6. Reference
Abuhamed, T., Bayraktar, E., Mehmetoğlu, T., & Mehmetoğlu, Ü. (2004).
Kinetics model for growth of Pseudomonas putida F1 during benzene,
toluene and phenol biodegradation. Process Biochemistry ,39 (8), 983–988. https://doi.org/10.1016/S0032-9592(03)00210-3
Alagappan, G., & Cowan, R. (2003). Substrate inhibition kinetics for
toluene and benzene degrading pure cultures and a method for collection
and analysis of respirometric data for strongly inhibited cultures.Biotechnology and Bioengineering , 83 (7), 798–809.
https://doi.org/10.1002/bit.10729
Almomani, F., Rene, E. R., Veiga, M. C., Bhosale, R. R., & Kennes, C.
(2021). Treatment of waste gas contaminated with dichloromethane using
photocatalytic oxidation, biodegradation and their combinations.Journal of Hazardous Materials , 405 , 123735.
https://doi.org/10.1016/j.jhazmat.2020.123735
Bordel, S., Muñoz, R., Díaz, L. F., & Villaverde, S. (2007). New
insights on toluene biodegradation by Pseudomonas putida F1:
Influence of pollutant concentration and excreted metabolites.Applied Microbiology and Biotechnology , 74 (4), 857–866.
https://doi.org/10.1007/s00253-006-0724-8
Bravo, D., Ferrero, P., Penya-roja, J. M., Álvarez-Hornos, F. J., &
Gabaldón, C. (2017). Control of VOCs from printing press air emissions
by anaerobic bioscrubber: Performance and microbial community of an
on-site pilot unit. Journal of Environmental Management ,197 , 287–295. https://doi.org/10.1016/j.jenvman.2017.03.093
Chang, W.-S., van de Mortel, M., Nielsen, L., Nino de Guzman, G., Li,
X., & Halverson, L. J. (2007). Alginate production by Pseudomonas
putida creates a hydrated microenvironment and contributes to biofilm
architecture and stress tolerance under water-limiting conditions.Journal of Bacteriology 189 (22), 8290–8299.
https://doi.org/10.1128/JB.00727-07
Cheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H., & Yu, G.
(2016). Challenges and solutions for biofiltration of hydrophobic
volatile organic compounds. Biotechnology Advances , 34 (6),
1091–1102. https://doi.org/10.1016/j.biotechadv.2016.06.007
Choi, N.-C., Choi, J.-W., Kim, S.-B., & Kim, D.-J. (2008). Modeling of
growth kinetics for Pseudomonas putida during toluene
degradation. Applied Microbiology and Biotechnology ,81 (1), 135–141. https://doi.org/10.1007/s00253-008-1650-8
Claus, D., & Walker, N. (1964). The decomposition of toluene by soil
bacteria. Microbiology, 36 (1), 107–122.
https://doi.org/10.1099/00221287-36-1-107
Dahlstrom, K. M., Collins, A. J., Hogan, D. A., & O’Toole, G. A.
(2018). A multimodal strategy used by a large c-di-GMP network.Journal of Bacteriology , 200 (8), 19.
https://doi.org/10.1128/JB.00703-17
Delhoménie, M.-C., & Heitz, M. (2005). Biofiltration of air: A review.Critical Reviews in Biotechnology , 25 (1–2), 53–72.
https://doi.org/10.1080/07388550590935814
Detchanamurthy, S., & Gostomski, P. A. (2012). Biofiltration for
treating VOCs: An overview. Reviews in Environmental Science and
Bio/Technology , 11 (3), 231–241.
https://doi.org/10.1007/s11157-012-9288-5
Díaz, L. F., Muñoz, R., Bordel, S., & Villaverde, S. (2008). Toluene
biodegradation by Pseudomonas putida F1: Targeting culture
stability in long-term operation. Biodegradation , 19 (2),
197–208. https://doi.org/10.1007/s10532-007-9126-6
Estrada, J. M., Bernal, O. I., Flickinger, M. C., & Deshusses, M. A.
(2015). Biocatalytic coatings for air pollution control: A proof of
concept study on VOC biodegradation. Biotechnology and
Bioengineering , 112 (2), 10.
Farber, R., Dabush-Busheri, I., Chaniel, G., Rozenfeld, S., Bormashenko,
E., Multanen, V., & Cahan, R. (2019). Biofilm grown on wood waste
pretreated with cold low-pressure nitrogen plasma: Utilization for
toluene remediation. International Biodeterioration &
Biodegradation , 139 , 62–69.
https://doi.org/10.1016/j.ibiod.2019.03.003
González-Martín, J., Kraakman, N. J. R., Pérez, C., Lebrero, R., &
Muñoz, R. (2021). A state–of–the-art review on indoor air pollution
and strategies for indoor air pollution control. Chemosphere ,262 , 128376. https://doi.org/10.1016/j.chemosphere.2020.128376
Hazrin-Chong, N. H., & Manefield, M. (2012). An alternative SEM drying
method using hexamethyldisilazane (HMDS) for microbial cell attachment
studies on sub-bituminous coal. Journal of Microbiological
Methods , 90 (2), 96–99.
https://doi.org/10.1016/j.mimet.2012.04.014
He, C., Cheng, J., Zhang, X., Douthwaite, M., Pattisson, S., & Hao, Z.
(2019). Recent advances in the catalytic oxidation of volatile organic
compounds: A review based on pollutant sorts and sources. Chemical
Reviews , 119 (7), 4471–4568.
https://doi.org/10.1021/acs.chemrev.8b00408
Hein, L., White, L., Miles, A., & Roberts, P. (2018). Analysing the
impacts of air quality policies on ecosystem services; a case study for
Telemark, Norway. Journal of Environmental Management ,206 , 650–663. https://doi.org/10.1016/j.jenvman.2017.10.073
Hernández, M., Quijano, G., & Muñoz, R. (2012). Key role of microbial
characteristics on the performance of VOC biodegradation in two-liquid
phase bioreactors. Environmental Science & Technology ,46 (7), 4059–4066. https://doi.org/10.1021/es204144c
Jin, Y., Guo, L., Veiga, M. C., & Kennes, C. (2007). Fungal
biofiltration of α-pinene: Effects of temperature, relative humidity,
and transient loads. Biotechnology and Bioengineering ,96 (3), 433–443. https://doi.org/10.1002/bit.21123
Khan, A. M., Wick, L. Y., & Thullner, M. (2018). Applying the Rayleigh
approach for stable isotope-based analysis of VOC biodegradation in
diffusion-dominated systems. Environmental Science & Technology ,52 (14), 7785–7795. https://doi.org/10.1021/acs.est.8b01757
Lebrero, R., Volckaert, D., Pérez, R., Muñoz, R., & Van Langenhove, H.
(2013). A membrane bioreactor for the simultaneous treatment of acetone,
toluene, limonene and hexane at trace level concentrations. Water
Research , 47 (7), 2199–2212.
https://doi.org/10.1016/j.watres.2013.01.041
Matějová, L., Topka, P., Kaluža, L., Pitkäaho, S., Ojala, S., Gaálová,
J., & Keiski, R. L. (2013). Total oxidation of dichloromethane and
ethanol over ceria–zirconia mixed oxide supported platinum and gold
catalysts. Applied Catalysis B: Environmental , 142–143 ,
54–64. https://doi.org/10.1016/j.apcatb.2013.04.069
McDonald, B. C., de Gouw, J. A., Gilman, J. B., Jathar, S. H., Akherati,
A., Cappa, C. D., Jimenez, J. L., Lee-Taylor, J., Hayes, P. L., McKeen,
S. A., Cui, Y. Y., Kim, S.-W., Gentner, D. R., Isaacman-VanWertz, G.,
Goldstein, A. H., Harley, R. A., Frost, G. J., Roberts, J. M., Ryerson,
T. B., & Trainer, M. (2018). Volatile chemical products emerging as
largest petrochemical source of urban organic emissions. Science ,359 (6377), 760–764. https://doi.org/10.1126/science.aaq0524
Mudliar, S., Giri, B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P.,
Pandey, R., Juwarkar, A., & Vaidya, A. (2010). Bioreactors for
treatment of VOCs and odours – A review. Journal of Environmental
Management , 91 (5), 1039–1054.
https://doi.org/10.1016/j.jenvman.2010.01.006
Muñoz, R., Daugulis, A. J., Hernández, M., & Quijano, G. (2012). Recent
advances in two-phase partitioning bioreactors for the treatment of
volatile organic compounds. Biotechnology Advances , 30 (6),
1707–1720. https://doi.org/10.1016/j.biotechadv.2012.08.009
Muñoz, R., Díaz, L. F., Bordel, S., & Villaverde, S. (2008). Response
of Pseudomonas putida F1 cultures to fluctuating toluene loads
and operational failures in suspended growth bioreactors.Biodegradation , 19 (6), 897–908.
https://doi.org/10.1007/s10532-008-9191-5
Muñoz, R., Villaverde, S., Guieysse, B., & Revah, S. (2007). Two-phase
partitioning bioreactors for treatment of volatile organic compounds.Biotechnology Advances , 25 (4), 410–422.
https://doi.org/10.1016/j.biotechadv.2007.03.005
Nguyen, P. Q., Botyanszki, Z., Tay, P. K. R., & Joshi, N. S. (2014).
Programmable biofilm-based materials from engineered curli nanofibres.Nature Communications , 5 (1), 4945.
https://doi.org/10.1038/ncomms5945
Reardon, K. F., Mosteller, D. C., & Rogers, J. D. B. (2000).
Biodegradation kinetics of benzene, toluene, and phenol as single and
mixed substrates for Pseudomonas putida F1. Biotechnology
and Bioengineering , 69 (4), 16.
Reij, M. W., Keurentjes, J. T. F., & Hartmans, S. (1998). Membrane
bioreactors for waste gas treatment. Journal of Biotechnology ,59 (3), 155–167. https://doi.org/10.1016/S0168-1656(97)00169-7
Rumchev, K. (2004). Association of domestic exposure to volatile organic
compounds with asthma in young children. Thorax , 59 (9),
746–751. https://doi.org/10.1136/thx.2003.013680
Schiavon, M., Scapinello, M., Tosi, P., Ragazzi, M., Torretta, V., &
Rada, E. C. (2015). Potential of non-thermal plasmas for helping the
biodegradation of volatile organic compounds (VOCs) released by waste
management plants. Journal of Cleaner Production , 104 ,
211–219. https://doi.org/10.1016/j.jclepro.2015.05.034
Schiavon, M., Schiorlin, M., Torretta, V., Brandenburg, R., & Ragazzi,
M. (2017). Non-thermal plasma assisting the biofiltration of volatile
organic compounds. Journal of Cleaner Production , 148 ,
498–508. https://doi.org/10.1016/j.jclepro.2017.02.008
Sheu, R., Stönner, C., Ditto, J. C., Klüpfel, T., Williams, J., &
Gentner, D. R. (2020). Human transport of thirdhand tobacco smoke: A
prominent source of hazardous air pollutants into indoor nonsmoking
environments. Science Advances , 6 (10), eaay4109.
https://doi.org/10.1126/sciadv.aay4109
Wang, Y.-H., Bayatpour, S., Qian, X., Frigo-Vaz, B., & Wang, P. (2021).
Activated carbon fibers via reductive carbonization of cellulosic
biomass for adsorption of nonpolar volatile organic compounds.Colloids and Surfaces A: Physicochemical and Engineering Aspects ,612 , 125908. https://doi.org/10.1016/j.colsurfa.2020.125908
Wu, F., Jacobs, D., Mitchell, C., Miller, D., & Karol, M. H. (2007).
Improving Indoor Environmental Quality for Public Health: Impediments
and Policy Recommendations. Environmental Health Perspectives ,115 (6), 953–957. https://doi.org/10.1289/ehp.8986
Yang, N., Wang, C., & Han, M.-F. (2020). Gel-encapsulated
microorganisms used as a strategy to rapidly recover biofilters after
starvation interruption. Journal of Environmental Management ,261 , 110237. https://doi.org/10.1016/j.jenvman.2020.110237
Zylstra, G. J., McCombie, W. R., Gibson, D. T., & Finette, B. A.
(1988). Toluene degradation by Pseudomonas putida F1: Genetic
organization of the tod operon. Applied and Environmental
Microbiology , 54 (6), 1498–1503.
https://doi.org/10.1128/aem.54.6.1498-1503.1988