References
1. Judkins MP. Selective coronary arteriography. I. A percutaneous
transfemoral technic. Radiology. 1967;89:815-24.
2. Kiemeneij F, Laarman GJ. Percutaneous transradial artery approach for
coronary stent implantation. Cathet Cardiovasc Diagn. 1993;30:173-8.
3. Hamon M, Pristipino C, Di Mario C, et al. Consensus document on the
radial approach in percutaneous cardiovascular interventions: position
paper by the European Association of Percutaneous Cardiovascular
Interventions and Working Groups on Acute Cardiac Care** and Thrombosis
of the European Society of Cardiology. EuroIntervention. 2013;8:1242-51.
4. Bernat I, Aminian A, Pancholy S, et al. Best Practices for the
Prevention of Radial Artery Occlusion After Transradial Diagnostic
Angiography and Intervention: An International Consensus Paper. JACC
Cardiovasc Interv. 2019;12:2235-46.
5. Kiemeneij F. Left distal transradial access in the anatomical
snuffbox for coronary angiography (ldTRA) and interventions (ldTRI).
EuroIntervention. 2017;13:851-7.
6. Eid-Lidt G, Rivera Rodríguez A, Jimenez Castellanos J, Farjat Pasos
JI, Estrada López KE, Gaspar J. Distal Radial Artery Approach to Prevent
Radial Artery Occlusion Trial. JACC Cardiovasc Interv. 2021;14:378-85.
7. Tsigkas G, Papageorgiou A, Moulias A, et al. Distal or Traditional
Transradial Access Site for Coronary Procedures: A Single-Center,
Randomized Study. JACC Cardiovasc Interv. 2022;15:22-32.
8. Cao J, Cai H, Liu W, Zhu H, Cao G. Safety and Effectiveness of
Coronary Angiography or Intervention through the Distal Radial Access: A
Meta-Analysis. J Interv Cardiol. 2021;2021:4371744.
9. Mosteller RD. Simplified calculation of body-surface area. N Engl J
Med. 1987;317:1098.
10. Meo D, Falsaperla D, Modica A, et al. Proximal and distal radial
artery approaches for endovascular percutaneous procedures: anatomical
suitability by ultrasound evaluation. Radiol Med. 2021;126:630-5.
11. Lee JW, Son JW, Go TH, et al. Reference diameter and characteristics
of the distal radial artery based on ultrasonographic assessment. Korean
J Intern Med. 2022;37:109-18.
12. Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size
required for developing a clinical prediction model. Bmj. 2020;368:m441.
13. Lee JW, Park SW, Son JW, Ahn SG, Lee SH. Real-world experience of
the left distal transradial approach for coronary angiography and
percutaneous coronary intervention: a prospective observational study
(LeDRA). EuroIntervention. 2018;14:e995-e1003.
14. Norimatsu K, Kusumoto T, Yoshimoto K, et al. Importance of
measurement of the diameter of the distal radial artery in a distal
radial approach from the anatomical snuffbox before coronary
catheterization. Heart Vessels. 2019;34:1615-20.
15. Naito T, Sawaoka T, Sasaki K, et al. Evaluation of the diameter of
the distal radial artery at the anatomical snuff box using ultrasound in
Japanese patients. Cardiovasc Interv Ther. 2019;34:312-6.
16. Hadjivassiliou A, Cardarelli-Leite L, Jalal S, et al. Left Distal
Transradial Access (ldTRA): A Comparative Assessment of Conventional and
Distal Radial Artery Size. Cardiovasc Intervent Radiol. 2020;43:850-7.
17. Mizuguchi Y, Izumikawa T, Hashimoto S, et al. Efficacy and safety of
the distal transradial approach in coronary angiography and percutaneous
coronary intervention: a Japanese multicenter experience. Cardiovasc
Interv Ther. 2020;35:162-7.
18. Yu W, Hu P, Wang S, et al. Distal radial artery access in the
anatomical snuffbox for coronary angiography and intervention: A single
center experience. Medicine (Baltimore). 2020;99:e18330.
19. Kawamura Y, Yoshimachi F, Nakamura N, Yamamoto Y, Kudo T, Ikari Y.
Impact of dedicated hemostasis device for distal radial arterial access
with an adequate hemostasis protocol on radial arterial observation by
ultrasound. Cardiovasc Interv Ther. 2021;36:104-10.