References
1. Sholl DS, Lively RP. Seven chemical separations to change the world.Nature . 2016; 532(7600): 435. doi: 10.1038/532435a
2. Sandru M, Sandru EM, Ingram WF, et al. An integrated materials approach to ultrapermeable and ultraselective CO2 polymer membranes.Science . 2022; 376(6588): 90-94. doi: 10.1126/science.abj9351
3. Wang H, Wang M, Liang X, et al. Organic molecular sieve membranes for chemical separations. Chem Soc Rev . 2021; 50(9): 5468-5516. doi: 10.1039/d0cs01347a
4. Qiao Z, Zhao S, Sheng M, et al. Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nat Mater . 2019; 18(2): 163-168. doi: 10.1038/s41563-018-0221-3
5. Liu Y, Wu H, Wu S, et al. Multifunctional covalent organic framework (COF)-Based mixed matrix membranes for enhanced CO2 separation. J Membr Sci . 2021; 618: 118693. doi: 10.1016/j.memsci.2020.118693
6. Guo Z, Wu H, Chen Y, et al. Missing-linker defects in covalent organic framework membranes for efficient CO2 separation. Angew Chem Int Ed . 2022: e202210466. doi: 10.1002/anie.202210466
7. Guo Z, Jiang H, Wu H, et al. Oil-water-oil triphase synthesis of ionic covalent organic framework nanosheets. Angew Chem Int Ed . 2021; 60(52): 27078-27085. doi: 10.1002/anie.202112271
8. Yang L, Yang H, Wu H, et al. COF membranes with uniform and exchangeable facilitated transport carriers for efficient carbon capture. J Mater Chem A . 2021; 9(21): 12636-12643. doi: 10.1039/d0ta12486a
9. Park HB, Jung CH, Lee YM, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science . 2007; 318(5848): 254-258. doi: 10.1126/science.1146744
10. Lai HWH, Benedetti FM, Ahn JM, et al. Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations.Science . 2022; 375(6587): 1390-1392. doi: 10.1126/science.abl7163
11. Guiver MD, Lee YM. Polymer rigidity improves microporous membranes.Science . 2013; 339(6117): 284-285. doi: 10.1126/science.1232714
12. Robeson LM. The upper bound revisited. J Membr Sci . 2008; 320(1-2): 390-400. doi: 10.1016/j.memsci.2008.04.030
13. Robeson LM. Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci . 1991; 62(2): 165-185. doi: 10.1016/0376-7388(91)80060-J
14. Wang Y, Wang X, Guan J, et al. 110th anniversary: mixed matrix membranes with fillers of intrinsic nanopores for gas separation.Ind Eng Chem Res . 2019; 58(19): 7706-7724. doi: 10.1021/acs.iecr.9b01568
15. Park S, Jeong H-K. In-situ linker doping as an effective means to tune zeolitic-imidazolate framework-8 (ZIF-8) fillers in mixed-matrix membranes for propylene/propane separation. J Membr Sci . 2020; 596: 117689. doi: 10.1016/j.memsci.2019.117689
16. Diestel L, Wang NY, Schwiedland B, Steinbach F, Giese U, Caro J. MOF based MMMs with enhanced selectivity due to hindered linker distortion.J Membr Sci . 2015; 492: 181-186. doi: 10.1016/j.memsci.2015.04.069
17. Caro J. Are MOF membranes better in gas separation than those made of zeolites? Curr Opin Chem Eng . 2011; 1(1): 77-83. doi: 10.1016/j.coche.2011.08.007
18. Bae TH, Lee JS, Qiu WL, Koros WJ, Jones CW, Nair S. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew Chem Int Ed . 2010; 49(51): 9863-9866. doi: 10.1002/anie.201006141
19. An H, Cho KY, Lyu Q, et al. Facile defect engineering of zeolitic imidazolate frameworks towards enhanced C3H6/C3H8 separation performance. Adv Funct Mater . 2021; 31: 2105577. 2105577. doi: 10.1002/adfm.202105577
20. Liu Y, Wu H, Li R, et al. MOF-COF ”alloy” membranes for efficient propylene/propane separation. Adv Mater . 2022: e2201423. doi: 10.1002/adma.202201423
21. Wu X, Ren Y, Sui G, et al. Accelerating CO2 capture of highly permeable polymer through incorporating highly selective hollow zeolite imidazolate framework. AIChE J . 2020; 66(2): e16800. doi: 10.1002/aic.16800
22. Ma X, Wu X, Caro J, Huang A. Polymer composite membrane with penetrating ZIF-7 sheets displays high hydrogen permselectivity.Angew Chem Int Ed . 2019; 58(45): 16156-16160. doi: 10.1002/anie.201911226
23. Wang B, Qiao Z, Xu J, et al. Unobstructed ultrathin gas transport channels in composite membranes by interfacial self-assembly. Adv Mater . 2020; 32(22): e1907701. doi: 10.1002/adma.201907701
24. Song S, Jiang H, Wu H, et al. Weakly pressure-dependent molecular sieving of propylene/propane mixtures through mixed matrix membrane with ZIF-8 direct-through channels. J Membr Sci . 2022; 648: 120366. doi: 10.1016/j.memsci.2022.120366
25. Shu L, Peng Y, Yao R, Song H, Zhu C, Yang W. Flexible soft-solid metal-organic framework composite membranes for H2 /CO2 separation.Angew Chem Int Ed . 2022: e202117577. doi: 10.1002/anie.202117577
26. Xie K, Fu Q, Xu C, et al. Continuous assembly of a polymer on a metal–organic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane. Energy Environ Sci . 2018; 11(3): 544-550. doi: 10.1039/c7ee02820b
27. Fu Q, Kim J, Gurr PA, Scofield JMP, Kentish SE, Qiao GG. A novel cross-linked nano-coating for carbon dioxide capture. Energy Environ Sci . 2016; 9(2): 434-440. doi: 10.1039/c5ee02433a
28. Xie K, Fu Q, Webley PA, Qiao GG. MOF scaffold for a high-performance mixed-matrix membrane. Angew Chem Int Ed . 2018; 57(28): 8597-8602. doi: 10.1002/anie.201804162
29. Rowe BW, Freeman BD, Paul DR. Physical aging of ultrathin glassy polymer films tracked by gas permeability. Polymer . 2009; 50(23): 5565-5575. doi: 10.1016/j.polymer.2009.09.037
30. Du N, Park HB, Robertson GP, et al. Polymer nanosieve membranes for CO2-capture applications. Nat Mater . 2011; 10(5): 372-375. doi: 10.1038/NMAT2989
31. Yong WF, Li FY, Xiao YC, Chung TS, Tong YW. High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation. J Membr Sci . 2013; 443: 156-169. doi: 10.1016/j.memsci.2013.04.037
32. Koros WJ, Fleming GK. Membrane-based gas separation. J Membr Sci . 1993; 83(1): 1-80. doi: 10.1016/0376-7388(93)80013-N
33. Cheng Y, Wang X, Jia C, et al. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. J Membr Sci . 2017; 539: 213-223. doi: 10.1016/j.memsci.2017.06.011
34. Bachman JE, Smith ZP, Li T, Xu T, Long JR. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. Nat Mater . 2016; 15(8): 845-9. doi: 10.1038/nmat4621
35. Wang L, Cao Y, Zhou M, Zhou SJ, Yuan Q. Novel copolyimide membranes for gas separation. J Membr Sci . 2007; 305(1-2): 338-346. doi: 10.1016/j.memsci.2007.08.024
36. An H, Lee AS, Kammakakam I, et al. Bromination/debromination-induced thermal crosslinking of 6FDA-Durene for aggressive gas separations.J Membr Sci . 2018; 545: 358-366. doi: 10.1016/j.memsci.2017.09.083
37. Schejn A, Balan L, Falk V, Aranda L, Medjahdi G, Schneider R. Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. 10.1039/C3CE42485E. CrystEngComm . 2014; 16(21): 4493-4500. doi: 10.1039/C3CE42485E
38. Yeung HH-M, Sapnik AF, Massingberd-Mundy F, et al. Control of metal-organic framework crystallization by metastable intermediate pre-equilibrium Species. Angew Chem Int Ed . 2019; 58(2): 566-571. doi: 10.1002/anie.201810039
39. Wang J, Wang Y, Liu Y, et al. Ultrathin ZIF-8 membrane through inhibited ostwald ripening for high-flux C3H6/C3H8 separation. Adv Funct Mater . 2022: 2208064. doi: 10.1002/adfm.202208064
40. Liu Y, Wu H, Min L, et al. 2D layered double hydroxide membranes with intrinsic breathing effect toward CO2 for efficient carbon capture.J Membr Sci . 2020; 598: 117663. 117663. doi: 10.1016/j.memsci.2019.117663
41. Li B, You X, Wu H, et al. A facile metal ion pre-anchored strategy for fabrication of defect-free MOF membranes on polymeric substrates.J Membr Sci . 2022; 650120419. doi: 10.1016/j.memsci.2022.120419
42. Dong S, Wang Z, Sheng M, Qiao Z, Wang J. Scaling up of defect-free flat membrane with ultra-high gas permeance used for intermediate layer of multi-layer composite membrane and oxygen enrichment. Sep Purif Technol . 2020; 239 doi: 10.1016/j.seppur.2020.116580
43. Yong WF, Kwek KHA, Liao KS, Chung TS. Suppression of aging and plasticization in highly permeable polymers. Polymer . 2015; 77: 377-386. doi: 10.1016/j.polymer.2015.09.075
44. Wu Y, Guo Z, Wu H, et al. Plasticization- and aging-resistant membranes with venation-like architecture for efficient carbon capture.J Membr Sci . 2020; 609 doi: 10.1016/j.memsci.2020.118215
45. Liu G, Chernikova V, Liu Y, et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat Mater . 2018; 17(3): 283-289. doi: 10.1038/s41563-017-0013-1
46. Liu Z, Liu Y, Liu G, Qiu W, Koros WJ. Cross-linkable semi-rigid 6FDA-based polyimide hollow fiber membranes for sour natural gas purification. Ind Eng Chem Res . 2020; 59(12): 5333-5339. doi: 10.1021/acs.iecr.9b04821
47. Jiang H, Chen Y, Song S, et al. Confined facilitated transport within covalent organic frameworks for propylene/propane membrane separation. Chem Eng J . 2022; 439: 135657. doi: 10.1016/j.cej.2022.135657
48. Merkel TC, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J Membr Sci . 2010; 359(1-2): 126-139. doi: 10.1016/j.memsci.2009.10.041