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Summary

This paper is concerned with a mixed type differential operator

𝐿𝑢 = 𝑘 (𝑦) 𝑢𝑥𝑥 − 𝑢𝑦𝑦 + 𝑏 (𝑦) 𝑢𝑥 + 𝑞 (𝑦) 𝑢,

which is initially defined with 𝐶∞
0,𝜋

(

Ω
)

, where Ω =
{(𝑥, 𝑦) ∶ −𝜋 ≤ 𝑥 ≤ 𝜋, −∞ < 𝑦 < ∞}, 𝐶∞

0,𝜋 is a set of infinitely differentiable
functions with compact support with respect to the variable 𝑦 and satisfying the
conditions:

𝑢(𝑖)𝑥 (−𝜋, 𝑦) = 𝑢(𝑖)𝑥 (𝜋, 𝑦) 𝑖 = 0, 1.

Regarding the coefficient 𝑘 (𝑦), with supposition that 𝑘 (𝑦) satisfies the condition:
𝑎) |𝑘 (𝑦)| ≥ 0 is a piecewise continuous and bounded function in ℝ = (−∞,∞).
The coefficients 𝑏 (𝑦) and 𝑞 (𝑦) are continuous functions in ℝ and can be unbounded
at infinity.
The operator 𝐿 admits closure in the space 𝐿2 (Ω) and the closure is also denoted by
𝐿.
Taking into consideration certain constraints on the coefficients 𝑏 (𝑦) 𝑞 (𝑦), apart
from the above-mentioned conditions, the existence of a bounded inverse operator is
proved in this paper; a condition guaranteeing compactness of the resolvent kernel is
found; and we also obtained two-sided estimates for singular numbers (𝑠-numbers).
Here we note that the estimate of singular numbers (𝑠-numbers) shows the rate of
approximation of the resolvent of the operator 𝐿 by linear finite-dimensional opera-
tors. It is given an example of how the obtained estimates for the 𝑠-numbers enable
to identify the estimates for the eigenvalues of the operator 𝐿. We note that the above
results are apparently obtained for the first time for a mixed-type operator in the case
of an unbounded domain with rapidly oscillating and greatly growing coefficients at
infinity.
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1 INTRODUCTION. STATEMENT OF RESULTS

Consider the differential operator

(𝐿 + 𝜇𝐼)𝑢 = 𝑘 (𝑦) 𝑢𝑥𝑥 − 𝑢𝑦𝑦 + 𝑏 (𝑦) 𝑢𝑥 + 𝑞 (𝑦) 𝑢 + 𝜇𝑢, (1)

which is initially defined with 𝐶∞
0,𝜋

(

Ω
)

, where Ω = {(𝑥, 𝑦) ∶ −𝜋 ≤ 𝑥 ≤ 𝜋, −∞ < 𝑦 < ∞}, 𝐶∞
0,𝜋 is a set of infinitely

differentiable functions with compact support with respect to the variable 𝑦 and satisfying the conditions:

𝑢(𝑖)𝑥 (−𝜋, 𝑦) = 𝑢(𝑖)𝑥 (𝜋, 𝑦) 𝑖 = 0, 1.

Regarding the coefficients 𝑏 (𝑦) and 𝑞 (𝑦), they are presumed as continuous functions.
In the sequel, it is assumed that the coefficients 𝑘 (𝑦), 𝑏 (𝑦), 𝑞 (𝑦) satisfy the conditions:
a) |𝑘 (𝑦)| ≥ 0 is a piecewise continuous, bounded function in ℝ = (−∞,∞);
i) |𝑏 (𝑦)| ≥ 𝛿0 > 0, 𝑞 (𝑦) ≥ 𝛿 > 0 are continuous functions in ℝ.
It is worth noting that functions 𝑏 (𝑦) and 𝑞 (𝑦) can be unbounded at infinity.
It is easily ascertainable that, depending on the signs of taken functions 𝑘 (𝑦) in ℝ, this operator 𝐿 pertains to different types.

In this regard, it is to be recalled that the mixed type elliptic-hyperbolic operators with parabolic degeneration are differential
operators, that either belongs to the elliptic type as one part of the considered domain or pertains to the hyperbolic type in the
other part of the domain. These parts are separated by a line of transition on which the operator degenerates into the parabolic
type [1-2]1,2.

In the case of a bounded domain, depending on the boundary conditions and the geometry of the domain, the spectral
properties of operators of mixed type were studied in [3-11]3,4,5,6,7,8,9,10,11 and the papers cited there.

However, in applications one often has to deal with such cases when a mixed type operator is given in an unbounded domain
with rapidly oscillating and greatly growing coefficients at infinity.

For example, an operator of the form

𝐿𝑢 = sin 𝑒10|𝑦|𝑢𝑥𝑥 − 𝑢𝑦𝑦 + 𝑒100 |𝑦|𝑢𝑥 + 𝑒100 |𝑦|𝑢, 𝑢 ∈ 𝐷 (𝐿)

where −∞ < 𝑦 < ∞, −∞ < 𝑥 < ∞.
Here you can see that the function 𝑘 (𝑦) = sin 𝑒10 |𝑦| oscillates rapidly at infinity when |𝑦| → ∞ and the operator often

changes its type. Hence it follows that at the points where the operator changes its type, the condition of uniform ellipticity and
hyperbolicity is violated. Thus, functions from the domain of the operator do not preserve their smoothness. Consequently, in this
case, various difficulties arise associated with the behavior of functions from the domain of the operator, and these difficulties,
in turn, affect the spectral characteristics of the operator of mixed type. It should also be noted here that the estimates of the
eigenvalues are influenced by the growth and oscillation of the coefficients 𝑏 (𝑦) and 𝑞 (𝑦) of the operator (1).

In this paper, we are interested in the following questions for the mixed type operator (1) with rapidly oscillating and greatly
growing coefficients:

- the existence of the resolvent;
- the existence of the estimate

‖

‖

‖

𝑘 (𝑦) 𝑢𝑥𝑥 − 𝑢𝑦𝑦
‖

‖

‖2
+ ‖

‖

𝑏 (𝑦) 𝑢𝑥‖‖2 + ‖𝑞 (𝑦) 𝑢‖2 ≤ 𝑐
(

‖𝐿𝑢‖2 + ‖𝑢‖2
)

(2)

for all 𝑢 ∈ 𝐷 (𝐿), where 𝐷 (𝐿) is the domain of the operator 𝐿, ‖ ⋅ ‖2 is the norm in 𝐿2 (Ω), 𝑐 > 0 is a constant;
- singular numbers (𝑠-numbers) estimates;
- eigenvalues estimates.
It is not difficult to verify that under condition 𝑎) and 𝑖) the operator 𝐿 + 𝜇 𝐼 admits closure and the closure is also denoted

by 𝐿 + 𝜇 𝐼 , 𝜇 ≥ 0.
Following the works [12-13]12,13, we introduce the following definition.

Definition 1.1. We say that the operator 𝐿 of mixed type is separable if estimate (2) holds for all 𝑢 ∈ 𝐷 (𝐿).
Here are the formulations of the main results.

†This work was supported by grants AP08856339 and AP08855802 of the Ministry of Education and Science of the Republic of Kazakhstan.
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Theorem 1.1. Let the conditions 𝑎) and 𝑖) be fulfilled. Then the operator 𝐿+ 𝜇 𝐼 is continuously invertible in the space 𝐿2 (Ω)
for 𝜇 ≥ 0 and the equality

𝑢 (𝑥, 𝑦) = (𝐿 + 𝜇 𝐼)−1 𝑓 =
∞
∑

𝑛=−∞

(

𝑙𝑛 + 𝜇 𝐼
)−1 𝑓𝑛 (𝑦) ⋅ 𝑒𝑖𝑛𝑥, (3)

holds, where 𝑓 (𝑥, 𝑦) ∈ 𝐿2 (Ω), 𝑓 (𝑥, 𝑦) =
∑∞

𝑛=−∞ 𝑓𝑛 (𝑦) ⋅ 𝑒𝑖𝑛𝑥, 𝑓𝑛 (𝑦) =< 𝑓 (𝑥, 𝑦) , 𝑒𝑖𝑛𝑥 >, 𝑖2 = −1, < ⋅ , ⋅ > is the scalar
product in 𝐿2 (Ω),

(

𝑙𝑛 + 𝜇 𝐼
)

𝑢 = −𝑢′′ (𝑦) +
(

−𝑛2𝑘(𝑦) + 𝑖𝑛𝑏(𝑦) + 𝑞(𝑦) + 𝜇
)

𝑢(𝑦), 𝑢 ∈ 𝐷(𝑙𝑛)
𝐷(𝑙𝑛) is the domains of the operators 𝑙𝑛 , 𝑛 = 0,±1,±2, ....

Suppose that the coefficients 𝑏 (𝑦), 𝑞 (𝑦), in addition to conditions a)-i), satisfy the conditions
𝑖𝑖) 𝜇0 = sup

|𝑦−𝑡|≤1

𝑏(𝑦)
𝑏(𝑡)

< ∞; 𝜇1 = sup
|𝑦−𝑡|≤1

𝑞(𝑦)
𝑞(𝑡)

< ∞;

𝑖𝑖𝑖) 𝑞 (𝑦) ≤ 𝐶0 ⋅ 𝑏2 (𝑦), for 𝑦 ∈ ℝ, 𝐶0 > 0 is a constant.

Theorem 1.2. Let the conditions 𝑎) and 𝑖) − 𝑖𝑖𝑖) be fulfilled. Then the operator 𝐿 + 𝜇 𝐼 is separable for 𝜇 ≥ 0.

Theorem 1.3. Let the conditions 𝑎) and 𝑖) − 𝑖𝑖𝑖) be fulfilled. Then the resolvent of the operator 𝐿 is compact if and only if

lim
|𝑦|→∞

𝑞 (𝑦) = ∞.

Definition 1.2.14 Let A be a linear completely continuous operator and let |𝐴| =
√

𝐴∗ ⋅ 𝐴, where 𝐴∗ is the adjoint operator to
A. The eigenvalues of the operator |𝐴| are called 𝑠-numbers of the operator 𝐴.

The nonzero 𝑠-numbers of the operator (𝐿 + 𝜇 𝐼)−1 be numbered according to decreasing magnitude and observing their
multiplicities, so that14

𝑠𝑘 (𝐿 + 𝜇 𝐼)−1 = 𝜆𝑘
[

(

(𝐿 + 𝜇 𝐼)−1
)∗ (𝐿 + 𝜇 𝐼)−1

]
1
2 , 𝑘 = 1, 2, ...

We introduce the counting function 𝑁 (𝜆) =
∑

𝑠𝑘>𝜆
1 of those 𝑠𝑘 greater than 𝜆 > 0.

Theorem 1.4. Let the conditions of Theorem 1.3 be satisfied. Then the estimate

𝑐−1
∞
∑

𝑛=−∞
𝜆−

1
2 𝑚𝑒𝑠

(

𝑦 ∈ ℝ ∶ 𝑄𝑛(𝑦) ≤ 𝑐−1𝜆−1
)

≤ 𝑁 (𝜆) ≤ 𝑐
∞
∑

𝑛=−∞
𝜆−1𝑚𝑒𝑠

(

𝑦 ∈ ℝ ∶ 𝐾𝑛(𝑦) ≤ 𝑐𝜆−1
)

holds for 𝑁 (𝜆), where 𝑄𝑛 (𝑦) = |

|

(𝑘 (𝑦) + 𝜀) 𝑛2 + 𝑖𝑛 𝑏 (𝑦) + 𝑐 (𝑦)|
|

, 𝐾𝑛 (𝑦) = |𝑛 ⋅ 𝑏 (𝑦) | + 𝑞 (𝑦) 𝑢, 𝜀 > 0 is such a number that the
inequality 𝑘 (𝑦) + 𝜀 > 𝜀0 > 0 holds.

Example 1. Consider the operator

(𝐿 + 𝜇 𝐼) 𝑢 = sin 𝑒10|𝑦|𝑢𝑥𝑥 − 𝑢𝑦𝑦 + 𝑒100 |𝑦|𝑢𝑥 + 𝑒100 |𝑦|𝑢 + 𝜇 𝑢,

𝑢 ∈ 𝐷 (𝐿) , 𝜇 ≥ 0.
It is easy to verify that all conditions of Theorems 1.1 and 1.2 are satisfied. Therefore, the operator 𝐿 + 𝜇 𝐼 is continuously

invertible in 𝐿2 (Ω) and separable, i.e. the estimate
‖

‖

‖

sin 𝑒10|𝑦| 𝑢𝑥𝑥 − 𝑢𝑦𝑦
‖

‖

‖2
+ ‖

‖

‖

𝑒100 |𝑦| 𝑢𝑥
‖

‖

‖2
+ ‖

‖

‖

𝑒100 |𝑦| 𝑢‖‖
‖

≤ 𝑐
(

‖𝐿𝑢‖2 + ‖𝑢‖2
)

,

holds, where 𝑐 > 0 is a constant, ‖ ⋅ ‖2 is the norm in 𝐿2 (Ω).
Example 2. Now, we show how we can use Theorem 1.4 to find estimates for the eigenvalues. As an example, for simplicity of
computation, consider the operator

(𝐿 + 𝜇 𝐼) 𝑢 = sin 𝑒10|𝑦|𝑢𝑥𝑥 − 𝑢𝑦𝑦 + (|𝑦| + 1) 𝑢𝑥 + (|𝑦| + 1) 𝑢 + 𝜇 𝑢,

𝑢 ∈ 𝐷 (𝐿) , 𝜇 ≥ 0.
Theorem 1.1 implies that if s is a singular point of an operator, then s is a singular number of one of the opera-

tors
(

𝑙𝑛 + 𝜇 𝐼
)−1 (𝑛 = 0,±1,±2, ...), and vice versa. Further, we denote by 𝑠𝑘,𝑛 the singular numbers of the operator

(

𝑙𝑛 + 𝜇 𝐼
)−1 (𝑛 = 0,±1,±2, ...) when 𝜇 ≥ 0. Therefore, taking into account the last statement, according to Theorem 1.1 and

Lemma 4.5, we find
𝑐−1

(𝐾 (𝑦) + 𝜀)2∕3 (|𝑛| + 1)4∕3 𝑘2∕3
≤ 𝑠𝑘,𝑛 ≤

𝑐
(|𝑛| + 1)1∕2 𝑘1∕2

, 𝑘 = 1, 2, ..., 𝑛 = 0, ±1, ±2, ... (4)
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where 𝑐 > 0 is constant (independent of 𝑛, 𝑘).
From the result of Theorem 1.1, that is, it follows from representation (3) that the operator (𝐿 + 𝜇 𝐼)−1 has an infinite number

of eigenvalues; the last proposition follows from the fact that the operator
(

𝑙0 + 𝜇 𝐼
)−1 is self-adjoint and compact operator if

𝑛 = 0. The compactness of the operator
(

𝑙0 + 𝜇 𝐼
)−1 follows from Theorem 1.3. Therefore, using the estimate (4) and Weyl’s

inequality14, as well as inequality 𝑒𝑘 ⋅ 𝑘! ≥ 𝑘𝑘, 𝑘 = 1, 2, 3, ..., we obtain that

|

|

𝜆𝑛,𝑘||
𝑘 ≤

𝑘
∏

𝑗=1

|

|

|

𝜆𝑗,𝑛
|

|

|

≤
𝑘
∏

𝑗=1
𝑠𝑗,𝑛 ≤

𝑐𝑘 (𝑘!)−
1
2

(|𝑛| + 1)
1
2
𝑘
≤ 𝑐𝑘 ⋅ 𝑒

1
2
𝑘

(|𝑛| + 1)
1
2
𝑘 𝑘

1
2
𝑘

Hence
|

|

𝜆𝑛,𝑘|| ≤
𝑐 ⋅ 𝑒

1
2

(|𝑛| + 1)
1
2 𝑘

1
2

, 𝑘 = 1, 2, 3..., 𝑛 = 0,±1,±2, ..., (5)

where 𝜆𝑛, 𝑘 are eigenvalues of the operator (𝐿 + 𝜇 𝐼)−1.
An operator of mixed type has been studied in the paper [15]15 for the case when the coefficient satisfies the condition:

𝑦 ⋅ 𝑘 (𝑦) > 0 for 𝑦 ≠ 0 and 𝑘 (0) = 0.
Questions on the existence and compactness of the resolvent of a mixed-type operator has been studied in [16]16, when

the coefficient 𝑘 (𝑦) satisfies the condition: 𝑘 (𝑦) is a piecewise continuous and bounded function in ℝ = (−∞,∞) and is not
identically zero in any interval.

In contrast to these works, in this paper it is shown that operator (1) is separable for a large class of rapidly oscillating
coefficients 𝑘 (𝑦) (for example, 𝑘 (𝑦) = sin 𝑒100 |𝑦|). In addition, in this paper, a two-sided estimate for the distribution function of
singular numbers (𝑠-numbers) is obtained for the resolvent of the operator (𝐿 + 𝜇 𝐼). The found estimate shows that the growth
of the coefficients 𝑏 (𝑦), 𝑞 (𝑦) of the operator (1) affects the estimates of the singular and eigenvalues. An example is given.

2 PROOF OF THEOREM 1.1

Lemma 2.1. Let conditions 𝑎) and 𝑖) be satisfied and 𝜇 ≥ 0. Then the estimate

‖(𝐿 + 𝜇 𝐼) 𝑢‖2 ≥ 𝑐 ‖𝑢‖ 2,

holds for all 𝑢 ∈ 𝐷 (𝐿), where ‖ ⋅ ‖2 is the norm in the space 𝐿2 (Ω), 𝑐 = 𝑐
(

𝛿0, 𝛿
)

> 0.

Proof. Taking the conditions 𝑎) and 𝑖) into account and using the functionals < (𝐿 + 𝜇 𝐼) 𝑢, 𝑢 > and < (𝐿 + 𝜇 𝐼) 𝑢, 𝑢𝑥 > we
obtain the proof of Lemma 2.1, where < ⋅ , ⋅ > is the scalar product in 𝐿2 (Ω).

Direct computations show that the study of operator (1) can be reduced, using the Fourier method, to the study of the following
second-order differential operator with a sign-variable parameter

(

𝑙𝑛 + 𝜇 𝐼
)

𝑢 = − 𝑢′′ (𝑦) +
(

−𝑘 (𝑦) 𝑛2 + 𝑖𝑛 𝑏 (𝑦) + 𝑞 (𝑦) + 𝜇
)

𝑢, 𝑢 ∈ 𝐷(𝑙𝑛), 𝑛 = 0,±1,±2, ...

If 𝑛 = 0 then the above operator is the well-known Sturm-Liouville operator.
When |𝑛| → ∞ in the coefficient

(

−𝑘 (𝑦) 𝑛2 + 𝑖𝑛 𝑏 (𝑦) + 𝑞 (𝑦) + 𝜇
)

and when 𝑘 (𝑦) ≡ 1, the term −𝑘 (𝑦) 𝑛2 → −∞. Con-
sequently, the differential operator is not semi-bounded. In this case, a completely different situation arises compared to the
Sturm-Liouville operator.

Let Δ𝑗 = (𝑗 − 1, 𝑗 + 1), 𝑗 ∈ 𝑍. Then
⋃

{𝑗} Δ𝑗 = ℝ. Take a set of non-negative functions
{

𝜑𝑗
}∞
𝑗=−∞ (𝑗 ∈ 𝑍) from 𝐶∞

0 (ℝ)
such that supp𝜑𝑗 ⊆ Δ𝑗 ,

∑∞
𝑗=−∞ 𝜑2

𝑗 (𝑦) ≡ 1.
Let us extend 𝑏 (𝑦), 𝑞 (𝑦) from Δ𝑗 to the whole space ℝ so that their extensions 𝑏𝑗 (𝑦), 𝑞𝑗 (𝑦) be bounded and periodic functions

of the same period.
We denote by 𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼 the closure of the operator

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)

𝑢 = −𝑢′′ (𝑦) +
(

−𝑘 (𝑦) 𝑛2 + 𝑖𝑛
(

𝑏𝑗 (𝑦) + 𝛼
)

+ 𝑞𝑗 (𝑦) + 𝜇
)

𝑢

defined on 𝐶∞
0 (ℝ), where the sign of the real number 𝛼 coincides with the sign of 𝑏 (𝑦), i.e. 𝛼 ⋅ 𝑏 (𝑦) > 0 for 𝑦 ∈ ℝ. The number

𝛼 was introduced in order to obtain estimates for the norm of the operator 𝑑
𝑑𝑦

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)

. At the end of the paper, we will get
rid of this number.
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Lemma 2.2. Let the conditions 𝑎) and 𝑖) be satisfied and 𝜇 ≥ 0. Then the operator 𝑙𝑛,𝑗,𝛼 +𝜇 𝐼 has a continuous inverse operator
(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)−1 for 𝜇 ≥ 0 defined on the whole 𝐿2 (ℝ).

Lemma 2.2 is proved using the computations used in the proof of Lemma 2.2 from [17]17.
We denote by 𝑙𝑛,𝛼 + 𝜇 𝐼 the closure of the differential operator

(

𝑙𝑛,𝛼 + 𝜇 𝐼
)

𝑢 = −𝑢′′ (𝑦) +
(

−𝑘 (𝑦) 𝑛2 + 𝑖𝑛 (𝑏 (𝑦) + 𝛼) + 𝑞 (𝑦) + 𝜇
)

𝑢

in the space 𝐿2 (ℝ), originally defined on 𝐶∞
0 (ℝ).

We introduce the following bounded operator in 𝐿2 (ℝ):

𝐾𝜇,𝛼𝑓 =
∑

{𝑗}
𝜑𝑗

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)−1 𝜑𝑗𝑓.

The following lemma is proved by repeating the computations and arguments used in [17]17.

Lemma 2.3. Let the conditions 𝑎) and 𝑖) be satisfied. Then there exists a number 𝜇0 > 0 such that the operator 𝑙𝑛,𝛼 + 𝜇 𝐼 for
𝜇 ≥ 𝜇0 is boundedly invertible, and the resolvent of the operator 𝑙𝑛,𝛼 satisfies the equality

(

𝑙𝑛,𝛼 + 𝜇 𝐼
)−1 𝑓 = 𝐾𝜇,𝛼

(

𝐼 − 𝐵𝜇,𝛼
)−1 𝑓,

where 𝐵𝜇,𝛼𝑓 =
∑

{𝑗} 𝜑
′′
𝑗

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)−1 𝜑𝑗𝑓 + 2

∑

{𝑗} 𝜑
′
𝑗
𝑑
𝑑𝑦

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)−1 𝜑𝑗𝑓, 𝑓 ∈ 𝐿2 (ℝ).

Lemma 2.4. Let the conditions 𝑎) and 𝑖) be satisfied and 𝜇0 > 0. Then the operator 𝑙𝑛 + 𝜇 𝐼 is boundedly invertible and the
equality

(

𝑙𝑛 + 𝜇 𝐼
)−1 𝑓 =

(

𝑙𝑛,𝛼 + 𝜇 𝐼
)−1 (𝐼 − 𝐴𝜇,𝛼

)−1 𝑓, 𝑓 ∈ 𝐿2 (ℝ) ,
holds, where 𝐴𝜇,𝛼 = 𝑖𝑛𝛼

(

𝑙𝑛,𝛼 + 𝜇 𝐼
)−1, and ‖

‖

‖

𝐴𝜇,𝛼
‖

‖

‖2→2
< 1.

This lemma is proved by the same method as Lemma 3.4 in [17]17.

Proof of Theorem 1.1. Lemma 2.4 implies that

𝑢𝑘 (𝑥, 𝑦) =
𝑘
∑

𝑛=−𝑘

(

𝑙𝑛 + 𝜇 𝐼
)−1 𝑓𝑛 (𝑦) ⋅ 𝑒𝑖𝑛𝑥 (6)

is the solution to the problem
(𝐿 + 𝜇 𝐼) 𝑢𝑘 (𝑥, 𝑦) = 𝑓𝑘 (𝑥, 𝑦) ,

𝑢(𝑖)𝑘,𝑥 (−𝜋, 𝑦) = 𝑢(𝑖)𝑘,𝑥 (𝜋, 𝑦) , 𝑖 = 0, 1,

where𝑓𝑘 (𝑥, 𝑦)
𝐿2
→𝑓 (𝑥, 𝑦), 𝑓𝑘 (𝑥, 𝑦) =

∑𝑘
𝑛=−𝜅 𝑓𝑛 (𝑦) ⋅ 𝑒

𝑖𝑛𝑥, 𝑖2 = −1 .
Lemma 2.1 implies that

‖

‖

𝑢𝑘 (𝑥, 𝑦) − 𝑢𝑚 (𝑥, 𝑦)‖
‖2 ≤

1
𝑐
‖

‖

𝑓𝑘 (𝑥, 𝑦) − 𝑓𝑚 (𝑥, 𝑦)‖
‖2 → 0, as 𝑘, 𝑚 → ∞.

Hence, due to the completeness of space 𝐿2 (ℝ), it follows that

𝑢𝑘 (𝑥, 𝑦)
𝐿2
→𝑢 (𝑥, 𝑦) as 𝑘 → ∞. (7)

Using equality (6) and (7), we have that

𝑢 (𝑥, 𝑦) = (𝐿 + 𝜇 𝐼)−1 𝑓 (𝑥, 𝑦) =
∞
∑

𝑛=−∞

(

𝑙𝑛 + 𝜇 𝐼
)−1 𝑓𝑛 (𝑦) ⋅ 𝑒𝑖𝑛𝑥 (8)

is a strong solution to the problem

(𝐿 + 𝜆𝐼) 𝑢 = 𝑓, 𝑢(𝑖)𝑥 (−𝜋, 𝑦) = 𝑢(𝑖)𝑥 (𝜋, 𝑦) , 𝑖 = 0, 1 (9)

for any 𝑓 (𝑥, 𝑦) ∈ 𝐿2 (Ω).
Definition 2.1. A function 𝑢 (𝑥, 𝑦) ∈ 𝐿2 (Ω) is called a strong solution to the problem (9) if there is a sequence

{

𝑢𝑘 (𝑥, 𝑦)
}∞
𝑘=1 ⊂

𝐶∞
0,𝜋 (Ω) such that

‖

‖

𝑢𝑘 − 𝑢‖
‖2 → 0, ‖

‖

(𝐿 + 𝜇 𝐼) 𝑢𝑘 − 𝑓‖
‖2 → 0 as 𝑘 → ∞.

Using the last definition, it is easy to verify that formula (8) is an inverse operator to the closed operator 𝐿 + 𝜇 𝐼 . Hence, by
virtue of Lemma 2.1 and the equality (9), we obtain that Theorem 1.1 holds for all 𝜇 ≥ 0. Theorem 1.1 is completely proved.
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3 PROOF OF THEOREM 1.2.

The existence of the resolvent of the operator 𝑙𝑛,𝑗,𝛼 is proved in Lemma 2.2. Let us show several properties of the resolvent of
the operator 𝑙𝑛,𝑗,𝛼 in the following lemma.

Lemma 3.1. Let the conditions 𝑎) and 𝑖) − 𝑖𝑖𝑖) be satisfied. Then the following inequalities
‖

‖

‖

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)−1

‖

‖

‖2→2
≤ 1

|𝑛| ⋅ ||
|

𝑏
(

�̃�𝑗
)

|

|

|

, 𝑛 ≠ 0; (10)

‖

‖

‖

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)−1

‖

‖

‖2→2
≤ 2 ⋅ 𝑐

𝑞
(

�̄�𝑗
)

+ 𝜇
, 𝑐 > 0; (11)

‖

‖

‖

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)−1

‖

‖

‖2→2
≤ 𝑐

(𝛿 + 𝜇)
1
2

, 𝑐 = 𝑐 (𝛿) > 0; (12)

‖

‖

‖

‖

𝑑
𝑑𝑦

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)−1‖

‖

‖

‖2→2
≤ 𝑐

(𝛿 + 𝜇)
1
4

, 𝑐 > 0, (13)

hold, where ‖ ⋅ ‖2→2 is the norm of the operator 𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼 from 𝐿2 (ℝ) to 𝐿2 (ℝ),
|

|

|

𝑏
(

�̃�𝑗
)

|

|

|

= min
𝑦∈Δ̄𝑗

|𝑏 (𝑦)|, 𝑞
(

�̄�𝑗
)

= min
𝑦∈Δ̄𝑗

𝑞 (𝑦).

Proof. Let 𝑢 ∈ 𝐶∞
0 (ℝ). Then, we have

<
(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)

𝑢, 𝑢 >= ∫
ℝ

(

|

|

𝑢′|
|

2 +
(

−𝑘 (𝑦) 𝑛2 + 𝑞𝑗 (𝑦) + 𝜇
)

|𝑢|2
)

𝑑𝑦 + ∫
ℝ

𝑖𝑛
(

𝑏𝑗 (𝑦) + 𝛼
)

|𝑢|2 𝑑𝑦 (14)

Hence, taking the conditions 𝑎) and 𝑖) into account and using the property of complex numbers, and also by virtue of the
Cauchy-Bunyakovsky inequality, we obtain

‖

‖

‖

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)

𝑢‖‖
‖

2

2
≥ |𝑛|2

(

|

|

|

𝑏𝑗
(

�̃�𝑗
)

|

|

|

+ |𝛼|
)2

‖𝑢‖22 (15)

Considering that 𝑏
(

�̃�𝑗
)

= min
𝑦∈Δ̄𝑗

|

|

|

𝑏𝑗 (𝑦)
|

|

|

= min
𝑦∈Δ̄𝑗

|𝑏 (𝑦)| on the segment Δ𝑗 , from (15) we find

‖

‖

‖

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)

𝑢‖‖
‖

2

2
≥ |𝑛|2 ⋅ ||

|

𝑏
(

�̃�𝑗
)

|

|

|

2
⋅ ‖𝑢‖22 ,

where 𝑏
(

�̃�𝑗
)

= min
𝑦∈Δ̄𝑗

|𝑏 (𝑦)|.

By virtue of the continuity of the norm, the last inequality holds for all 𝑢 ∈ 𝐷
(

𝑙𝑛,𝑗,𝛼
)

. Hence, we finally have
‖

‖

‖

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)−1

‖

‖

‖2→2
≤ 1

|𝑛| ⋅ ||
|

𝑏
(

�̃�𝑗
)

|

|

|

, 𝑛 ≠ 0.

The inequality (10) is proved.
The inequalities (12) and (13) are proved using the computations used in the proof of Lemma 6 from [18]18 and Lemma 2.3

from [17]17.
From equality (14), by virtue of the Cauchy inequality with "𝜀 > 0", we obtain

1
2
(

𝑞
(

�̄�𝑗
)

+ 𝜇
)

‖

‖

‖

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)

𝑢‖‖
‖

2

2
+

𝑞
(

�̄�𝑗
)

+ 𝜇
2

‖𝑢‖22 ≥

≥ ∫
ℝ

[

|

|

𝑢′|
|

2 +
(

𝑞𝑗 (𝑦) + 𝜇 𝐼
)

|𝑢|2
]

𝑑𝑦 − 𝑛2 ∫
ℝ

|𝑘 (𝑦)| |𝑢|2 𝑑𝑦,

where 𝜀 = 𝑞
(

�̄�𝑗
)

+ 𝜇.
Hence

1
2
(

𝑞
(

�̄�𝑗
)

+ 𝜇
)

‖

‖

‖

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)

𝑢‖‖
‖

2

2
≥ ∫

ℝ

|

|

𝑢′|
|

2 𝑑𝑦 +
𝑞
(

�̄�𝑗
)

+ 𝜇
2 ∫

ℝ

|𝑢|2 𝑑𝑦 − 𝑛2 ∫
ℝ

|𝑘 (𝑦)| ⋅ |𝑢|2 𝑑𝑦, (16)

where 𝑞
(

�̄�𝑗
)

= min
𝑦∈Δ̄𝑗

𝑞 (𝑦).
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Multiplying both sides of the inequality (15) by the number 𝑐
2(𝑞(�̄�𝑗)+𝜇) and taking the condition 𝑖𝑖) into account, we find

𝑐
2
(

𝑞
(

�̄�𝑗
)

+ 𝜇
)

‖

‖

‖

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)

𝑢‖‖
‖

2

2
≥

𝑐 ⋅ 𝑛2
(

𝑏
(

�̃�𝑗
)

+ |𝛼|
)2

2𝜇1
(

𝑞
(

�̄�𝑗
)

+ 𝜇
) ⋅ ‖𝑢‖22 , (17)

where 𝑐 > 0 is a constant.
Combining (16) and (17) we come to the inequality

𝑐
𝑞
(

�̄�𝑗
)

+ 𝜇
‖

‖

‖

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)

𝑢‖‖
‖

2

2
≥ ‖

‖

𝑢′‖
‖

2
2 +

𝑞
(

�̄�𝑗
)

+ 𝜇
2

⋅ ‖𝑢‖22 +

+𝑛2 ∫
ℝ

⎡

⎢

⎢

⎢

⎣

𝑐 ⋅
(

|

|

|

𝑏
(

�̃�𝑗
)

|

|

|

+ |𝛼|
)2

2𝜇1 ⋅
(

𝑞
(

�̄�𝑗
)

+ 𝜇
) − |𝑘 (𝑦)|

⎤

⎥

⎥

⎥

⎦

|𝑢|2 𝑑𝑦.

From the last inequality, taking the conditions 𝑎), 𝑖𝑖𝑖) into account and choosing 𝛼 and 𝑐 > 0, so that 𝑐⋅(|𝑏(�̃�𝑗)|+|𝛼|)2
2𝜇1⋅(𝑞(�̄�𝑗)+𝜇) − |𝑘 (𝑦)| ≥ 0,

we obtain
2 ⋅ 𝑐 ⋅ ‖‖

‖

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)

𝑢‖‖
‖

2

2
≥
(

𝑞
(

�̄�𝑗
)

+ 𝜇
)2

⋅ ‖𝑢‖22 . (18)
From (18), by virtue of the definition of the norm of the operator 𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼 , we find

‖

‖

‖

(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)−1

‖

‖

‖2→2
≤ 2 ⋅ 𝑐

𝑞
(

�̄�𝑗
)

+ 𝜇
.

Lemma 3.1 is proved.

Lemma 3.2. Let the conditions 𝑎) and 𝑖) − 𝑖𝑖𝑖) be satisfied and let 𝜇 > 0 such that ‖‖
‖

𝐵𝜇,𝛼
‖

‖

‖2→2
< 1. Then the estimate

‖

‖

‖

𝑝 (𝑦) |𝑛|𝛼
(

𝑙𝑛,𝛼 + 𝜇 𝐼
)−1

‖

‖

‖

2

2→2
≤ 𝑐 (𝜆) sup

{𝑗}

‖

‖

‖

𝑝 (𝑦) |𝑛|𝛼 ⋅ 𝜑𝑗
(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)−1

‖

‖

‖

2

2→2
,

holds, where 𝛼 = 0, 1, 𝑝 (𝑦)is a continuous function in ℝ.

Lemma 3.2 is proved by the same method as Lemma 3.7 in [17]17.

Lemma 3.3. Let the conditions 𝑎) and 𝑖) − 𝑖𝑖𝑖) be satisfied and let 𝜇 > 0 such that ‖‖
‖

𝐵𝜇,𝛼
‖

‖

‖2→2
< 1. Then the estimates

𝑎) ‖‖
‖

𝑞 (𝑦)
(

𝑙𝑛,𝛼 + 𝜇 𝐼
)−1

‖

‖

‖

2

2→2
≤ 𝑐1 < ∞;

𝑏) ‖‖
‖

𝑖𝑛 𝑏 (𝑦)
(

𝑙𝑛,𝛼 + 𝜇 𝐼
)−1

‖

‖

‖

2

2→2
≤ 𝑐2 < ∞;

𝑐) ‖‖
‖

𝑑
𝑑𝑦

(

𝑙𝑛,𝛼 + 𝜇 𝐼
)−1

‖

‖

‖

2

2→2
≤ 𝑐3 < ∞, 𝑐1 > 0, 𝑐2 > 0, 𝑐3 > 0 are constants

hold.

Proof. By virtue of Lemma 3.2, we find
‖

‖

‖

𝑞 (𝑦)
(

𝑙𝑛,𝛼 + 𝜇 𝐼
)−1

‖

‖

‖

2

2→2
≤ 𝑐 (𝜇) sup

{𝑗}

‖

‖

‖

𝑞 (𝑦) 𝜑𝑗
(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)−1

‖

‖

‖

2

2→2
,

From this and Lemma 3.1, taking the condition 𝑖𝑖) into account, we find that
‖

‖

‖

𝑞 (𝑦)
(

𝑙𝑛,𝛼 + 𝜇 𝐼
)−1

‖

‖

‖

2

2→2
≤ 𝑐 (𝜇) sup

{𝑗}

‖

‖

‖

𝑞 (𝑦) 𝜑𝑗
(

𝑙𝑛,𝑗,𝛼 + 𝜇 𝐼
)−1

‖

‖

‖

2

2→2
≤

≤ 𝑐 (𝜇) sup
|𝑦−𝑡|≤1

𝑞 (𝑦)
𝑞 (𝑡)

≤ 𝑐1 < ∞.

The inequality 𝑎) is proved.
Repeating the above computations and arguments, and also using Lemmas 3.1 and 3.2, we obtain

‖

‖

‖

𝑖𝑛 𝑏 (𝑦)
(

𝑙𝑛,𝛼 + 𝜇 𝐼
)−1

‖

‖

‖

2

2→2
≤ 𝑐 (𝜇) sup

|𝑦−𝑡|≤1

𝑏 (𝑦)
𝑏 (𝑡)

≤ 𝑐2 < ∞.

The inequality 𝑏) is proved.
In the same way, repeating the computations and arguments that were used in the proof of the inequalities 𝑎) and 𝑏), we obtain

the proof of the item 𝑐).
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Now, using Lemma 3.3 for the resolvent of the operator 𝑙𝑛, we have the following lemma.

Lemma 3.4. Let the conditions 𝑎) and 𝑖) − 𝑖𝑖𝑖) be satisfied. Then the following estimates
𝑎) ‖‖

‖

𝑞 (𝑦)
(

𝑙𝑛 + 𝜇 𝐼
)−1

‖

‖

‖

2

2→2
≤ 𝑐4 < ∞;

𝑏) ‖‖
‖

𝑖𝑛 𝑏 (𝑦)
(

𝑙𝑛 + 𝜇 𝐼
)−1

‖

‖

‖

2

2→2
≤ 𝑐5 < ∞;

𝑐) ‖‖
‖

𝑑
𝑑𝑦

(

𝑙𝑛 + 𝜇 𝐼
)−1

‖

‖

‖

2

2→2
≤ 𝑐6 < ∞

hold, where ‖ ⋅ ‖2→2 is the norm of an operator from 𝐿2 (ℝ) to 𝐿2 (ℝ), 𝑐4 > 0, 𝑐5 > 0, 𝑐6 > 0 are constants.

Proof. Lemma 2.4 implies
‖

‖

‖

𝑞 (𝑦)
(

𝑙𝑛 + 𝜇 𝐼
)−1 𝑓‖‖

‖

2

2
= ‖

‖

‖

𝑞 (𝑦)
(

𝑙𝑛,𝛼 + 𝜇 𝐼
)−1 (𝐼 − 𝐴𝜇,𝛼

)

𝑓‖‖
‖

2

2
.

Since the operators 𝑞 (𝑦)
(

𝑙𝑛,𝛼 + 𝜇 𝐼
)−1 and

(

𝐼 − 𝐴𝜇,𝛼
)−1 are bounded, from the last equality we obtain that

‖

‖

‖

𝑞 (𝑦)
(

𝑙𝑛 + 𝜇 𝐼
)−1 𝑓‖‖

‖

2

2
≤ 𝑐4 ⋅ ‖𝑓‖

2
2

or
‖𝑞 (𝑦) 𝑢‖22 ≤ 𝑐4 ⋅

‖

‖

‖

(

𝑙𝑛 + 𝜇 𝐼
)

𝑢‖‖
‖

2

2
, (19)

where
(

𝑙𝑛 + 𝜇 𝐼
)

𝑢 = 𝑓 , 𝑢 =
(

𝑙𝑛 + 𝜇 𝐼
)−1 𝑓 , 𝑐4 > 0 is a constant. Here we note that the boundedness of the operators

𝑞 (𝑦)
(

𝑙𝑛,𝛼 + 𝜇 𝐼
)−1 and

(

𝐼 − 𝐴𝜇,𝛼
)−1 follows from Lemmas 2.4 and 3.3. From (19), according to the definition of the operator

norm, we have
‖

‖

‖

𝑞 (𝑦)
(

𝑙𝑛 + 𝜇 𝐼
)−1

‖

‖

‖2→2
= 𝑐4 < ∞.

The item 𝑎) of Lemma 3.4 is proved.
The items 𝑏) and 𝑐) are proved by the same method as the item 𝑎) of Lemma 3.4, that is, the following inequalities

‖𝑖𝑛 𝑏 (𝑦) 𝑢‖22 ≤ 𝑐5 ⋅
‖

‖

‖

(

𝑙𝑛 + 𝜇 𝐼
)

𝑢‖‖
‖

2

2
, (20)

‖

‖

‖

‖

𝑑
𝑑𝑦

𝑢
‖

‖

‖

‖

2

2
≤ 𝑐6 ⋅

‖

‖

‖

(

𝑙𝑛 + 𝜇 𝐼
)

𝑢‖‖
‖

2

2
, (21)

hold, where 𝑐5 > 0, 𝑐6 > 0 are constants.

Lemma 3.5. Let the conditions 𝑎) and 𝑖) − 𝑖𝑖𝑖) be satisfied. Then the inequality
‖

‖

𝑢′‖
‖2 + ‖𝑞 (𝑦) 𝑢‖2 + ‖𝑖𝑛 𝑏 (𝑦) 𝑢‖2 ≤ 𝑐 ⋅

(

‖

‖

𝑙𝑛𝑢‖‖ + ‖𝑢‖2
)

,

holds, where 𝑐 > 0 is a constant.

The proof of Lemma 3.5 follows from the inequalities (19)-(21).

Proof of Theorem 1.2. The representation (8) implies that

𝑏 (𝑦) 𝑢𝑥 = 𝑏 (𝑦) 𝜕
𝜕𝑥

(𝐿 + 𝜇 𝐼)−1 𝑓 = 𝑏 (𝑦) 𝜕
𝜕𝑥

∞
∑

𝑛=−∞

(

𝑙𝑛 + 𝜇 𝐼
)−1 𝑓𝑛 (𝑦) ⋅ 𝑒𝑖𝑛𝑥 =

= 𝑏 (𝑦)
∞
∑

𝑛=−∞
𝑖𝑛

(

𝑙𝑛 + 𝜇 𝐼
)−1 𝑓𝑛 (𝑦) ⋅ 𝑒𝑖𝑛𝑥 =

∞
∑

𝑛=−∞
𝑏 (𝑦) 𝑖𝑛

(

𝑙𝑛 + 𝜇 𝐼
)−1 𝑓𝑛 (𝑦) ⋅ 𝑒𝑖𝑛𝑥.

Hence, since the system
{

𝑒𝑖𝑛𝑥
}∞
𝑛=−∞ is orthonormal, we obtain

‖

‖

𝑏 (𝑦) 𝑢𝑥‖‖
2
2 ≤ sup

{𝑗}

‖

‖

‖

𝑖𝑛 𝑏 (𝑦)
(

𝑙𝑛 + 𝜇 𝐼
)−1

‖

‖

‖

2

2→2
⋅ ‖𝑓 (𝑥, 𝑦)‖22 .

From the last inequality and using the item 𝑏) of Lemma 3.4, we find that
‖

‖

𝑏 (𝑦) 𝑢𝑥 (𝑥, 𝑦)‖‖
2
2 ≤ 𝑐5 ⋅ ‖(𝐿 + 𝜇𝐼)𝑢‖2 , (22)

where 𝑐5 > 0 is the constant from Lemma 3.4, (𝐿 + 𝜇𝐼)𝑢 = 𝑓 (𝑥, 𝑦) from the equality (9).
Repeating the above computations and arguments and taking Lemma 3.4 into account, we have

‖𝑞 (𝑦) 𝑢 (𝑥, 𝑦)‖22 ≤ 𝑐4 ⋅ ‖(𝐿 + 𝜇𝐼)𝑢‖2 , (23)
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‖

‖

‖

‖

𝜕𝑢 (𝑥, 𝑦)
𝜕𝑦

‖

‖

‖

‖

2

2
≤ 𝑐6 ⋅ ‖(𝐿 + 𝜇𝐼)𝑢‖2 , (24)

where 𝑐4 > 0, 𝑐6 > 0 from Lemma 3.4.
Now, using inequalities (22) - (23), we have

‖

‖

‖

𝑘 (𝑦) 𝑢𝑥𝑥 − 𝑢𝑦𝑦
‖

‖

‖2
= ‖

‖

(𝐿 + 𝜇 𝐼) − 𝑏 (𝑦) 𝑢𝑥 − 𝑞 (𝑦) 𝑢 − 𝜇 𝑢‖
‖2 ≤ 𝑐7 ⋅ ‖(𝐿 + 𝜇 𝐼) 𝑢‖22 , (25)

where 𝑐7 > 0 is a constant.
Hence, taking the inequalities (22)-(24) into account, we obtain that

‖

‖

‖

𝑘 (𝑦) 𝑢𝑥𝑥 − 𝑢𝑦𝑦
‖

‖

‖2
+ ‖

‖

𝑏 (𝑦) 𝑢𝑥‖‖2 + ‖𝑞 (𝑦) 𝑢‖2 +
‖

‖

‖

𝑢𝑦
‖

‖

‖

≤ 𝑐 ⋅
(

‖𝐿𝑢‖2 + ‖𝑢‖2
)

,

where 𝑐 > 0 is independent of 𝑢 (𝑥, 𝑦). Theorem 1.2 is proved.

4 PROOFS OF THEOREMS 1.3-1.4. COMPACTNESS AND ESTIMATION OF SINGULAR
NUMBERS (S-NUMBERS) OF THE RESOLVENT OF THE OPERATOR 𝐿 + 𝜇𝐼

Proof of Theorem 1.3. In order to prove Theorem 1.3, we first give the following lemma.

Lemma 4.1. Let the conditions 𝑎) and 𝑖) − 𝑖𝑖𝑖) be satisfied. Then the resolvent of the operator 𝑙𝑛 (𝑛 = 0,±1,±2, ...) is compact
if and only if

lim
|𝑦|→∞

𝑞 (𝑦) = ∞.

Lemma 4.1 is proved in exactly the same way as Theorems 1.2 and 1.3 from [17]17.
Now, let us prove Theorem 1.3. Since the operator

(

𝑙𝑛 + 𝜇 𝐼
)−1, 𝜇 ≥ 0 is completely continuous for each 𝑛 (𝑛 = 0,±1,±2, ...),

by virtue of Lemma 4.1, then it can be shown from Theorem 1.1 and from representation (3) with the help of well-known
methods with a 𝜀-net that the operator (𝐿 + 𝜇 𝐼)−1 is completely continuous if and only if

lim
|𝑛|→∞

‖

‖

‖

(

𝑙𝑛 + 𝜇 𝐼
)−1

‖

‖

‖2→2
= 0. (26)

It is easy to see that equality (26) follows from Lemmas 3.4-3.5. Theorem 1.3 is proved.

To prove Theorem 1.4, we need the following lemmas.
We introduce the following sets, which are closely related to the domain of the operator 𝑙𝑛:

𝑀 =
{

𝑢 ∈ 𝐿2 (ℝ) ∶ ‖

‖

𝑙𝑛𝑢‖‖
2
2 + ‖𝑢‖22 ≤ 1

}

,

�̃�𝑐0 =
{

𝑢 ∈ 𝐿2 (ℝ) ∶ ‖

‖

𝑢′ (𝑦)‖
‖

2
2 + ‖𝑖𝑛𝑏 (𝑦) 𝑢‖22 + ‖𝑞 (𝑦) 𝑢‖22 ≤ 𝑐0

}

,

̃̃𝑀𝑐−10
=
{

𝑢 ∈ 𝐿2 (ℝ) ∶ ‖

‖

𝑢′′ (𝑦)‖
‖

2
2 +

‖

‖

‖

(𝑘 (𝑦) + 𝜀) 𝑛2𝑢‖‖
‖

2

2
+ ‖𝑖𝑛𝑏 (𝑦) 𝑢‖22 + ‖𝑞 (𝑦) 𝑢‖22 ≤ 𝑐−10

}

,

where 𝑐0 is a constant number independent of 𝑢 (𝑦) and 𝑛, 𝑘 (𝑦) + 𝜀 > 𝜀0 > 0.

Lemma 4.2. Let the conditions 𝑎) and 𝑖) − 𝑖𝑖𝑖) be satisfied. Then the inclusions
̃̃𝑀𝑐−10

⊆ 𝑀 ⊆ �̃�𝑐0

hold.

Proof. Taking Lemma 3.5 into account and using the computations used in the proof of Lemma 2.4 [19]19, we prove the inclusion
𝑀 ⊆ �̃�𝑐0 . The inclusion ̃̃𝑀𝑐−10

⊆ 𝑀 is proved by the same method as Lemma 2.4 in [19]19. Lemma 4.2 is proved.

Definition 4.1.14 The magnitude
𝑑𝑘 = inf

{𝑦𝑘}
sup
𝑢∈𝑀

inf
𝜗∈𝑦𝑘

‖𝑢 − 𝜗‖2 ,

is called Kolmogorov k-widths (diameter) of the set M in the space 𝐿2 (ℝ), where 𝑦𝑘 is the set of all subspaces in 𝐿2 (ℝ), the
dimension of which does not exceed 𝑘.

The following lemmas hold.
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Lemma 4.3. Let the conditions 𝑎) and 𝑖) − 𝑖𝑖𝑖) be satisfied. Then the estimate

𝑐−1 ̃̃𝑑𝑘 ≤ 𝑠𝑘+1 ≤ 𝑐 𝑑𝑘, 𝑘 = 1, 2, ...,

holds, where 𝑐 > 0 is a constant, 𝑆𝑘 is the s-number of the operator
(

𝑙𝑛 + 𝜇 𝐼
)−1, 𝜇 ≥ 0, 𝑑𝑘, 𝑑𝑘, ̃̃𝑑𝑘 are the Kolmogorov 𝑘-widths

of the corresponding sets 𝑀 , �̃� , ̃̃𝑀 .

Lemma 4.4. Let the conditions 𝑎) and 𝑖) − 𝑖𝑖𝑖) be satisfied. Then the estimate
̃̃𝑁 (𝑐𝜆) ≤ 𝑁 (𝜆) ≤ �̃�

(

𝑐−1𝜆
)

,

holds, where the counting function 𝑁 (𝜆) =
∑

𝑠𝑘+1>𝜆
1 of those 𝑠𝑘+1 of the operator

(

𝑙𝑛 + 𝜇 𝐼
)−1 greater than 𝜆 > 0, the counting

function �̃� (𝜆) =
∑

𝑑𝑘>𝜆
1 of those 𝑑𝑘 greater than 𝜆 > 0, the counting function ̃̃𝑁 (𝜆) =

∑

̃̃𝑑𝑘>𝜆
1 of those ̃̃𝑑𝑘 greater than 𝜆 > 0.

Lemmas 4.3-4.4 are proved in exactly the same way as Lemmas 2.5-2.6 in [19]19.

Lemma 4.5. Let the conditions 𝑎) and 𝑖) − 𝑖𝑖𝑖) be satisfied. Then the estimate

𝑐−1𝜆−
1
2 𝑚𝑒𝑠

(

𝑦 ∈ ℝ ∶ 𝑄𝑛(𝑦) ≤ 𝑐−1𝜆−1
)

≤ 𝑁 (𝜆) ≤ 𝑐𝜆−1𝑚𝑒𝑠
(

𝑦 ∈ ℝ ∶ 𝐾𝑛(𝑦) ≤ 𝑐𝜆−1
)

holds, where 𝑐 > 0 is a constant, the functions 𝑄𝑛 (𝑦) and 𝐾𝑛 (𝑦) are from Theorem 1.4.

Proof. We denote by 𝐿2
2

(

ℝ, 𝑄𝑛 (𝑦)
)

, 𝐿′
2

(

ℝ, 𝐾𝑛 (𝑦)
)

the spaces obtained by the completion of 𝐶∞
0 (ℝ) with respect to the norms

‖𝑢‖𝐿2
2(ℝ, 𝑄𝑛(𝑦)) =

⎛

⎜

⎜

⎝

∞

∫
−∞

|

|

|

𝑢′′𝑦𝑦
|

|

|

2
+𝑄2

𝑛 (𝑦) |𝑢|
2 𝑑𝑦

⎞

⎟

⎟

⎠

1
2

,

‖𝑢‖𝐿′
2(ℝ, 𝐾𝑛(𝑦)) =

⎛

⎜

⎜

⎝

∞

∫
−∞

|

|

𝑢′ (𝑦)|
|

2 +𝐾2
𝑛 (𝑦) |𝑢|

2 𝑑𝑦
⎞

⎟

⎟

⎠

1
2

,

where the functions 𝑄𝑛 (𝑦) and 𝐾𝑛 (𝑦) from Theorem 1.4.
It is easy to see that �̃� ⊂ 𝐿′

2

(

ℝ, 𝐾𝑛 (𝑦)
)

, ̃̃𝑀 ⊂ 𝐿2
2

(

ℝ, 𝑄𝑛 (𝑦)
)

. Now, repeating the computations and arguments from
Lemma 2.7 [19]19, we obtain the proof of Lemma 4.5.

Proof of Theorem 1.4. Theorem 1.1 and the representation (3) imply that

𝑢 (𝑥, 𝑦) = (𝐿 + 𝜇 𝐼)−1 𝑓 =
∞
∑

𝑛=−∞

(

𝑙𝑛 + 𝜇 𝐼
)−1 𝑓𝑛 (𝑦) ⋅ 𝑒𝑖𝑛𝑥.

The last equality implies that if the s is a singular point of the operator (𝐿 + 𝜇 𝐼)−1, then s is a singular number of one of the
operators

(

𝑙𝑛 + 𝜇 𝐼
)−1 (𝑛 = 0,±1,±2, ...) and vice versa, if s is a singular number of one of the operators

(

𝑙𝑛 + 𝜇 𝐼
)−1, then s is

a singular point of the operator (𝐿 + 𝜇 𝐼)−1. From this and from Lemma 4.5 the proof of Theorem 1.4 follows.
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