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Anomaly detection is widely used in manufacturing and medical imaging. We
propose a self-supervised defect detection method based on multi-scale feature
fusion, which can effectively improve the detection and localization accuracy. The
method of pseudo-defect construction was used to enhance the training data. To
make the pseudo-defects more realistic, the extreme point of feature heatmap was
used as the anchor point of the defect area, and the defect image was fused with
the original image to construct the pseudo-defect. A multi-scale feature fusion
network was proposed that utilizes the self-attention mechanism and the inter-
action between multi-scale features to extract semantic features containing rich
contextual information to improve detection and localization accuracy further.
The proposed method achieved competitive experimental results on both the
MVTec AD and Chest X-ray datasets. Compared with other pseudo-defect simu-
lation methods, the heatmap-based pseudo-defect construction method improves
by at least 2%. It achieves comparable results with other state-of-the-art defect
detection methods.
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Introduction

With the rapid development of computer
vision, deep learning methods have been
widely used for defect detection in industrial
production. With the continuous improve-
ment of automation technologies, the defect
rate of products has been getting lower
and lower, making the collection of suffi-
cient defective samples more and more dif-
ficult. Samples with sporadic defects cannot
even be collected. Insufficient defect data
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limits the application of data-driven meth-
ods. At the same time, labeling defect data
requires a great deal of manpower and mate-
rial resources, with some defects less recogniz-
able, and some labeling work requires profes-
sional knowledge background. For the above
reasons, supervised methods requiring a large
amount of labeled information are unsuit-
able for defect detection tasks. In contrast,
self-supervised methods that require little or
no labeled data are better for defect detection.

Due to the small volume of defective sam-
ples, data augmentation methods are usually
used to expand the labeled data. Studies
have shown that data augmentation strategies
that simulate natural defects can effectively
improve the accuracy of image anomaly detec-
tion. CutPaste Li et al. (2021) is a commonly
used data augmentation method that cuts
a part of an image and randomly pastes it
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into another image to anomaly defects. How-
ever, the defects have evident discontinuous
edge traces, which can easily cause overfitting
during the training process. FPI Tan et al.
(2020) is a pseudo-defect construction method
for synthetic anomalies, which extracts the
same patch area from two independent sam-
ples, uses the interpolation between the two
patches to replace the original patch area,
and obtains the interpolation factor, patch
size, and patch location by random sampling.
FPI is suitable for detection of defects of tex-
ture and defects in medical imaging. NSA
Schlüter et al. (2021) uses Poisson image edit-
ing to seamlessly blend blocks of different
sizes and scales in the image, making the syn-
thetic anomalies more like irregular anomalies
of natural images.

Self-supervised methods do not require
prior knowledge and only need standard train-
ing data. Anomalies are inferred by the dif-
ference between the test data and learned
regular features. Therefore, self-supervised
methods are widely used in few-shot defect
detection. Current self-supervised methods
can be divided into two broad categories:
reconstruction-based and pre-trained-based
methods. In the absence of anomaly samples
and pre-trained models, reconstruction-based
models, such as the Variational Auto-
matic Encoder (VAE) Liu et al. (2020)
and Generative Adversarial Networks (GAN)
Perera, Nallapati, and Xiang (2019), are
widely used. Generative models consist of
encoders and decoders. An auto-encoder that
reconstructs standard data is first trained
with anomalous-free data. During inference,
anomalies are detected and localized by com-
paring pixel-level differences between input
and generated images. Self-supervised meth-
ods based on pre-trained usually need to use
the pre-trained model to extract the fea-
ture vector of the input image. The simi-
larity between the features of the abnormal
image and those of the pre-trained feature
vector will be calculated, and the abnormal
score will be obtained, based on which it
will be judged whether an abnormality exists.
Self-supervised methods based on pre-trained
have poor generalization ability and network
interpretability, and thus are often used in
conjunction with other self-supervised meth-
ods.

In this paper, the method of pseudo-defect
construction was adopted to increase the num-
ber of training samples, and a self-supervised

method based on semantic segmentation was
used for defect detection and localization.
CutPaste, FPI, and NSA methods usually
use randomly selected regions to construct
defective samples. Still, random methods
have a problem: unrealistic defects, such as
faults and hollows in the sample image, or
a defect patch in the blank part of the
image, often occur. These issues do not affect
the presence of image defects, but the con-
structed pseudo-defects are unrealistic. In
this paper, the point with a higher inten-
sity value in the feature heatmap was used
as the anchor point to select the patch area
so that the constructed defects are more
realistic. Figure 1 shows the comparison of
different pseudo-defect construction meth-
ods. Self-supervised defect detection methods
based on pixel-level reconstruction errors and
probability density anomalies cannot capture
high-level semantic information. Therefore, a
U -net structure for semantic segmentation
and fuses multi-scale features was adopted
to improve self-supervised defect detection
methods. The main innovations of this paper
are as follows:

• We propose to use the point with a higher
intensity value in the feature heatmap of
the image as an anchor to select the candi-
date region and then fuse the target image
and the patch, thus constructing reasonable
pseudo-defects.

• A self-supervised network structure based
on multi-scale feature fusion was pro-
posed, and the attention mechanism was
used to increase the expressiveness of fea-
tures. Semantic feature information can be
extracted by this network, which is used for
defect detection and segmentation.

• This method achieved good experimental
results on both the MVTec AD and Chest
X-ray datasets.

Related Work

There are many methods for defect detection,
which can be divided into three categories:
self-supervised and unsupervised methods,
generative model-based methods, and seman-
tic segmentation methods.
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Figure 1. Comparison of different pseudo-defect synthesis methods.

Self-supervised and unsupervised defect
detection methods

Knowledge distillation is a commonly used
self-supervised defect detection method in
which some knowledge of a teacher network is
transferred to a student network. Usually, a
pre-trained strong network is selected as the
teacher network, which can fully extract the
features of the image Perera, Nallapati, and
Xiang (2019); Ristea et al. (2021). The stu-
dent network has the same structure as the
teacher network. The teacher network guides
the student network to learn the distribution
of non-anomalous images to retain critical
features. The multi-scale hierarchical feature
matching method can enable the student net-
work to effectively learn multi-level mixed
knowledge from the feature pyramid to detect
anomalies of various scales Bergmann et al.
(2020); Yamada and Hotta (2021). Deng et al.
Deng and Li (2022) proposed a paradigm of
”reverse distillation”, consisting of a teacher
encoder and a student decoder. Instead of
directly accepting the original image, the
student network takes the output features
of the teacher network as input to recover
the teacher’s multi-scale representation of the
goal. Another commonly used self-supervised
processing method is using one-class data to
learn the representation of a self-supervised
model and then using the model to detect the
defects of different objects Sohn et al. (2020);
Yi and Yoon (2020); Tan et al. (2020).

Unsupervised defect detection usually
assumes that a model trained only on stan-
dard samples exhibits “maladaptation” to
abnormal data Bergmann et al. (2019). Fast-
flow Yu et al. (2021) is a probability distri-
bution estimator with a deep feature extrac-
tor (ResNet, Visual Transformer) for unsu-
pervised anomaly detection and localization.
Fastflow learns to convert visual features
into tractable probability distributions and
obtains probabilities of anomalies during the
inference stage. Zheng et al. Zheng et al.
(2021) proposed an unsupervised anomaly
detection and localization method aligned
from coarse to delicate in normal images. The
coarse alignment stage normalizes the posi-
tions of image feature pixels, and the delicate
alignment stage calculates the similarity of
corresponding position features. Staged unsu-
pervised methods are widely used in defect
detection and usually include a feature extrac-
tion stage and an anomaly detection scoring
stage Song et al. (2021); Wan et al. (2021);
Liu, Zhuang, and Lu (2021); Cohen and
Hoshen (2020).

Defect detection method based on generative
model

The generative model is significant in the field
of deep learning. Standard generative models
for defect detection include VAE Liu et al.
(2020), GAN Akcay, Atapour-Abarghouei,
and Breckon (2018), and the flow model.
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Defect detection with generative models typ-
ically involves two steps: first, training an
auto-encoder on anomaly-free data, then dur-
ing inference, minimizing the L2 distance
between the output representation and the
reference point and calculating pixel-level
differences to obtain precise anomaly loca-
tions Massoli et al. (2021); Yang, Shi,
and Qi (2020); Roth et al. (2021). Zavr-
tanik et al. Zavrtanik, Kristan, and Skočaj
(2021) proposed a Discriminatively trained
Reconstructed Anomaly Embedding Model
(DRAEM), which learns the joint repre-
sentation of anomalous images and recon-
structions without anomalies and simultane-
ously learns the decision boundary between
normal and abnormal data. This method
can directly locate anomalies without requir-
ing sophisticated post-processing. Pirnay et
al. Pirnay and Chai (2022) proposed that
anomaly detection can be studied as a patch
repair problem and proposed a self-attention
mechanism-based detection method that uti-
lizes the generated parts to patch defect loca-
tions. Liang et al. Liang et al. (2022) decou-
pled the input image into components with
different frequencies and modelled the recon-
struction process as a parallel restored com-
bination of full-frequency images. Since there
are significant differences between the fre-
quency distributions of normal and abnormal
images, this method can effectively determine
defect locations.

Defect detection method based on semantic
segmentation

There are many kinds of defect detection
methods based on semantic segmentation.
Pre-trained models are widely used in seman-
tic segmentation, and applying pre-trained
CNNs or visual transformers to segmentation
can effectively improve the defect detection
and localization accuracy Defard et al. (2021);
Fort, Ren, and Lakshminarayanan (2021).
The matching probability of multi-scale fea-
tures can improve the accuracy of seman-
tic segmentation, which has strong robust-
ness to noise Sohn et al. (2020); Kwon
et al. (2020); Rudolph, Wandt, and Rosen-
hahn (2021). Generally, global features can be
used to detect whether an object has defects,
while local features can be sued to determine
the specific location of anomalies. Therefore,
the combination of global and local features

is widely used in defect detection Kamoona
et al. (2021); Rudolph et al. (2022). Rippel et
al. Rippel, Mertens, and Merhof (2021) used
multivariate Gaussian distribution to repre-
sent features at different scales with a normal
model and used the variance of standard
data to distinguish normal data from abnor-
mal data. Using contrastive learning in visual
recognition tasks can also improve detection
accuracy Peng et al. (2022). Reiss et al. Reiss
and Hoshen (2021) normalized the extreme
points of the features obtained by contrastive
learning and scaled them into a unit sphere,
effectively improving defect detection accu-
racy by using constraints.

Method

Heatmap Pseudo Anomalies (HPA)

In defect detection, most data are from nor-
mal samples, only a small amount of data con-
tain defects, and there are no defective data
in the training samples. Therefore, this paper
adopts the method of pseudo-defect construc-
tion to increase the number of pseudo-labels
in self-supervised training.

The pseudo-defect construction method
based on the heatmap used in this paper is
mainly divided into four steps as follows:

• 1) Using the feature heatmap of the train-
ing data, an extreme point on the heatmap
of an image is obtained as the anchor point
of the defect area;

• 2) An intensity extreme point is used as
the anchor point of the candidate box, and
the Gamma function is used to adjust the
height and width of the candidate box;

• 3) A scaling coefficient is randomly selected
from a standard normal distribution, and
the scale of the candidate box is adjusted;

• 4) Taking an extreme point on the heatmap
of the target image as the anchor point,
the area matching the candidate box of the
source image is selected for fusion, thus
obtaining the image of the pseudo-defect.

The method to obtain the feature heatmap
in this paper is using ResNet50 to extract
the features of the source image, conveying
the feature distribution F , and then using the
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following formula to normalize the features:

fnorm =
f − fmin

fmax − fmin
, (1)

where fmin is the minimum eigenvalue and
fmax is the maximum eigenvalue.

The normalized features are sorted, and
the image position corresponding to the most
significant feature is selected as the anchor
point of the candidate box. Multiple candi-
date anchor points are usually chosen accord-
ing to a particular feature threshold to select
a suitable candidate box.

The defects of objects are usually minor
and have specific local characteristics, so we
use the Gamma function to select the height
h and width w of the candidate box. The
formula is as follows:

h = Ga ·H,w = Ga ·W, (2)

where Ga is the Gamma function, H is the
height of the source image, andW is the width
of the source image.

Because the shapes and sizes of defects
in different objects are different, the size of
the candidate box is adjusted by the scale
factor s, which is selected from a standard
normal distribution with a mean of 1 and a
variance of 0.5. The height hs and width ws

of the adjusted candidate box are as follows:
hs = s · h,ws = s · w.

In the target image, an extreme point
on the heatmap is used to select the fusion
region that matches the candidate box of the
source image. During matching, if the target
area is not chosen correctly, an appropriate
point should be re-selected from the candidate
extreme points on the heatmap.

Finally, the images of pseudo-defects are
re-annotated. The defect location of the target
image is annotated, which can be conveniently
determined through semantic segmentation
during the self-supervised training process. At
the same time, the entire pseudo-defect image
is annotated to facilitate the identification of
defect images during the training process.

Model Framework

The self-supervised framework proposed in
this paper is shown in Figure 2. The encoder
part is equivalent to the teacher network in
knowledge distillation, and the decoder part is

equivalent to the student network. The defect
detection is performed by comparing the fea-
tures of the two regions. During training, the
pseudo-defect image is taken as input and
pre-processed into 224×224 pixels. The train-
ing goal is to identify the defective images
in the input sequence and locate the defect
position.

The encoder part uses a pre-trained
ResNet, and the pre-trained network param-
eters are the model parameters for ResNet
to perform classification training on the Ima-
geNet dataset. The encoder and decoder have
a similar network structure, making it con-
venient to calculate feature similarity. The
strides of convolutional layer and pooling layer
are taken as 2, and each block extracts fea-
tures of different levels. The high-resolution
features of the bottom levels include color,
texture, and edge information, while the
low-resolution features of the top levels con-
tain rich contextual information. Fusing fea-
tures at different levels can complement infor-
mation and improve recognition accuracy.
The decoder mainly restores the underlying
features from the top-level features, expands
the dimensional difference between different
layers by up-sampling between different lay-
ers, and uses bilinear interpolation to smooth
the up-sampled image.

The similarity score represents the simi-
larity of the features acquired by the teacher
and student networks, which is usually used
to judge whether there is a defect. The higher
the similarity score, the higher the possibility
of a defect. Assuming that Fei is the encoder
feature of the i-th layer and that Fdi is the
decoder feature of the i-th layer, the similarity
score Si of the i-th layer is:

Si =
Fei

T · Fdi

∥Fei∥ · ∥Fdi∥
, (3)

The loss function of the training process
according to the similarity score of each layer
can be calculated as:

L =
1

N

N∑
i=1

Li =
1

N

N∑
i=1

(1− Si), (4)

where Si is the similarity score of the i-th
layer, Li is the loss function of the i-th layer,
and N is the number of layers of encoder and
decoder. In this paper, N = 3.
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Figure 2. The self-supervised framework consists of three parts: encoder, inter-scale
interaction, and decoder.

Multi-scale feature fusion network
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Figure 3. Multi-scale feature fusion
network structure.

The multi-scale feature fusion network
used in this paper is shown in Figure 3,
in which the 3 × 3 convolution realizes the
information interaction of different layers and
learns local features. Because the number of
channels in different layers is different, to
achieve a compelling fusion of features of dif-
ferent layers, 1×1 convolution transforms the

number of channels to align two tensors with
the same size but a different number of chan-
nels. Because inputs of different scales are very
likely to lead to various weight updates, the
direction of the optimizer’s minimization is
unbalanced, which leads to a disproportion-
ate shape of the loss function, thus reducing
the convergence rate of the training process.
Therefore, the data must be normalized dur-
ing the training process to improve the speed
and accuracy of training. The nonlinear acti-
vation function used in this paper is the Relu
activation function.

The main idea of multi-scale feature fusion
is as follows: taking the feature Fi of the cur-
rent layer as the main feature, taking the
feature Fi−1(i ≥ 2) of the upper layer as
the auxiliary feature, and making the fea-
tures of different scales interact through the

fusion method. The fused feature is Fi

′
=

Fusion(Fi−1, Fi), and finally the interaction
feature is applied to the current layer by
using the attention mechanism. After that,
the features can be obtained as follows:

Fai = softmax(
Q ·KT

√
Mi

)V

= softmax(
Fi

′
· Fi

T

√
Mi

)Fi,

(5)
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where Q, K and V refer to the Query, Key
and Value of the attention mechanism, respec-
tively. Mi is the dimension of the i-th layer
feature.

The self-attention mechanism can cap-
ture rich and detailed information in the
image, suppress useless information, highlight
essential features, and obtain the correlation
between data, thereby improving the accu-
racy of defect recognition. This paper uses a
self-attention module in each layer to capture
features, and its calculation is similar to Eq.
5, where Q = K = V = Fi.

Finally, the outputs of all the processed
layers are fused, and the final multi-scale
fusion features are obtained through the 3 ×
3 convolution layer, the normalization layer,
and the Relu function.

Experiment

Experimental setup

Dataset: This paper mainly uses the MVTec
AD and Chest X-ray datasets to conduct
experiments to verify and compare the pro-
posed method with the state-of-the-art defect
detection methods. The MVTec AD dataset
imitates the industrial production scene and
provides pixel-level annotations for anoma-
lous regions. The dataset contains 5 textures
and 10 objects in different fields and has
rich anomaly types. Because there are usu-
ally a small number of anomalies, the training
set contains only standard samples, and the
test set includes both normal and abnormal
examples. The Chest X-ray dataset contains
about 110,000 chest radiographs from differ-
ent patients, and the problem of anomaly
detection in chest radiographs can be viewed
as a general image classification problem.
The dataset has the following characteris-
tics: many chest radiographs are visually very
similar; multiple labels may be required to
label a chest radiograph to represent differ-
ent diseases; the data is unbalanced, and there
are far more normal instances than abnormal
instances. Therefore, there are only standard
samples in the training process and anoma-
lous samples in the test set. The training
sets of the above two datasets only contain
standard samples, so self-supervised or unsu-
pervised methods are needed to learn the
feature representation of normal samples and
detect abnormal samples.

Parameter setting: The pixel of the dataset
image used in this paper is 700 × 700 −
1024 × 1024. To facilitate the extraction of
features by the proposed method, it’s neces-
sary to resize the image to 256 × 256 pixels
and use image enhancement methods such
as random rotation and flipping. Finally, the
image is randomly cropped to 224×224. This
paper’s encoder and decoder parts are mainly
composed of ResNet34 modules with fewer
model parameters and can extract higher-level
abstract features.

Evaluation criteria: The detection problem
can be divided into two steps: anomalous
image classification and anomalous region seg-
mentation. The abnormal image classification
only outputs whether the image is an abnor-
mal sample. The irregular area segmentation
needs to judge whether there is an abnormal-
ity and find the abnormal area. Defect detec-
tion is usually evaluated using the ”Receiver
Operating Characteristic” (ROC), and the
area enclosed by the ROC curve and the coor-
dinate axis is called AUROC. The reason for
using AUROC as the evaluation index is that
the index is not sensitive to the threshold or
the percentage of abnormality. The larger the
AUROC, the higher the possibility that there
is an abnormality. To verify the repeatabil-
ity and robustness of the method proposed in
this paper, the defect detection and localiza-
tion experiments were performed 5 times, and
then the average value was taken as the final
experimental result.

MVTec AD dataset experiment

To verify the effectiveness of the
self-supervised defect detection method based
on heatmap pseudo anomalies (HPA) pro-
posed in this paper, it is compared with
several state-of-the-art self-supervised and
unsupervised detection methods, among
which CutPaste Li et al. (2021) and NSA
Schlüter et al. (2021) are methods based on
pseudo-defect; RD4AD Deng and Li (2022)
is a method based on knowledge distillation;
DRAEM Zavrtanik, Kristan, and Skočaj
(2021) is a method based on generative mod-
els; and CS-Flow Rudolph et al. (2022) and
FastFlow Yu et al. (2021) are methods based
on flow models.

Defect detection experiment. The exper-
imental results of defect detection are shown
in Table 1. The results show that for most
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Table 1. Defect detection comparison results on MVTec dataset

Category CutPaste NSA DRAEM RD4AD CS-Flow FastFlow HPA
carpet 100±0.0 95.6±0.6 97.0 98.9 98.7 100.0 99.5±0.1

grid 99.1±0.0 99.9±0.1 99.9 100.0 99.6 99.7 100±0.0

leather 100±0.0 99.9±0.1 100.0 100.0 100.0 100.0 100±0.0

tile 99.8±0.2 100±0.0 99.6 99.3 99.9 100.0 98.8±0.2

wood 99.8±0.0 97.5±1.5 99.1 99.2 99.1 100.0 99.6±0.1

bottle 100±0.0 97.7±0.3 99.2 100.0 100.0 100.0 100±0.0

cable 96.2±0.3 94.5±1.0 91.8 95.0 97.5 100.0 99.0±0.1

capsule 95.4±0.1 95.2±1.7 98.5 96.3 97.7 100.0 97.9±0.2

hazelnut 99.9±0.0 94.7±1.1 100.0 99.9 99.9 100.0 100±0.0

metalnut 98.6±0.0 98.7±0.7 98.7 100.0 99.2 100.0 100±0.0

pill 93.3±0.2 99.2±0.6 98.9 96.6 96.8 99.4 98.3±0.2

screw 96.6±0.2 90.2±0.6 93.9 97.0 91.9 97.8 97.6±0.1

toothbrush 90.7±0.1 100±0.0 100.0 99.5 99.6 94.4 100±0.0

transistor 97.5±0.2 95.1±0.2 93.1 96.7 95.2 99.8 99.7±0.0

zipper 99.9±0.1 99.8±0.1 100.0 98.5 98.5 99.5 99.3±0.1

Average 97.0±0.0 97.2±0.3 98.0 98.5 98.3 99.4 99.2±0.1

Table 2. Defect localization comparison results on MVTec dataset

Category CutPaste NSA DRAEM RD4AD CS-Flow FastFlow HPA
carpet 98.3±0.0 95.5±2.3 95.5 98.9 99.3 99.4 98.3±0.0

grid 97.5±0.1 99.2±0.1 99.7 99.3 99.0 98.3 99.0±0.0

leather 99.5±0.0 99.5±0.1 98.6 99.4 99.6 99.5 99.3±0.1

tile 90.5±0.2 99.3±0.0 99.2 95.6 98.0 96.3 96.0±0.4

wood 95.5±0.1 90.7±1.9 96.4 95.3 96.6 97.0 96.3±0.3

bottle 97.6±0.1 98.3±0.1 99.1 98.7 98.9 97.7 98.5±0.2

cable 90.0±0.2 96.0±1.4 94.7 97.4 97.6 98.4 97.1±0.1

capsule 97.4±0.1 97.6±0.9 94.3 98.7 99.0 99.1 98.1±0.1

hazelnut 97.3±0.0 97.6±0.6 99.7 98.9 98.9 99.1 98.1±0.1

metalnut 93.1±0.4 98.4±0.2 99.5 97.3 98.5 98.5 97.2±0.1

pill 95.7±0.1 98.5±0.3 97.6 98.2 98.9 99.2 98.3±0.0

screw 96.7±0.1 96.5±0.1 97.6 99.6 98.9 99.4 99.2±0.0

toothbrush 98.1±0.0 94.9±0.7 98.1 99.1 98.9 98.9 98.8±0.1

transistor 93.0±0.2 88.0±1.8 90.9 92.5 98.0 97.3 98.6±0.2

zipper 99.3±0.0 94.2±0.4 98.8 98.2 99.0 98.7 98.3±0.1

Average 96.0±0.1 96.3±0.4 97.3 97.8 98.6 98.5 98.1±0.2

objects, a detection accuracy of 99% - 100%
can be achieved with the method proposed in
this paper, which is comparable to the detec-
tion accuracy of the most advanced detec-
tion methods, whether it is a texture defect
or object defect. Among the textures and
objects in the MVTec AD, screws, capsules,
and pills have the worst detection accuracies,
below 99%. They have common characteris-
tics: these objects are relatively small and
usually have no obvious texture information,
making it difficult to detect defects through
texture information. These tiny defects are
very likely to be missed in inspection.

Compared with CutPaste and NSA that
are based on pseudo-defect construction, the

accuracy of the proposed method in this
paper is significantly improved. The method
of locating the defect center by heatmap
can generate higher-quality defective sam-
ples than the original pseudo-defect construc-
tion method. In terms of defect detection
accuracy, the proposed method is also bet-
ter than the three methods of DRAEM,
RD4AD, and CS-Flow. The reason is that
the proposed method obtains the relation-
ship between feature contexts through the
multi-scale feature fusion method. The fea-
tures of higher level and broader perception
fields are accepted simultaneously, which can
effectively improve detection accuracy. There
is a small gap in defect detection accuracy
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between the proposed method and the Fast-
Flow method based on the flow model. The
proposed method has better robustness than
the FastFlow method.

Defect location experiment. The experi-
mental results of defect location are shown in
Table 2. The results show that the proposed
method can locate defects more accurately
and stably than other pseudo-defect construc-
tion methods. Pseudo-defect construction is
a very effective data enhancement method,
which can effectively reduce the problem of
overfitting training data and obtain higher
localization accuracy. Because there are only
standard samples in the training data, if
an inappropriate data augmentation method
is used, the generalization ability of the
learned defect segmentation model will be
poor. In this paper, the defect segmentation
method combining U -net and multi-scale fea-
ture fusion network was used, which can effec-
tively fuse the features of different layers of
networks, expand the segmentation detection
area, and realize the interaction between var-
ious layer features, thus learning and locating
defect more accurately.

Comparative experiment of different
pseudo-defect construction methods

The effects of different pseudo-defect con-
struction methods on defect detection were
compared through experiment. In the exper-
iment, all methods used the self-supervised
training network based on the multi-scale fea-
ture fusion proposed in this paper. The W/O
group is a control group in which all sam-
ples in the training data are standard samples.
Other groups, including CutPaste, FPI Tan
et al. (2020), NSA, and HPA mentioned in
this paper, add pseudo-defect samples to the
training data.

The comparison results of different
pseudo-defect construction methods are
shown in Table 3, and the heatmap of the
defect location is shown in Figure 4. The
experimental results show that when there
are only standard samples in the training
data, the defect detection accuracy is low,
and effective detection cannot be carried out,
but it has little effect on defect localization.
This is because the U -net network used in
this paper can effectively learn the texture
features of different layers and then segment

abnormal data according to the learned fea-
tures to achieve accurate defect location.
When pseudo-defect samples are added to
the training data, the accuracies of detec-
tion and localization significantly increase to
more than 97%. The more realistic the con-
structed pseudo-defects, the more significant
their effects on defect detection. It’s because
adding near-realistic defects to the training
data is equivalent to adding labeled data
to the training data. Usually, the more the
labeled data, the better the training effect of
the model. Using pseudo-defects can achieve
the result of supervised training while reduc-
ing the cost and workload of data labeling.
Therefore, pseudo-defects are crucial in the
training of self-supervised models.

Chest X-ray dataset ablation experiment

This paper used the Chest X-ray dataset
to compare different pseudo-defect construc-
tion methods. The localization and detection
results are shown in Table 4. The feature
heatmap of defect localization is shown in
Figure 5, where various diseases are labeled on
the left side of the graph. The network used
in this experiment is a self-supervised training
network based on multi-scale feature fusion,
and the input is training data constructed
with different pseudo-defect methods. Chest
X-ray radiographs were divided into male and
female in the experiment, and their detec-
tion and localization results were respectively
verified.

By comparing the experimental results of
Chest X-ray and MVTec AD, it can be found
that the detection and localization results of
MVTec AD are better than those of Chest
X-ray. The reason is that the standard sam-
ples in the MVTec AD dataset are similar to
each other, and the defects of the objects are
more noticeable, the defect outline and tex-
ture information can better serve the purpose
of detection and localization. However, there
are significant differences between standard
samples in the Chest X-ray dataset contain-
ing normal samples due to the different body
structures of patients. At the same time, the
tube or cardiac equipment on the patient may
interfere with the detection. Moreover, the
radiographs are relatively blurry, their tex-
tures are not clear enough, and the difference
between the sick and the normal radiographs
is also tiny, which increases the difficulty of
detection and localization. Figure 5 shows
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W/O CutPaste FPI NSA HPAOriginal Mask

Figure 4. Feature heatmap of MVTec AD defect localization.

Table 3. Comparison of experimental results of different pseudo-defect
construction methods of MVTec AD. The experimental results are the average
detection and location results of different objects.

W/O CutPaste FPI NSA HPA
Detection 87.3±0.1 97.6±0.2 98.8±0.1 98.1±0.1 99.2±0.2

Localization 91.0±0.2 97.0±0.2 97.3±0.1 97.6±0.1 98.1±0.2

that in defect localization, besides the pro-

posed method, the method based on FPI

defect construction can also achieve good seg-

mentation results. The reason is that the

X-ray images are relatively blurry, and FPI

is a construction method that uses interpo-

lation to synthesize anomalies, resulting in

blurred pseudo-defects, which is very suitable

for defect detection in medical imaging.

Conclusion

We proposed a self-supervised defect detec-

tion method based on heatmap pseudo-defect

construction to improve the detection

and localization accuracy. The tradi-

tional pseudo-defect construction method

was enhanced to construct more realistic

pseudo-defects by using an extreme point on
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Figure 5. Feature heatmap of Chest X-ray defect location.

Table 4. Comparative experimental results on Chest X-ray dataset with
different pseudo-defect construction methods

W/O CutPaste FPI NSA HPA

Detection
Male 88.2±1.8 90.2±1.5 93.2±1.1 95.2±1.1 97.6±1.1

Female 88.7±1.7 90.5±1.6 93.8±0.8 95.4±0.9 97.5±1.2

Localization
Male 83.3±2.1 89.6±1.2 92.4±1.1 91.8±0.8 94.6±1.2

Female 83.2±1.8 89.7±1.2 92.1±1.0 92.0±0.3 94.7±1.0

the feature heatmap as the anchor point of

the defect area and fusing the defect image

into the original image. Experimental results

showed that pseudo-defects could improve

defect detection and localization accuracy

and have good generalization ability. The

more realistic the pseudo-defect, the higher

the defect detection and localization accu-

racy. A self-supervised network structure of

multi-scale feature fusion was designed to

obtain the semantic features of the contex-

tual information of different layers, enhancing

its feature expression ability. The proposed

method achieved good results on both the

MVTec AD and Chest X-ray datasets.

There is still much room for improvement

for the application of defect detection in

medical imaging. In the future, combining

pseudo-defects with generative models can be

considered to improve the applicability and

accuracy of self-supervised defect detection

methods.
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