References
Akbar, S., Sultan, S., Kertesz, M., 2015. Bacterial community analysis of cypermethrin enrichment cultures and bioremediation of cypermethrin contaminated soils. J. Basic Microbiol. 55, 819–829. https://doi.org/10.1002/jobm.201400805
An, B., Chen, Y., Li, B., Qin, G., Tian, S., 2014. Ca2+-CaM regulating viability of Candida guilliermondii under oxidative stress by acting on detergent resistant membrane proteins. J. Proteomics 109, 38–49. https://doi.org/10.1016/j.jprot.2014.06.022
Chen, Y., Stemple, B., Kumar, M., Wei, N., 2016. Cell Surface Display Fungal Laccase as a Renewable Biocatalyst for Degradation of Persistent Micropollutants Bisphenol A and Sulfamethoxazole. Environ. Sci. Technol. 50, 8799–8808. https://doi.org/10.1021/acs.est.6b01641
Chen, Z., Wang, Y., Cheng, Y., Wang, X., Tong, S., Yang, H., Wang, Z., 2020. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Sci. Total Environ. 709, 136138. https://doi.org/10.1016/j.scitotenv.2019.136138
Cheng, K., Zhao, R., Li, Yao, Qi, Y., Wang, Y., Zhang, Y., Qin, H., Qin, Y., Chen, L., Li, C., Liang, J., Li, Yujing, Xu, J., Han, X., Anderson, G.J., Shi, J., Ren, L., Zhao, X., Nie, G., 2021. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nat. Commun. 12, 1–16. https://doi.org/10.1038/s41467-021-22308-8
Chordia, S., Narasimhan, S., Lucini Paioni, A., Baldus, M., Roelfes, G., 2021. In Vivo Assembly of Artificial Metalloenzymes and Application in Whole-Cell Biocatalysis**. Angew. Chemie - Int. Ed. 60, 5913–5920. https://doi.org/10.1002/anie.202014771
Chun, J., Bai, J., Ryu, S., 2020. Yeast Surface Display System for Facilitated Production and Application of Phage Endolysin. ACS Synth. Biol. 9, 508–516. https://doi.org/10.1021/acssynbio.9b00360
Detzel, C., Maas, R., Tubeleviciute, A., Jose, J., 2013. Autodisplay of nitrilase from Klebsiella pneumoniae and whole-cell degradation of oxynil herbicides and related compounds. Appl. Microbiol. Biotechnol. 97, 4887–4896. https://doi.org/10.1007/s00253-012-4401-9
Ding, J., Zhou, Y., Wang, C., Peng, Z., Mu, Y., Tang, X., Huang, Z., 2020. Development of a whole-cell biocatalyst for diisobutyl phthalate degradation by functional display of a carboxylesterase on the surface of Escherichia coli. Microb. Cell Fact. 19, 1–11. https://doi.org/10.1186/s12934-020-01373-6
Gustavsson, M., Muraleedharan, M.N., Larsson, G., 2014. Surface expression of ω-transaminase in Escherichia coli. Appl. Environ. Microbiol. 80, 2293–2298. https://doi.org/10.1128/AEM.03678-13
Hu, W., Lu, Q., Zhong, G., Hu, M., Yi, X., 2019. Biodegradation of pyrethroids by a hydrolyzing carboxylesterase EstA from Bacillus cereus BCC01. Appl. Sci. 9, 1–14. https://doi.org/10.3390/app9030477
Jones, D.S., Tsai, P.C., Cochran, J.R., 2011. Engineering hepatocyte growth factor fragments with high stability and activity as Met receptor agonists and antagonists. Proc. Natl. Acad. Sci. U. S. A. 108, 13035–13040. https://doi.org/10.1073/pnas.1102561108
Karpouzas, D., Walker, A., Drennan, D., Froud-Williams, R.,2001. The effect of initial concentration of carbofuran on the development and stability of its enhanced biodegradation in top-soil and sub-soil. Pest Manag. Sci. 57, 72-81. https://doi.org/10.1002/1526-4998(200101)57:1<72::AID-PS264>3.0.CO;2-1
Kuroda, K., Ueda, M., 2013. Arming technology in yeast-novel strategy for whole-cell biocatalyst and protein engineering. Biomolecules. 3, 632–650. https://doi.org/10.3390/biom3030632
Li, X., Jin, X., Lu, X., Chu, F., Shen, J., Ma, Y., Liu, M., Zhu, J., 2014. Construction and characterization of a thermostable whole-cell chitinolytic enzyme using yeast surface display. World J. Microbiol. Biotechnol. 30, 2577–2585. https://doi.org/10.1007/s11274-014-1681-5
Liang, B., Wang, G., Yan, L., Ren, H., Feng, R., Xiong, Z., Liu, A., 2019. Functional cell surface displaying of acetylcholinesterase for spectrophotometric sensing organophosphate pesticide. Sensors Actuators, B Chem. 279, 483–489. https://doi.org/10.1016/j.snb.2018.09.119
Lim, S., Glasgow, J.E., Filsinger Interrante, M., Storm, E.M., Cochran, J.R., 2017. Dual display of proteins on the yeast cell surface simplifies quantification of binding interactions and enzymatic bioconjugation reactions. Biotechnol. J. 12, 1–11. https://doi.org/10.1002/biot.201600696
Lozančić, M., Žunar, B., Hrestak, D., Lopandić, K., Teparić, R., Mrša, V., 2021. Systematic comparison of cell wall-related proteins of different yeasts. J. Fungi 7, 1–19. https://doi.org/10.3390/jof7020128
Lu, J., Wu, Q., Yang, Q., Li, G., Wang, R., Liu, Y., Duan, C., Duan, S., He, X., Huang, Z., Peng, X., Yan, W., Jiang, J., 2021. Molecular mechanism of reproductive toxicity induced by beta-cypermethrin in zebrafish. Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol. 239, 108894. https://doi.org/10.1016/j.cbpc.2020.108894
Luo, X., Zhang, D., Zhou, X., Du, J., Zhang, S., Liu, Y., 2018. Cloning and characterization of a pyrethroid pesticide decomposing esterase gene, Est3385, from Rhodopseudomonas palustris PSB-S. Sci. Rep. 8, 1–8. https://doi.org/10.1038/s41598-018-25734-9
Mata-Fink, J., Kriegsman, B., Yu, H.X., Zhu, H., Hanson, M.C., Irvine, D.J., Wittrup, K.D., 2013. Rapid conformational epitope mapping of anti-gp120 antibodies with a designed mutant panel displayed on yeast. J. Mol. Biol. 425, 444–456. https://doi.org/10.1016/j.jmb.2012.11.010
Rangra, S., Kabra, M., Gupta, V., Srivastava, P., 2018. Improved conversion of Dibenzothiophene into sulfone by surface display of Dibenzothiophene monooxygenase (DszC) in recombinant Escherichia coli. J. Biotechnol. 287, 59–67. https://doi.org/10.1016/j.jbiotec.2018.10.004
Saleem, M., Brim, H., Hussain, S., Arshad, M., Leigh, M.B., Zia-ul-hassan, 2008. Perspectives on microbial cell surface display in bioremediation. Biotechnol. Adv. 26, 151–161. https://doi.org/10.1016/j.biotechadv.2007.10.002
Smith, M.R., Khera, E., Wen, F., 2015. Engineering novel and improved biocatalysts by cell surface display. Ind. Eng. Chem. Res. 54, 4021–4032. https://doi.org/10.1021/ie504071f
Song, H., Zhou, Z., Liu, Y., Deng, S., Xu, H., 2015. Kinetics and Mechanism of Fenpropathrin Biodegradation by a Newly Isolated Pseudomonas aeruginosa sp. Strain JQ-41. Curr. Microbiol. 71, 326–332. https://doi.org/10.1007/s00284-015-0852-4
Song, T., Wang, F., Xiong, S., Jiang, H., 2019. Surface display of organophosphorus-degrading enzymes on the recombinant spore of Bacillus subtilis. Biochem. Biophys. Res. Commun. 510, 13–19. https://doi.org/10.1016/j.bbrc.2018.12.077
Tanaka, T., Yamada, R., Ogino, C., Kondo, A., 2012. Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl. Microbiol. Biotechnol. 95, 577–591. https://doi.org/10.1007/s00253-012-4175-0
Tang, A., Wang, B., Liu, Y., Li, Q., Tong, Z., Wei, Y., 2015. Biodegradation and extracellular enzymatic activities of Pseudomonas aeruginosa strain GF31 on β-cypermethrin. Environ. Sci. Pollut. Res. 22. https://doi.org/10.1007/s11356-015-4545-0
Tang, A.X., Liu, H., Liu, Y.Y., Li, Q.Y., Qing, Y.M., 2017. Purification and Characterization of a Novel β-Cypermethrin-Degrading Aminopeptidase from Pseudomonas aeruginosa GF31. J. Agric. Food Chem. 65, 9412–9418. https://doi.org/10.1021/acs.jafc.7b03288
Tao, H.C., Li, P.S., Liu, Q.S., Su, J., Qiu, G.Y., Li, Z.G., 2016. Surface-engineered Saccharomyces cerevisiae cells displaying redesigned CadR for enhancement of adsorption of cadmium (II). J. Chem. Technol. Biotechnol. 91, 1889–1895. https://doi.org/10.1002/jctb.4783
Tiwary, M., Dubey, A.K., 2016. Cypermethrin bioremediation in presence of heavy metals by a novel heavy metal tolerant strain, Bacillus sp. AKD1. Int. Biodeterior. Biodegrad. 108, 42–47. https://doi.org/10.1016/j.ibiod.2015.11.025
Van Deventer, J.A., Kelly, R.L., Rajan, S., Wittrup, K.D., Sidhu, S.S., 2015. A switchable yeast display/secretion system. Protein Eng. Des. Sel. 28, 317–325. https://doi.org/10.1093/protein/gzv043
Wang, J.K., He, B., Du, W., Luo, Y., Yu, Z., Liu, J.X., 2015. Yeast with surface displayed xylanase as a new dual purpose delivery vehicle of xylanase and yeast. Anim. Feed Sci. Technol. 208, 44–52. https://doi.org/10.1016/j.anifeedsci.2015.07.002
Wang, Z., Mathias, A., Stavrou, S., Neville, D.M., 2005. A new yeast display vector permitting free scFv amino termini can augment ligand binding affinities. Protein Eng. Des. Sel. 18, 337–343. https://doi.org/10.1093/protein/gzi036
Yang, X., Tang, H., Song, M., Shen, Y., Hou, J., Bao, X., 2019. Development of novel surface display platforms for anchoring heterologous proteins in Saccharomyces cerevisiae. Microb. Cell Fact. 18, 1–10. https://doi.org/10.1186/s12934-019-1133-x
Ye, M., Ye, Y., Du, Z., Chen, G., 2021. Cell-surface engineering of yeasts for whole-cell biocatalysts. Bioprocess Biosyst. Eng. 44, 1003–1019. https://doi.org/10.1007/s00449-020-02484-5
Zhan, H., Huang, Y., Lin, Z., Bhatt, P., Chen, S., 2020. New insights into the microbial degradation and catalytic mechanism of synthetic pyrethroids. Environ. Res. 182, 109138. https://doi.org/10.1016/j.envres.2020.109138
Zhang, M., Lai, W., Zhu, Y., Chen, S., Zhou, K., Ao, X., He, L., Yang, Y., Zou, L., Liu, A., Yao, K., Liu, S., 2021. Purification and characterization of a novel cypermethrin-hydrolyzing esterase from Bacillus licheniformis B-1. J. Food Sci. 86, 1475–1487. https://doi.org/10.1111/1750-3841.15662
Zhang, Q.Q., Li, W.Q., Lu, Z. Bin, Li, L.L., Yu, Y., Li, C., Men, X.Y., 2019. Sublethal effects of beta-cypermethrin on the bird cherry-oat aphid Rhopalosiphum padi (Hemiptera: Aphididae). J. Asia. Pac. Entomol. 22, 693–698. https://doi.org/10.1016/j.aspen.2019.04.012
Zhao, S., Guo, D., Zhu, Q., Dou, W., Guan, W., 2020. Display of Microbial Glucose Dehydrogenase and Cholesterol Oxidase on the Yeast Cell Surface for the Detection of Blood Biochemical Parameters. Biosensors 11. https://doi.org/10.3390/bios11010013