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Abstract

The current study focuses on approximate analytical solution of
three-dimensional MHD flow of an incompressible fluid through porous
media over a stretching sheet using Exponentially decreasing series.
The governing equations are transformed into a system of nonlinear or-
dinary differential equations with boundary conditions using the sim-
ilarity transformation. It has been attempted to show the reliability
and performance of the Dirichlet series in comparison with Direct
Numerical Method (DNM). For various flow parameter values, the re-
sulting quantities such as velocity profiles and skin friction coefficient
are also geometrically presented.

Keywords: Stretching ratio, Porous, MHD, Suction/Injection, Dirichlet
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1 Introduction

The flow past a stretching sheet has many applications such as manufacturing
industry, petroleum industries, geothermal energy extractions, glass fiber
production metal and polymer processing industries. Sakiadis [1] was first
to study flow over a stretching sheet. Many researchers have studied the
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various aspects of stretching sheet, ever since the notable works of Crane
[2]. The effect of MHD along with the suction over stretching sheet flow was
discussed by Gupta and Gupta [3]. Later many papers were published based
on Crane’s problem with suction, magnetic-field, visco-elasticity of the fluid (
Andersson [4], Ariel [5] etc.). Fang and Zhang [6] proposed the exact solution
of MHD viscous flow over a Shrinking sheet. Later Ellahi and Hammed [7]
discussed the numerical solution of steady, flows with heat transfer, MHD
and nonlinear slip effects.

The results so far discussed are of two dimensional flow. If the flow
becomes axisymmetric, the flow will be three dimensional flow. The three
dimensional stretching sheet problem was studied numerically by Wang [8].
Later Ariel [9] obtained semi analytical solution of generalized three dimen-
sional flow over a stretching sheet. A novel work has been carried out by
Arriel([10], [11]) on three-dimensional stretching sheet problems. An analyt-
ical solution of three-dimensional flow over a stretching surface in a visco-
elastic fluid is given by Hayat et. al. [12]. Nazar and Latip [13] solved
the three-dimensional boundary layer flow due to a stretching surface in a
visco-elastic fluid numerically.

Later the numerical study of three-dimensional MHD flow over a stretch-
ing sheet is carried out using Legendre pseudo-spectral method by Heydari,
Loghmani and Dehghan [14]. Our attempt in this present paper is to dis-
cuss the effect of MHD on three-dimensional flow of an incompressible fluid
through porous media over a stretching sheet.

However, to the best of author’s knowledge, no attempt has been made
to investigate the effects of porosity on three-dimensional MHD flow of an
incompressible fluid through porous media over a stretching sheet. Being
motivated by the wide range of applications, this paper analyzes the effect
of suction/injection and stretching ratio on three-dimensional MHD flow of
an incompressible fluid through porous media over a stretching sheet.

The remaining part of the paper is structured out as follows: In Section
2, we describe the mathematical modelling of the problem and derive its
governing equations. The Dirichlet series is introduced and is applied to the
coupled nonlinear ordinary differential equation in Section 3. In Section 4, the
numerical algorithm is described. The solution nature has also been discussed
briefly in Section 5. Final Section summarizes the method’s relevance as well
as the impact of various physical factors on velocity profiles and skin friction
coefficient.
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2 Formulation of the problem

We consider the steady, laminar flow of an incompressible electrically con-
ducting fluid through porous media over a stretching surface in plane z = 0.
Let u, v and w be the velocity components along x, y and z direction re-
spectively. A uniform magnetic field B0 is applied in the z− direction. The
magnetic Reynolds number is taken to be small, so that induced magnetic
field is neglected. Under usual boundary layer approximations, the continuity
and momentum equations are given by
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+
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Where (u, v, w) are velocity components along (x, y, z) directions respectively.
ρ is the density of the fluid, µ is the dynamic viscosity, ν = µ

ρ
is the kinematic

viscosity, ϵ is the porosity, σ is the electrical conductivity, B0 is the magnetic
induction and k0 is porous medium permeability.

The boundary conditions are given by

at z = 0 : u = U(x), v = V (y), w = −w0, and

as z → ∞ : u → 0 and v → 0, (2)

where U(x) = U∞x and V (y) = V∞y are the velocities at the surface along
x and y directions respectively, w0 is the suction or injection parameter.

Using the similarity transformations

u = U∞xf ′(η), v = U∞yg′(η), w = −
√

U∞νϵ2[f(η) + g(η)], (3)

with η =
√

U∞
νϵ2

z, the system (1) and (2) reduces to coupled nonlinear ordi-

nary differential equations:

f ′′′ + (f + g)f ′′ − f ′2 −M2f ′ − Ωf ′ = 0, (4a)

g′′′ + (f + g)g′′ − g′2 −M2g′ − Ωg′ = 0, (4b)
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with the boundary conditions

f(0)+g(0) = R, f ′(0) = 1, g′(0) =
V∞

U∞
= β f ′(∞) = g′(∞) = 0. (5)

Here the parameter M
(
= B0

√
σϵ/ρU∞

)
is the magnetic (Hartman number)

parameter, β
(
= V∞

U∞

)
is the dimensionless stretching ratio, Ω

(
= ϵ2ν

U∞k0

)
is the

porosity parameter and R
(
= w0√

U∞νϵ2

)
is the suction and injection parameter.

The above system of ordinary differential equations (4) with the boundary
conditions (5) are solved using shooting technique with fourth order Runge-
Kutta integration scheme.

3 Dirichlet Series Solution

Following a thorough examination of the derivative boundary condition, we
seek the Dirichlet series solution, which ideally assures us for such a bound-
ary condition. The Dirichlet series process is an efficient way to tackle cer-
tain types of boundary value problems. In comparison to a Direct Numerical
Method (DNM), the suggested approach is more flexible and efficient in com-
puter implementation. The procedure used here takes very little computer
time and storage to find the values of the unknowns, whereas the usual nu-
merical methods are used to take much more computer time. Kravenchenko
and Yablonskii [15] were the first to use the Dirichlet series to solve boundary
value problems where the derivative boundary condition is zero at infinity.
Many researchers have used the Dirichlet series process to solve Stretching
sheet type problems due to its widespread application. Kudenatti et al. [16]
applied the Dirichlet series to investigate a class of boundary layer equations
over a nonlinear stretching surface. N Mahesha [19] has proposed a new
exponentially decreasing series solution for the coupled nonlinear boundary
value problem (BVP). Exploring the Dirichlet series, they successfully solved
it and compared it to the numerical results, discovering that the results agree.
A broad description of the Dirichlet series and its convergence may be found
in Riesz [17] and, Sachdev et al [18]. We choose the base function for the
above equations (4a) and (4b) in the form,

f =
∞∑
n=0

ane
−nhη (6a)

g =
∞∑
n=0

bne
−nhη (6b)
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where an and bn are unknown constants to be determined. Also the above
base functions automatically satisfy the last condition in (5). Substituting
functions (6a) & (6b) in the Boundary value problem (4a) & (4b) we get the
following recurrence relations,

− h3

∞∑
n=1

n3ane
−nhη + (a0 + b0)h

2

∞∑
n=1

n2ane
−nhη + h2

∞∑
n=2

n−1∑
i=1

i2aian−ie
−nhη

+ h2

∞∑
n=2

n−1∑
i=1

i2aibn−ie
−nhη − h2

∞∑
n=2

n−1∑
i=1

i(n− i)aian−ie
−nhη +M2h

∞∑
n=1

nane
−nhη

+ Ωh
∞∑
n=1

nane
−nhη = 0

(7a)

− h3

∞∑
n=1

n3bne
−nhη + (a0 + b0)h

2

∞∑
n=1

n2bne
−nhη + h2

∞∑
n=2

n−1∑
i=1

i2bibn−ie
−nhη

+ h2

∞∑
n=2

n−1∑
i=1

i2bian−ie
−nhη − h2

∞∑
n=2

n−1∑
i=1

i(n− i)bibn−ie
−nhη +M2h

∞∑
n=1

nbne
−nhη

+ Ωh
∞∑
n=1

nbne
−nhη = 0

(7b)

Equating coefficient of e−hη to zero we get (8)

−h2 + (a0 + b0)h+M2 + Ω = 0 (8)

Therefore, we rewrite the equations (7a) & (7b) as,

an =

[
h

n[−h2n2 + (a0 + b0)hn+M2 + Ω]

] n−1∑
i=0

iai[(n− 2i)an−i − bn−i] (9a)

bn =

[
h

n[−h2n2 + (a0 + b0)hn+M2 + Ω]

] n−1∑
i=0

ibi[(n− 2i)bn−i − an−i] (9b)

for n = 2, 3, 4, · · ·.
Riesz [17] provides a detailed convergence criteria for the above mentioned

series. The skin friction coefficients f ′′(0) and g′′(0) are essential physical
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parameters of importance, which are given by,

f ′′(0) = h2

∞∑
n=1

n2an (10a)

g′′(0) = h2

∞∑
n=1

n2bn (10b)

Furthermore, we are now working on determining the unknown constants
a0, b0, a1, b1 & h. For this we use the following initial conditions,

f(0) + g(0) =
∞∑
n=0

an +
∑

bn = R (11a)

f ′(0) = −h
∞∑
n=1

nan = 1 (11b)

g′(0) = −h
∞∑
n=1

nbn = β (11c)

We utilise Newton’s nonlinear system of equations technique to calculate
these unknowns up to the appropriate degree of precision for all the vales of
M , Ω, R and β, using few terms of Dirichlet series. The acquired outcomes
are compared to those obtained by numerically solving the boundary value
problems (4a) & (4b) with the conditions (5) and are presented in Table (1)
and (2). As a further step, we’ll compare the Dirichlet-series solution and
exact solution obtained by Ariel [9].

4 Numerical Solution

Eqs. (4a) & (4b), along with their boundary conditions given by (5), form a
nonlinear boundary value problem. As a result, the boundary value problem
is first converted into an initial value problem by estimating the missing
slopes correctly. For many sets of physical parameters, the resultant initial
value problem is addressed using the Runge Kutta fourth order technique.

First we convert the above system of ordinary differential equations (4a)
& (4b) with the boundary conditions (5) are converted into the system of
first order differential equations by setting
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f ′ = f1, f ′
1 = f2, f ′

2 = −(f + g)f2 + f 2
1 +M2f1 + Ωf1,

g′ = g1, g′1 = g2, g′2 = −(f + g)g2 + g21 +M2g1 + Ωg1, (12)

with the initial conditions

f(0) + g(0) = R, f1(0) = 1, f2(0) = ζ1,

g1(0) = β g2(0) = ζ2. (13)

We required two unknown initial conditions ζ1 and ζ2 to solve the system
of equations (12) with (13) using the Runge-Kutta fourth order technique,
but no such values are provided in the problem. The suitable values for
f ′′(0) and g′′(0) are chosen by shooting technique, and then the integration
is carried out using Runge-Kutta fourth order method with h = 0.001. The
above said procedure is repeated until it reaches the tolerance limit 10−6.

5 Results and Discussion

In this work, Similarity transformation is used to convert the governing par-
tial differential equations of three-dimensional MHD flow of an incompress-
ible fluid through porous media over a stretching sheet into a system of
ordinary differential equations. The Dirichlet Series was successfully used to
provide an approximate analytical solution to the resultant system of Ordi-
nary Differential Equations. The current approach minimises the computing
challenges of previous methods, and all computations can be performed with
simple manipulations. To evaluate the effectiveness of the current technique,
we compare the values of f”(0) and g”(0) with those of the direct numerical
solution of the problem, which are shown in Table 1-3. Table 1 shows that
the results of the above technique compare favourably with the exact solution
provided by Ariel.

Firstly we consider Figures 1, which shows that the skin-friction coeffi-
cient f ′′(0) is plotted against the stretching ratio parameter β for different
values of Magnetic number and Porous parameter. It is observed that the
skin-friction coefficient f ′′(0) decreases as β increases. Also f ′′(0) decreases
as Magnetic number increases. On the other hand the skin friction coefficient
f ′′(0) decreases as increase in Porous parameter Ω and β respectively.Figures
2 present the effects of stretching ratio parameter β, Magnetic numberM and
Porous parameter Ω on g′′(0). It is found from these two figures that, |g′′(0)|
decreases as β(< 0) increases, also |g′′(0)| increases as β(> 0) increases. It is
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observed that g′′(0) > 0 if β < 0, g′′(0) < 0 if β > 0 and g′′(0) is zero when
β = 0 for all values of Magnetic parameter M and Porous parameter Ω. Also
it is observed that g′′(0) increases as increase in Magnetic parameter M and
Porous parameter Ω respectively.

Figures 3 represents the effect of stretching ratio parameter β, Magnetic
number M , suction/injection R and Porous parameter Ω on f ′(η). Figure
3a reveals that as β increases velocity gradient is also increases accordingly.
But from figures 3c and 3d, velocity increases as suction/injection parameter
R and Magnetic number M decreases respectively. Figure 3b it is clear that
the velocity gradient slightly increases as decrease in porous parameter Ω.

From the figure 4a it is clear that, for β > 0 the velocity profiles decreases
linearly and g′(η) approaches to 0 asymptotically as η increases. But for the
stretching ratio β < 0 the velocity profiles increases linearly and approaches
to 0 as η increases. From figures 3b, 3c and 3d it is clear that the velocity
gradient decreases as there is increase in R, M and Ω respectively.

6 Conclusion

In the present paper, we have consider the three dimensional incompressible,
electrically conducting fluid through porous media over a stretching sheet.
Using similarity transformation, the PDE’s are transformed into system of
third order ordinary differential equations. The set of nonlinear ordinary
differential equations with boundary conditions are solved using Dirichlet
series method and Shooting technique along with Fourth order Runge-Kutta
method. The results are given in graphs for all physical parameters. It
is observed that the skin friction coefficient f ′′(0) increases as increase in
stretching parameter β, Magnetic parameter M and Permeability parameter
Ω. On the other hand, g′′(0) decreases (increases) as M and Ω decreases for
β < 0 (β > 0) respectively.
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β
−f ′′(0) −g′′(0)

Exact [10] HPM [10] Dirichlet Exact [10] HPM [10] Dirichlet
0 1 1 1 0 0 0
0.1 1.020260 1.017027 1.020650 0.066847 0.073099 0.068091
0.2 1.039495 1.034587 1.039100 0.148737 0.158231 0.148328
0.3 1.057955 1.052470 1.057290 0.243360 0.254347 0.242681
0.4 1.075788 1.070529 1.074840 0.349209 0.360599 0.348255
0.5 1.093095 1.088662 1.091880 0.465205 0.476290 0.463986
0.6 1.109947 1.106797 1.108480 0.590529 0.600833 0.589059
0.7 1.126398 1.124882 1.124700 0.724532 0.733730 0.722839
0.8 1.142489 1.142879 1.140570 0.866683 0.874551 0.864764
0.9 1.158254 1.160762 1.156150 1.016539 1.022922 1.014440
1.0 1.173721 1.178511 1.171440 1.173721 1.178511 1.171440

Table 1: Illustrating the variation of Skin friction coefficients −f ′′(0) and
−g′′(0) with β = M = Ω = R = 0 using Dirichlet series solution, HPM and
Exact solutions
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β M Ω
−f ′′(0) −g′′(0)

Dirichlet Numerical Dirichlet Numerical

0.2

0.3
0.2 1.220840 1.221100 0.194263 0.194802
0.8 1.452570 1.452610 0.250169 0.250250
1 1.521890 1.521910 0.266177 0.266227

0.7
0.2 1.379710 1.387290 0.233044 0.240915
0.8 1.588130 1.588150 0.281261 0.281293
1 1.651670 1.651680 0.295562 0.295584

1
0.2 1.558680 1.558700 0.274578 0.274617
0.8 1.745490 1.745500 0.316430 0.316442
1 1.803380 1.803390 0.329178 0.329187

0.4

0.3
0.2 1.252890 1.253760 0.430912 0.432231
0.8 1.478620 1.478770 0.533362 0.533595
1 1.546550 1.546650 0.563380 0.563526

0.7
0.2 1.407400 1.407650 0.501542 0.501929
0.8 1.611600 1.611660 0.591865 0.591961
1 1.674090 1.674130 0.619026 0.619092

1
0.2 1.582660 1.582730 0.579221 0.579337
0.8 1.766540 1.766560 0.658891 0.658930
1 1.823660 1.823680 0.683361 0.683389

Table 2: Illustrating the variation of Skin friction coefficients −f ′′(0) and
−g′′(0) with β, M and Ω using Dirichlet series solution and Numerical
method with R = 0.1
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β M Ω
−f ′′(0) −g′′(0)

Dirichlet Numerical Dirichlet Numerical

0.2

0.3
0.2 1.330620 1.330740 0.218491 0.218747
0.8 1.560650 1.560670 0.273150 0.273196
1 1.629560 1.629580 0.288914 0.288943

0.7
0.2 1.488260 1.488300 0.256333 0.256408
0.8 1.695450 1.695460 0.303798 0.303817
1 1.758670 1.758680 0.317931 0.317944

1
0.2 1.666150 1.666160 0.297200 0.297223
0.8 1.852080 1.852090 0.338587 0.338595
1 1.909740 1.909740 0.351221 0.351227

0.4

0.3
0.2 1.363650 1.364080 0.478176 0.478826
0.8 1.587470 1.587560 0.578785 0.578916
1 1.654950 1.655000 0.608412 0.608498

0.7
0.2 1.516780 1.516920 0.547439 0.547651
0.8 1.719590 1.719630 0.636570 0.636628
1 1.781740 1.781760 0.663453 0.663494

1
0.2 1.690830 1.690870 0.624067 0.624136
0.8 1.873710 1.873730 0.702959 0.702984
1 1.930570 1.930580 0.727232 0.727251

Table 3: Illustrating the variation of Skin friction coefficients −f ′′(0) and
−g′′(0) with β, M and Ω using Dirichlet series solution and Numerical
method with R = 0.3
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Figure 1: Skin friction coefficient f ′′(0) against β for different values of Mag-
netic parameter M and Porous parameter Ω.
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Figure 2: Skin friction coefficient g′′(0) against β for different values of Mag-
netic parameter M and Porous parameter Ω.
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Figure 3: Velocity profiles f ′(η) for the various values of (a)Stretching ratio β
(b) Porous parameter Ω, (c) Suction or Injection parameter R, (d) Magnetic
parameter M .
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Figure 4: Velocity profiles g′(η) for the various values of (a)Stretching ratio β
(b) Porous parameter Ω, (c) Suction or Injection parameter R, (d) Magnetic
parameter M .
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