small neighborhood of the origin is deduced. The steady-state error of the MPC system

keeps decreasing. By the proposed method, 1) the performance of the closed-loop system is

expected to be improved due to the continuous improving predictive model accuracy, 2) efficient

computational performance is obtained benefiting from the usage of the linear propriety of the

Koopman operator, and 3) it is not necessary to assume the distribution of the system disturbance

a prior. An FCCU example is employed to show the effectiveness of the proposed control law.
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1 Introduction

With the rise of big data analytics, data-driven or machine learning methodologies have gained in-

creasing recognition and demonstrated successful implementation in many traditional engineering

fields. Nowadays, the modern chemical manufacturing process has become more and more complex

and constantly accompanied by high non-linearity, slow time-varying dynamics due to unforeseen

process changes or large external unmeasurable disturbances, equipment wearing, etc. During pro-

cess operation, the model used to predict the future evolution of the system state may not always

remain accurate as time progresses [1]. Even in the case where a deterministic first-principles model

is developed based on fundamental understanding, there may be inherent simplifying assumptions

involved. The plant model mismatch degrades the performance of the control algorithms, which is

not expected for systems with requirements of high control precision.

Given these considerations, the data-driven or machine-learning-model-based control design has

been a hot topic for obtaining the improvement of the performance of the model-based control

system [1–8]. It efficiently incorporates the machine learning, and data analysis technologies into the

online update of the system model [3, 8], then let the predictive model be consistent with the real

process gradually. The learning-based Model Predictive Control (MPC) [3,4,8,9] is a typical method

and has attracted much more attention. It not only has the virtues of machine-learning-based control

mentioned above but also inherits the advantages of MPC, e.g, explicitly handling constraints, good

optimization performance, and being recognized as a practical control method with wildly application

fields.

Some methods appear in the literature for nonlinear systems. Ref. [3] proposed an LMPC taking

Recurrent Neuro Network (RNN) as the predictive model, where the RNN updates before the stability

condition is violated. Ref. [10] derived a generalization error bound via the Rademacher complexity

method for RNN to establish closed-loop system stability properties. Ref. [11,12] and [7] proposed an

MPC with an online updating Gaussian Process (GP) model. Among them, Ref [11] provided GP data

set update rules by which the recursive feasibility and the stability of the MPC system are guaranteed

in a certain probability. The conditions to update the system model are based on the estimation of

model mismatch of GP at the current state. Ref. [4, 13] proposed Q-learning-based MPCs, where

the actor-critic framework which includes a critic artificial neural network (NN) and an actor NN,

are used in the implementation of the methods. Adaptive dynamic optimization is used to update

the two NNs. With consideration that the nonlinear property of the machine-learning-based model,

the solving of the MPC optimization problem, even the model update, becomes time-consuming for

complex systems.

Since the mismatch between the predictive model and the real system in learning-based MPC
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varied with the model updating, the guaranteeing of the stability and constraint satisfaction of the

MPC system becomes a problem. One effective and conservative way to design stabilized MPC is

based on the maximum boundary of model mismatch. It considers the worst case of model uncertainty

and inaccuracy and may lead to poor performance. Ref. [14,15] proposed Lyapunov-based MPC where

the asynchronous measurements and delays were explicitly taken into account. It assumed that there

exist an upper bound on the interval between two consecutive asynchronous measurements and an

upper bound on the maximum measurement delay. The method guarantees that the closed-loop

state is always bounded in the predefined stability region and is ultimately bounded in a small

region containing the origin. Ref. [16] proposed an event-triggered method, which considers a fixed

error boundary, and triggered the model update when the state may exceed the state constraints. It

assumes the accuracy of the model converges to a certain level in a finite time and does not request the

Lyapunov function always decrease for relaxing the stability constraints. Based on the idea proposed

in [17], where a non-increasing set updated every time step is used to describe system parameters

uncertainty, the research in [18] developed an adaptive method for nonlinear system accounting

for parameters uncertainty and exogenous disturbances under min-max MPC framework and Set-

Membership identification. The algorithm needs to online solve a non-convex max-min optimization

problem which makes the nonlinear version of this algorithm very time-consuming. In the GP model-

based, MPC proposed in Ref. [11], the estimation of square errors of the GP at the current state is

used to update the Lyapunov constraints. The MPC theoretically guarantees the steady-state error of

the closed-loop system continues to decrease with the increase of the model accuracy. It can be seen

from above that the idea of online updating the constraints for the conservatism reducing according

to the estimation of the time-varying boundaries of model mismatch has been popular in the design

of MPC. However, the methods to get the information on model mismatch online, and to use this

information to modify the control design for better performance for different machine-learning-based

methods are still in development, especially for nonlinear systems.

Koopman operator, which aims at finding an approximator close to the nonlinear system, is firstly

introduced in [19]. Ref [19, 20] represented a nonlinear system by the linear operator in the infinite

dimension. It lifts the state space of the nonlinear system to a higher dimensional space where

the dynamic of lifted states is linear. In actual engineering practice, since we can only compute

the ODE in the finite dimension, the method of the Koopman operator will lead to an error if

the lifted state space is not closed in finite dimensions [19–22]. Ref. [23] proposed the method of

lifting the data snapshots into a suitable finite-dimensional function space and identification of the

infinitesimal generator of the Koopman semigroup. Ref. [24] aimed at identifying the linear Koopman

operator in the space of observables, and did not require the estimation of the state time derivatives.

Inspired by the [11, 18, 25], considering the nested form of the Set-Membership (SM) identification
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method [18,26,27] and the linear characteristic of the system model in the lifting space. This paper

will use the Koopman operator integrating SM identification method to design the learning-based

MPC where the Koopman approximation model is worked as a predictive model for decreasing the

computational complexity and getting continuing improvement of the performance.

In this paper, we focus on the design of an MPC for a class of nonlinear systems with exogenous

disturbances and time-varying dynamics. Specifically, the adaptive MPC is based on the Lyapunov

technique. An online updating approximator of the nonlinear continuous system is provided based

on the Koopman operator, which can obtain very high accuracy with the lifted space dimension

increasing. The model mismatch described by the size of the feasible parameter set (FPS) of the

linear model is estimated at each control period. The Lyapunov constraint, which is also updated

online, is based on an estimated model mismatch and the states in the original state space, which

is convenient to set the Lyapunov function comprehensively compared to that defined in the lifted

space. We proved that the designed MPC algorithm guarantees that the states will converge to a

small region near the equilibrium point. Moreover, with the increasing accuracy of the Koopman

model, the region that the states converge to will be minimized. This method could reduce the

computational complexity and make it comparable to that of MPC which used a linear dynamical

system. Simulation results show that the performance of the closed-loop system is improved.

The remainder is organized as follows. In Section 2, the problem setup is introduced. In Section 3,

the system identification and the identification error which will be applied in the stability constraints

are presented. In Section 4, the Adaptive Lyapunov-based MPC based on a shrinking uncertainty set

is proposed. In Section 5, the stability analysis of the proposed ALMPC is carried out. A numerical

example is presented in Section 6. In Section 7, conclusions are provided.

2 Preliminary

2.1 Notation

The operator |·| is used to represent the Euclidean norm of a vector. The transpose of a vector

x is denoted by xT. A Lyapunov level set Ωρ represents the set Ωρ := {x ∈ Rnx |0 ≤ V (x) ≤ ρ},
where V (x) : Rnx → R≥0 is a scalar function. Operator ‘/’ indicates set subtraction, which is

Ωρ/Ωρs = {x ∈ Rnx|x ∈ Ωρ, x /∈ Ωρs}. A continuous function α : [0, a) → [0,∞) is called class K
function if it is strictly increasing and satisfies α(0) = 0.
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2.2 Class of System

Consider a class of continuous nonlinear system

ẋ = f(x(t)) + g(x(t))u(t) + ω(t) (1)

where x ∈ Rnx is the state of the nonlinear system; u ∈ Rnu is the input variable; ω(t) ∈ W is the

disturbance vector; f(x) : Rnx+nu → Rnx is sufficient smooth mappings. The origin (x(t), u(t)) =

(0, 0) is an equilibrium point of the unforced nominal system. The state constraint is defined by

x ∈ X ⊆ Rnx(0 ∈ X ) and the control input is restricted by u ∈ U := {u ∈ Rnu : u ≤ umax} where

umax is the magnitude of the input constraint. The disturbance constraint is defined by ω ∈ W :=

{ω ∈ Rnx : |ω| ≤ δ, δ > 0}.
In particular, we are looking for an approximator possessing an affine nonlinear structure that is

suitable for general control design methodologies such as Sontag control. The predictors investigated

are assumed to be in the form of a controlled dynamical system

ẋ(t) = fm(x, θ) + gm(x, θ)u(t) + ω(t) + ωm(t) (2)

where, f(x) and g(x) are both smooth mappings. θ is the parameter of the approximator and

θ ∈ [θL, θH ] ⊂ Rnθ . ωm(t) is the error between the approximation and the real system. It includes

two parts: ωs and ωe. ωs is the structural error and ωe(t) is the error caused by inaccurate model

parameters due to the inefficient data set used in model identification. The error ωs(t) and ωm(t) are

both bounded, that is |ωm(t)| ≤ δm and |ωs| ≤ δs.

In this paper, the approximator (2) of the dynamical system (1) will be derived within the

Koopman operator framework.

2.3 Control Lyapunov Function

There exists a stabilizing control law u = h(x), u ∈ U , which will render the closed-loop nominal

system asymptotically stable in the sense that there exists a continuously differentiable Control

Lyapunov function V (x) while states and control action satisfy constraints respectively for system

(2). According to the Reverse Lyapunov Theorem, the assumption above implies that there exist

constants αi(i = 1, 2, · · · , 4), for ∀θ ∈ [θL, θH ], that render the nominal closed-loop system of (2),

satisfy the following inequalities:

α1 |x|2 ≤ V (x) ≤ α2 |x|2 (3a)
∂V (x)

∂x
[fm(x(t), θ) + gm(x(t), θ)h(x, θ)] ≤ −α3 |x|2 (3b)
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∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ α4 |x| (3c)

where V (x) is continuously differentiable.

3 Approximation with Koopman Operator and Set-Membership

Method

3.1 Koopman Approximation

Consider a continuous-time dynamical system, given by:

ẋ = f(x) (4)

where x ∈ M is an n-dimensional state on a smooth manifold M. The vector field f is an element of

the tangent bundle T M of M , such that f(x) ∈ TxM . Note that in many cases we dispense with

manifolds and choose M ⊂ Rn and f a Lipschitz continuous function. For a given time t, we may

consider the flow map Ft : M → M , which maps the state z(t0) forward time t into the future to

z(t0 + t), according to:

Ft (x (t0)) = x (t0 + t) = x (t0) +

∫ t0+t

t0

f(x(τ))dτ (5)

The Koopman operator Kt is an infinite-dimensional linear operator that acts on observable functions

ϕ as:

Ktϕ = ϕ ◦ Ft (6)

where ◦ is the composition operator, so that:

Ktϕ (xk) = ϕ (Ft (xk)) = ϕ (xk+1) (7)

In other words, the Koopman operator Kt defines an infinite-dimensional nonlinear dynamical system

that advances the observation of the state ϕ(xk) to the next time step. Note that this is true for any

observable function ϕ and any point xk ∈ M . We may also describe the continuous-time version of

the Koopman dynamical system in Eq (6) with the infinitesimal generator K of the one-parameter

family of transformations Kt [45]:

d

dt
ϕ(x) = Kϕ = lim

t→0

Ktϕ− ϕ
t

=
∂ϕ(x)

∂x
ẋ = ∇ϕ(x)f(x) (8)
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The linear dynamical systems in Eqs (7) and (6) are analogous to the dynamical systems in Eqs

(1) and (3), respectively. It is important to note that the original state x may be observable, and

the infinite-dimensional operator Kt will advance this observable function. Again, for Hamiltonian

systems, the infinitesimal generator K is self-adjoint.

To transfer the model into an affine linear system, we select the lifting function in the following

form.

Φ(x, u) =
[
ϕT, (ψu)T

]T (9a)

=
[
ϕT(x), ϕT(x)u1, ϕ

T(x)u2, · · · , ϕT(x)um
]T (9b)

ϕ =
[
ϕ1(x), ϕ2(x), · · · , ϕnK (x)

]T (9c)

ψ =diagm{ϕ(x)} (9d)

According to the definition of the Koopman operator, the system (9a) can be represented as a system

with the linear operator in a lifting space

Φ̇(x, u) = KΦ(x, u) + ωm (10)

where Φ(x, u) ∈ Fnk(nu+1)×1 is the lifting vector function which contains the primer modes of

system (10) are selected, the ωm is the mismatch caused by the ignored modes. When the lifting

function ϕ is an infinite dimension radius function or it makes the lifting space close ωm = 0.

Further select the first nx state of x that is ϕi = xi, i = 1, 2, . . . , nx. then it has

ẋ(t) =θfϕ(x(t)) + θgψ(x(t))u(t) + ωm (11a)

=θfϕ(x(t)) +
m∑
i=1

θgiϕ(x(t))ui(t) + ωm (11b)

where θf = K{1:nx,1:nK}, θg = K{1:nx,nK+1:nK(nu−1)}. θgi is the ith column vector of θg.

System (11a) is an affine nonlinear system, and which is linear in parameter.

Remark 3.1. When the lifting space is not close, generally the dimension of the lifting space is infinite.

In this case, we can select a finite dimension which is the major mode of system in the lifting space.

The ωm express the errors caused by the ignoring modes. In (11a) The selection of ϕ can be any

function, a simple way is to select ϕ = [x x2 . . . xn]. In this way, the fm(x) and gm(x) becomes

a polynomial approximation of f(x) and g(x).
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3.2 Control Lyapunov Function in Original State Space

There exists a stabilizing control law u = h(x) which will render the closed-loop nominal system

asymptotically stable in the sense that there exists a continuously differentiable Control Lyapunov

function V (x) while states and control action satisfy constraints respectively for system (11a). Ac-

cording to the Reverse Lyapunov Theorem, the assumption above implies that there exist constants

αi(i = 1, 2, · · · , 4) that render the nominal closed-loop system of (11a) satisfy the following inequal-

ities:

α1 |x|2 ≤ V (x) ≤ α2 |x|2 (12a)
∂V (x)

∂x
[θfϕ(x(t)) + θgψ(x(t))u(t)] ≤ −α3 |x|2 (12b)∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ α4 |x| (12c)

where V (x) is continuously differentiable.

The stabilizing control law h (x) can be chosen as the Sontag control law in [28]

b (x) =

{
−
Lf̃V+

√
Lf̃V

2+λLg̃V 4

Lg̃V
, if Lg̃V 6= 0

0, if Lg̃V = 0

h (x) =


umin, if b (x) < umin
b (x) , if umin ≤ b (x) ≤ umax
umax, if b (x) > umax

(13)

where Lf̃V = ∂V (x)
∂x

θfϕ(x(t)), Lg̃V = ∂V (x)
∂x

θgψ(x(t)) and λ is a positive number satisfying λ ∈ (0, 1).

The stabilizing control law u = h(x) which will render the closed-loop nominal system asymptotically

stable in the sense that there exists a continuously differentiable Control Lyapunov function V (x)

while states and control actions satisfy constraints respectively for the system.

Based on (12), a region φu where the time-derivative of V (x) is rendered negative under the

control action u = Kx. Then the closed-loop stability region Ωρ for system (1) is given by Ωρ =

{x ∈ Rnx|V (x) < ρ}, where ρ is chosen such that Ωρ ⊆ φu.

It should be noticed that for u = Kx can steer the state of the actual nonlinear system into a

small region, Ωρmin depends on the value of δm. In the inside of region Ωρmin , (12) can not be satisfied.

The modeled system satisfy the following Lipschitz condition for all x, x′ ∈ Ωρ, u ∈ U .

|θfϕ(x) + θgψ(x)u(t)| ≤M (14)

where M is a constant.

Then, ∀θ, θ′ ∈ Θ, x, x′ ∈ X , we can get

|∂V (x′)

∂x′
(θ′fϕ(x′) + θ′gψ(x′)u(t) + ω(t) + ωm(t))− ∂V (x)

∂x
(θfϕ(x) + θgψ(x)u(t))|

≤Lx |x′ − x|+ Lθ |θ′ − θ|+ Lω |ω|+ Lωm |ωm|
(15)

where Lx and Lθ, Lω and Lωmare the maximum Lipschitz constants for ∀x′, x ∈ X , θ, θ′ ∈ Θ.
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3.3 Set-Membership Parameter Identification

Set-Membership identification is a method for constructing a mathematical model of a dynamic

system from experimental data [26, 27, 29, 30], which provides a set of all possible plant models that

are consistent with the exogenous disturbance boundary and the measured data.

In lots of system identification literature, researchers generally assume that the system noise is

Stochastic Process and satisfies certain assumptions. But it is difficult for the actual system to verify

this assumption, which leads to two main contradictions: first, because actual systems are quite

complex, simple mathematical models can not always be used as their system models; second, since

the model type and noise are artificially assumed, it seems that all systems can obtain a model that is

arbitrarily close to the real system through identification. These contradictions promote the research

of Set-Membership Identification [27,29].

The biggest feature of Set-Membership Identification is that the prior distribution of the noise is

not necessary to be acquired and it only needs the upper and lower bounds of the noise. According

to the input and output data of the system, a set (Feasible Parameter Set, FPS) including the real

parameters can be obtained; Since it could provide an explicit description of the possible model set,

it is very suitable for incorporating online updating robust considerations into MPC design.

In this paper, online identification through Set-Membership is used to update the parameters

of the linear model as which the nonlinear system is described by the Koopman operator. The

identification algorithm is proposed in [29] and is extended to MIMO later. Online identification can

not only update the linear model using continuously emerging data but also provide a feasible set of

linear model parameters which can benefit robust controller design. Since FPS is usually irregular,

researchers usually use regular geometric sets to approximate FPS, such as ellipsoids, cuboids, and

polygons. In this paper, a hyper-dimensional ellipsoid is used to approximate FPS.

At time instant tk, if the current system state x(tk) is known, the parameters and the feasible

parameter set of the model are updated. To express simply, rewrite the system model as

ẋ(tk) = θT
o x(tk) + ω̄(tk) (16)

where x(tk)
T = [Φ (x(tk))

T Φ (x(tk))u(tk)
T], θT

o = [A B], and ω̄ includes ω and ωm.

At tk−1, the feasible parameter set can be approximated by an ellipsoid:

Θtk−1
=
{
θ|tr((θ − θc(tk−1))TP−1

tk−1
(θi − θc(tk−1))) ≤ σ2

tk−1

}
(17)

where Ptk−1
∈ R(N+nuN)(N+nuN) is the weight matrix; θc(tk−1) is the model parameter identified at

time tk−1; θ2
tk−1

is a scalar and tr(·) represents the trace of matrix.

Assume that Stk is the feasible parameter set decided by ẋ(tk) and the constrain of disturbance
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ω̄ ∈W := {ω̄ ∈ Rnωs.t. |ω̄| ≤ δω̄, δω̄ > 0}, which is

Sk =
{
θ
∣∣∣∣∣ẋ(tk)− θTx(tk)

∣∣2 < δ2
ω̄

}
(18)

Obviously, the feasible parameter set at tk is the intersection of Θtk−1
and Sk. Considering that

this intersection is not necessarily still an ellipsoid, an ellipsoid Θtk which satisfies (Θtk−1

⋂
Sk) ⊂ Θtk

is adopted to approximate this intersection, then Θtk can be written as

Θtk =
{
θ | tr((θ − θc(tk−1))TPtk−1

(θ − θc(tk−1))) +
∣∣ẋ(tk)− θTx(tk)

∣∣2 ≤ σ2
tk

+ δ2
ω̄

}
(19)

rearrange the above equation, we can get

Θtk =
{
θ|tr((θ − θc(tk))TP−1

tk
(θ − θc(tk))) ≤ 1

}
(20)

where

θc(tk) =θc(tk−1) + atkPtk−1
x(tk)

[
ẋ(tk)

T − x(tk)
Tθc(tk−1)

]
(21a)

Ptk =btk(Ptk−1
− atkPtk−1

x(tk)x(tk)
TPtk−1

) (21b)

atk =1/(1 + x(tk)
TPtk−1

x(tk)) (21c)

bk =1 + δtk − atktr
{[
ẋ(tk)− θT

c (tk−1)x(tk)
] [
ẋ(tk)

T − x(tk)
Tθc(tk−1)

]}
(21d)

Remark 3.2. The outer bound of the intersection Θi,tk−1

⋂
Si,k is approximated by an ellipsoid, which

is (19), and after organizing (19), we can get (20).

The θc(tk) in the FPS is the identification result used in (2), that is θT
c (tk) = [A(tk) B(tk)].

4 Adaptive Lyapunov-based MPC

In this section, an Adaptive Lyapunov-based MPC (ALMPC) scheme is proposed. In the ALMPC,

a linear model described by the Koopman operator is used as the predictive model for optimization.

Set-Membership identification in the previous section is used to update the parameters of the linear

model. The updating of the parameters will also change the stability constraints and make the

unstable region narrow.

The proposed ALMPC scheme provides a permissible convergence region such that the closed-

loop system with any initial state x0 within the predefined region will eventually converge to a small

neighborhood of the origin.
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4.1 ALMPC Design

This section shows the details of the ALMPC design. At each sampling time tk, the parameters in

(11a) will be updated through the Set-Membership identification in the previous section. Based on

the updated model, the ALMPC is designed through the following optimization problem:

min
u∈S(∆)

∫ tk+N

tk

l(x̃(τ), u(τ))d(τ) (22a)

s.t. ˙̃x = θfϕ(x̃(t)) + θgψ(x̃(t))u(t) (22b)

u(t) ∈ U , t ∈ [tk, tk+N ] (22c)

x̃(tk) = x(tk) (22d)
∂V (x(tk))

∂x
θf (tk)ϕ(x(tk)) + θg(tk)ψ(x(tk))u(tk)

≤ ∂V (x(tk))

∂x
(θf (tk)ϕ(x(tk)) + θg(tk)ψ(x(tk))h(x(tk), θtk)) , if x(tk) ∈ Ωρ/Ωρmin(tk)

(22e)
V (x(t)) < ρs(tk), if x(tk) ∈ Ωρs(tk), t ∈ [tk, tk+N ] (22f)

In the ALMPC optimal problem of (22), the constraint (22b) is the predictive model which is

described as a linear model by the Koopman operator. The constraint (22c) is the constraint of the

input. The constraint (22d) defines the states at time tk. The constraint (22e) can guarantee the

rate of convergence of the Lyapunov function under the input u(t) is faster than the Sontag control

law h(x(tk), θtk)). The stability of the system can be ensured by the constraint (22f). The continuous

problem can be programmed by sampling. ∆ is the sampling time. Thus u(τ) = u(tk+i), τ ∈
[tk+i, tk+i+1), i = 0, 1, . . . , N−1, andN is the prediction horizon. By solving the optimization problem

of (22), an optimal trajectory of the manipulated input, u∗(0|tk), · · · , u∗(N − 1|tk) is obtained.

At each time tk, the proposed method updates the parameters in (21) firstly. The second step

is to update the constraints which are corresponding to the parameters. Finally, the optimization

problem (22) will be solved and u∗(tk) is obtained. During the period from tk to tk+1, the control

action u(τ) = u∗(tk) is implemented on the actual system.

Remark 4.1. It can be seen from (10) which is a linear model, x is one of the elements of the state

vector Φ(x). Φ(x(t)) can be calculated as the form of Φ(x(t)) = MΦ(x(t0)) +
∫ t
t0
Nu(τ)dτ , where M

and N are matrixes and only related to time t. Considering the input u is piece-wise, Φ(x(t)) can be

written as the linear combination of u(tk), u(tk+1), . . . , so x is also an affine of the input u(t). In other

words, (22b) is an affine of u and convex. Since θf , θg, ϕ(x), ψ(x), h(x, θ) and the partial of V (x)

can be acquired by the state x and the parameters obtained by online identification, the inequality
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of (22e) is linear inequality of u(t) and is convex. As we choose the Lyapunov function V (x) as

a quadratic form, (22f) is a quadratic constraint. The problem is quadratic. So the optimazation

problem is QCQP. These make solving the ALMPC optimization problem not time-consuming.

In this paper, we assume there is an unstable region Ωρs , and through the decreasing online

identification error bound and robust control law, the unstable region Ωρs can be minimized. Here,

we provide the updating of unstable region size ρs as follows.

ρs(tk) = (LxM∆ + Lθδθ + Lωsδs + Lωδ)
α2

α3

+ δρs (23)

where δθ = λ
1
2
max(PT

tk
Ptk) are the Lipschitz constants.

Remark 4.2. Since there exists a stabilizing control law that could stabilize all the models in the

original model set, with the increasing accuracy of the feasible model set, the original stabilizing

region Ωρ is non-decreasing, which means that the feasibility of the optimization problem could be

guaranteed. As the Set-Membership identification algorithm could provide decreasing identification

variance, then the size of the unstable region ρs could be rendered decreasing. Meanwhile, the

stabilizing Sontag control law is updated using the identified system parameters. Based on the

more and more accurate identification results, the conservatism caused by model mismatch could be

reduced.

5 Analysis

5.1 Stability analysis

In this section, the stability properties of the proposed ALMPC of (22) for the nonlinear system, i.e.

(2) are proved. To proceed, the following Proposition is proposed first.

Proposition 5.1. Consider the Lyapunov function V (·) of the system (1). There exists a quadratic

function FV (·) such that

V (x) ≤ V (x̄) + FV (|x− x̄|) (24)
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for all x, x̄ ∈ Ωρ with

FV (s) = α4

√
ρ

α1

+MV s
2 (25)

where MV is a positive constant.

Theorem 5.1. Consider the system (2) in closed-loop under the ALMPC of (22) with the online

Set-Membership identification. Under the property of (15), with sampling time ∆ > 0, ρ > ρs

satisfying:

−α3
ρs
α2

+ LxM∆ + Lωδ + Lωmδm + Lθδθ(t∞) < 0 (26)

if x(t0) ∈ Ωρ and ρmin ≤ ρ where

ρmin = ρs + FV (M∆) (27)

then the state of the closed-loop system is ultimately bounded in Ωρmin .

Proof. When x(tk) ∈ Ωρ/Ωρs , from (22e) and Lyapunov condition of V̇ , i.e. ∂V (x(tk))
∂x

(θf (tk)ϕ(x(tk))+

θg(tk)ψ(x(tk))h(x(tk), θtk)) ≤ −α3(tk) |x|2, the following inequality is obtained:

∂V (x(tk))

∂x
(θf (tk)ϕ(x(tk)) + θg(tk)ψ(x(tk))u(tk))

≤∂V (x(tk))

∂x
(θf (tk)ϕ(x(tk)) + θg(tk)ψ(x(tk))h(x(tk), θtk))

≤− α3(tk) |x(tk)|2

(28)

∀τ ∈ [tk, tk+1), the time derivative of the Lyapunov function of system (2), with the implements

of the optimal piece-wise constant control input u(τ) = u∗(tk), is given by:

V̇ (x(τ)) =
∂V (x(τ))

∂x
(θf (τ)ϕ(x(τ)) + θg(τ)ψ(x(τ))u∗(tk) + ω(τ) + ωm(τ)) (29)

Combing (28) and (29), we have:

V̇ (x(τ)) ≤− α3(tk) |x(tk)|2

+
∂V (x(τ))

∂x
(θf (τ)ϕ(x(τ)) + θg(τ)ψ(x(τ))u∗(tk) + ω(τ) + ωm(τ)

− ∂V (x(tk))

∂x
(θf (tk)ϕ(x(tk)) + θg(tk)ψ(x(tk))u(tk))

(30)

13



Based on the Lipschitz condition of V̇ , i.e. (15), the above inequality can be written as follows:

V̇ (x(τ)) ≤− α3(tk) |x(tk)|2 + Lx |x− x̄|+ Lω |ω(τ)|+ Lωm |ωm(τ)|+ Lθ
∣∣δ̄θ(τ)

∣∣
=− α3(tk) |x(tk)|2 + Lx |x− x̄|+ Lωδ + Lωmδm(tk) + Lθδθ(tk) (31)

Considering the property of the linear system, i.e. (14), we can obtain:

|x(τ)− x(tk)| ≤M∆ (32)

Since x(tk) ∈ Ωρ/Ωρs , taking (12a) into account, it has:

|x(tk)| ≥
√
ρs
α2

(33)

Thus, (31) can be rewritten as :

V̇ (x(τ)) ≤ −α3(tk)
ρs
α2

+ LxM∆ + Lωδ + Lωmδm(tk) + Lθδθ(tk) < 0 (34)

Integrating the above inequality from tk to tk+1, we have:

V (x(tk+1)) < V (x(tk)) (35)

If x(tk) is in Ωρs , with Proposition 5.1 and the property of linear system (14), we obtain

V (x(tk+1)) ≤V (x(tk)) + FV (|x(tk+1 − x(tk))|)

≤ρs + FV (M∆) = ρmin

(36)

When t → ∞, we first choose α3 which satisfies the (34). ρs(tk) will decrease and the state will

converge to the set point. If the δθ can not decrease, we can get the minimal ρs and ρs = ρs(∞) <

ρs(t0). ρs satisfies (26) and the state of the system will enter the region of Ωρs . Once the state enters

the region, it will maintain in the region of Ωρs . In other words, the state will finally converge to the

region of Ωρs and be stable in the region of Ωρs .
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In sum, if the state x(tk) ∈ Ωrho(tk)/Ωrhos(tk), V (x(tk+1)) < V (x(tk)) will be satisfied. If the

state x(t) ∈ Ωρs(t), V (x(tk+1)) < ρmin is affirmed and using (35) and (36) recursively, the subsequent

system states will ultimately bounded in the minimal Ωρmin .

This proves Thorem 5.1.

Theorem 5.2. If persistent excitation is implemented in the identification, the error δθ will be a

constant. (26) will be rewritten as:

−α3
ρs
α2

+ LxM∆ + Lωδ + Lωmδm + Lθδθ < 0 (37)

The region size of Ωρs is the minimum and will not change. According to Proof. (5.1), the V (x)

is decreasing and the state will finally enter the region of Ωρs and maintain in it.

6 Simulation

In this section, an experimental example was carried out to verify the effectiveness of the proposed

method.

6.1 Fluid Catalytic Cracking Unit Simulink

In this section, the Fluid Catalytic Cracking Unit (FCCU), which is one of the most important

processes in the petroleum industry, is taken as an experimental example to verify the effectiveness

of the proposed method. The FCC reactions make the crude oil which is a low valuable and high

molecular weight hydrocarbon transform into more valuable products with lower molecular weight,

such as diesel, gasoline, and kerosene. Fig.1 shows the schematic overview of the FCC process. The

FCC unit includes a riser, a stripper, and a regenerator. The main reactions take place in the riser.

The catalyst meets the crude oil at the riser entrance and rises with the catalytic cracking reactions.

Under the action of the catalyst, the vaporized heavy gas oil cracks into smaller molecules which are

more valuable. Coke, one of the by-products, attaches to the catalyst and decreases its activity. To

boost the availability of the catalyst and increase its activity, the spent catalyst is separated from

the hydrocarbons in the stripper and sent to the regenerator to remove the coke. In the regenerator,
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Figure 1: Schematic of the Fluid Catalytic Cracking unit

the coke which surrounds the spent catalyst’s surface is burned with air. The catalyst is refreshed

and circulated back to the inlet of the riser. This progress supplies the reaction heat of the riser.

The dynamics of the FCCU process can be described as follows:

Riser Model and Stripper Model

The riser is modeled as a plug flow reactor. It is considered that the catalytic cracking reactions only

occur in the riser. The catalytic cracking reactions in the riser obey the rules of mass balance and

energy balance. According to the mass balance, the variations of the gas oil and gasoline are given

as:

dyf
dz

=−K1y
2
f

Fsc
Foil

Φtc (38)

dyg
dz

=
(
α2K1y

2
f −K3yg

) Fsc
Foil

Φtc (39)

where

K1 (Θ) = k1e
−Ff

RT0(1+Θ) (40)

K3 (Θ) = k3e
−Eg

RT0(1+Θ) (41)
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Θ = (T (z)− T0) /T0 (42)

Φ = φ0e
−αtc FscFoil

z (43)

φ0 = 1−mCrc (44)

The K1y
2
f
Fsc
Foil

and K3yg
Fsc
Foil

represent the kinetics for the cracking of gas oil and gasoline respectively.

Φ represents the deactivation of the catalyst caused by the coke deposition, of which φ0 represents

the reduction in catalyst activity caused by the coke remaining on the catalyst after regeneration. tc
is the residence time in the riser, and α = k2/k1 is the fraction of the cracked gas oil which cracks to

gasoline. z is the height of the riser. The following equation is used to estimate the mass fraction of

the produced coke:

Ccat = kc

√
tc
CN
rc

e
−Ecf
RTro (45)

Thus, we can get the mass fraction of the coke on the catalyst leaving the riser by the following

equation:

Csc = Crc + Ccat (46)

Based on the energy balance, it has

dΘ

dz
=

∆HfFf
T0 (Fscps + Ffcpo + λFfcpd)

dyf
dz

(47)

The stripper model is modified on the work of [31]. Note that there exists a common assumption

that there are no reactions in the stripper. Assuming the stripping is effective, the only effect of the

stripper will be to introduce a lag between the riser outlet and the catalyst return to the regenerator.

This lag is modeled using an ideal mixing tank. According to the balances of mass and energy, the

variations of the concentration of coke and the stripper’s temperature can be calculated by following

equations:

dCst
dt

=
Csc − Cst
Wst

(48)

dTst
dt

=
Fsc

Wstcpc
(Tro − Tst) (49)

Regenerator Model

The regenerator model concludes the balance equations for coke, oxygen, and energy. Furthermore,

we assume that the regenerator is working under the complete combustion mode. It means that the

coke on the refresh catalyst is sufficiently small and can be neglected. The mass balances for the

coke on the catalyst and oxygen are given as:

W
dCrc
dt

= Fsc (Csc − Crc)−Rcb (50)
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Wa
dOd

dt
=

Fa
Ma

(Oin −Od)−
1 + 1.5θ

(1 + θ)Mc

Rcb (51)

(52)

According to the energy balance, the variation of the temperature is given as:

Wcpc
dTrg
dt

=TstFsccpc + TaFacpa − Trg (Fsccpc + Facpa)

−
(

∆HCO +
θ

1 + θ
∆HCO2

)
Rcb

Mc

(53)

where

Rcb =kcbe
−Ecb
RTrgOdCrcW (54)

θ =1.1 + 0.0061 (Trg − 873) (55)

(56)

6.2 Simulation setting

Fig.2 shows how the simulation performs. Two computers are involved. Computer 1 accesses the

input u, finishes the FCC process simulation, and calculates the state x. According to state x,

Computer 2 solves the Koopman approximator based adaptive LMPC to get the input u. The

network is implemented to let the computers exchange messages.

In this simulation, there exists a low-level PI control that makes the temperature of the riser’s

outlet reach a steady state in several seconds. Therefore, what we are concerned about is the regen-

erator. The temperature of the regenerator is related to the reaction speed and the combustion, the

concentration of the oxygen can affect whether the coke can be burnt better or not, and the mass frac-

tion of the coke has an influence on the activity of the refreshed catalyst. In view of above–mentioned

reasons, we choose them as the states and the flow rate of the air as the input. In particular, the

riser can reach the steady state in several seconds, but the regenerator needs dozens of minutes to

reach the steady state. Thus, the model of the riser is considered a steady-state model and used

for calculating the parameters in the regenerator model. The states and manipulative input of the

regenerator are as follows:

x =
[
Crc Od Trg

]T
u = Fa (57)

One simulation with Set-Membership Identification to update the model was done and another

simulation without model update was designed to be a comparison.

Desired set points in FCC unit are chosen as xsp = [2.907× 10−3, 4.286× 10−3, 994.694]
T and

usp = 27.23. The states constraints are given as Crc ∈ [1× 10−3, 3.5× 10−3], Od ∈ [3× 10−3, 1.4× 10−2]

and Trg ∈ [980, 1000] K. The constraint of input Fa is given by Fa ∈ [23, 29.23] kg/s. The sampling
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Figure 2: Simulation Structure

interval ∆ = 0.001h and integration interval hc = 0.0001h. The prediction horizon N is 10. The

disturbance in this simulation is the fluctuation of the rate of coke combustion Rcb in the regenerator,

and it satisfies |ω| < 6.8788× 10−3. In the simulation, we chose the Lyapunov function V (x) as the

objective function. The matrix P of V (x) is P = diag[1 × 108, 1 × 106, 1.1]. More details of the

parameters are shown in Table.1.

The simulation starts at t0 = 0h and stops at tf = 1h using Matlab in an AMD Radeon R7 with

a frequency of 1.8GHz.

∆HCO =− 361465.3 + 16.23Trg − 31.92× 10−4T 2
rg + 18.67× 10−7T 3

rg +
1275299.0

Trg
(58)

∆HCO2 =− 284375− 1.653Trg + 29.51× 10−4T 2
rg +

425588.2

Trg
(59)

Table 1: parameters of the FCCU unit model

Notation Description Value

Ff Feed Oil Flow Rate 40.63kg/s

Tf Feed Oil Temperature 400K

Ef Activation Energy For The Cracking of Gas Oil 1.015×105J/mol

Eg Activation Energy For The Cracking of Gasoline 1.126×105J/mol

k1 Reaction Rate Constant For The Total Rate of Cracking of
Gas Oil

9.6× 105s−1

k2 Reaction Rate Constant For The Rate of Cracking of Gas
Oil To Gasoline

7.2× 105s−1

k3 Reaction Rate Constant For The Rate of Cracking of Gaso-
line To Light Gases/Carbon

4.22× 105s−1

kc Reaction Rate Constant For The Production of Coke 1.897× 10−2s−1

Continued on next page
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Table 1: parameters of the FCCU unit model (Continued)

kcb Reaction Rate Constant For Coke Combustion Assuming
Uniformly Distributed Oxygen In The Regenerator

1.9× 108s−1

R Universal Gas Constant 8.314

tc Residence Time In Riser 9.6s

m Factor For The Dependence of The Initial Catalyst Activity
On Crc

80

α2 Fraction of The Gas Oil That Cracks Which Cracks To Gaso-
line

0.75

∆Hf Heat of Cracking 506.2kJ/kg

∆HCO,∆HCO2 Heat of Producing CO,CO2 respectively (58),(59)
λ Mass Flow Rate of Dispersion Steam/Mass Flow Rate of

Feed Oil
0.035

cpc Heat Capacity of Catalyst 1.005kJ/kgK

cpo Heat Capacity of Oil 3.1335kJ/kgK

cpd Heat Capacity of Steam 1.9kJ/kgK

cpa Heat Capacity of Air 1.074kJ/kgK

W Holdup of Catalyst In Regenerator 175738kg

Wa Holdup of Air In The Regenerator 20kmol

Oin Concentration of Oxygen In Air To Regenerator 0.2136

Mc Bulk Molecular Weight of Coke 14

Ma Molecular Weight of Air 28.8544

Ta Temperature of Air To The Regenerator 320K

Ecf Activation Energy For Coke Formation 41790J/mol

Ecb Activation Energy For Coke Combustion Assuming Uni-
formly Distributed Oxygen In The Regenerator

41790J/mol

N Exponent For The Dependence of Ccat on Crc 0.4

Wst Holdup of Catalyst In Separator 17500kg

6.3 Simulation Results

As fig.3 shows, we learned that whether the model is updated or not updated, each control law can

make the system reach a steady and desired state. Fig.3 illustrates that at the beginning, each line

changed at almost the same rate. However, with the proceeding of the identification, the blue line

converged faster than the red line. The transient time of the blue line is 0.3h and that of the red

line is 0.5h. It means that to achieve the same aim, the proposed method required fewer episodes

than the MPC without model update. In addition, the proposed method leads to a better control

performance than the MPC without model update. Fig 4 shows the trajectory of the optimized

manipulated control input. At t = 0.5h, it enters the steady region.
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Fig.5 plots that the Lyapunov function V (x) of each line decreased and the blue line converged

faster than the red line. The enclosed area of the Lyapunov function V (x) and time t reflects the

applicability and effectiveness of the control law. The area of the blue line is 2.2180 and the area of

the red line is 3.0067. The difference between the two areas is 0.7887. It shows that the proposed

method not only performs better in the speed of the convergence but also is about 26% greater than

the MPC without model update.

Fig.6 is related to the update of Lipschitz constant δθ. The value of δθ is the ratio of the semi-

major axis of the set of θ and the length of the final θ. It reflects the size of the set of θ. With more

data exciting the model, the result of the online identification became more accurate. We can verify

this by the value of δθ. In Fig.6, δθ decreased and finally reached 0.143.

Fig.7 provides more details on the trajectory of the state. The red line shows that the state x

converged with time going on and the trajectory finally reached the small little neighbor region of

the set point. This proves the stability of the proposed control method.

Table.2 shows that the consumed time of the proposed method that solves the optimization

problem is 0.0578s and that of the MPC with the first-principles model is 0.3727s. We can find

that the efficiency of the proposed method is 644.81% better than the MPC with the first-principles

model.

Table 2: Comparasion of the time

Nominal model Time/s

Linear model with Koopman operator 0.0578

First-principles model 0.3727

7 Conclusion

In this research, a Koopman approximator model-based ALMPC is proposed for nonlinear systems

with external disturbances and time-varying dynamics. The nonlinear model is remodeled as a

linear model building on the Koopman approximation framework. We design the parameters’ update

law of the linear model according to the method of Set-Membership identification which makes

parameters bounded in a continuing shrinking set. It is not necessary to know the prior distribution

of disturbances, but the min and max bound are enough. At each time instant, with the FPS

updating, the constraint of the ALMPC is updated in the meanwhile. The online updating improves

the predictive model accuracy and relaxes the stability constraint, which makes the proposed scheme
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Figure 3: State trajectories of the process (xsp = [2.907× 10−3, 4.286× 10−3, 994.694]
T )
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Figure 4: The manipulated input trajectories of the process
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Figure 7: The 3D trajectory of the process state

a better closed-loop performance. Through this method, the states of the nonlinear system will

eventually converge to a small neighborhood of the set points, and the size of the small unstable

region decreases with the increasing accuracy of the linear model. Getting benefit from the linear

model, the proposed method decreases the complexity of the model and improves the computational

efficiency. The proposed scheme is verified according to the FCCU simulation results.
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