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1. Introduction

In the last years, different approaches are given for modeling diffusion in the me-
dia of fractal geometry, [1]-[10]. Such an approach is based on employing fractional
differential equations and we use this approach in this paper. For the complete-
ness, we give a brief background. One-dimensional mass transport due to diffusion
is given by

(1.1)
∂u

∂t
= − ∂

∂x
(Ju) ,

where Ju is the diffusive mass flux. For Fickian diffusion, it is given by

(1.2) Ju = −D(m) ∂u

∂x
,

where D(m) is the diffusion coefficient. By introducing the new non-dimensional

variables X =
x

x0
, τ =

x

x0
, U =

u

u0
, where x0, t0 and u0 are the characteristic

scales, equations (1.1) and (1.2) can be given in the non-dimensional form as follows:

(1.3)
1

t0

∂U

∂τ
=

1

x2
0

∂

∂X

(
D(m) ∂U

∂X

)
.

If x0 = t0, then equations (1.1) and (1.2) preserve their original form. However
many experiments with fractal objects show that this correlation does not hold.
In this case, it is proved that the-mean square displacement of a random walker

< x2 >∼ t
2

2+θ , where θ is the index of the anomalous diffusion. Then we have

the correlation < x2
0 >∼ t

2
2+θ

0 . It is clear that there are many expressions for the
mass flux that corresponds to that correlation. For example, the diffusion coefficient

1
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may be defined as D(m)(x) = Dfx
−θ, where Df ≡ constant is the effective diffusion

coefficient. Then we have the following diffusion equation

(1.4)
∂u

∂t
=

∂

∂x

(
Dfx

−θ ∂u

∂x

)
.

As another example, the mass flux may be taken proportional to the fractional
derivative of concentration with respect to spatial coordinate of the order θ+ 1. In
this case, the obtained mass flux is doubtful since the order of the corresponding
diffusion equation is greater than 2. For this reason, the following expression for
the mass flux is considered:

(1.5) Ju = Df∂
1−β
t

(
∂γu

∂xγ

)
, β > 0, γ < 1,

where β and γ are the order of the temporal and spatial fractional derivatives

respectively. In (1.5), ∂βt and ∂γx are spatial and temporal Caputo fractional deriva-
tives and are defined as follows:

∂γxu(x, t) =
∂γu(x, t)

∂xγ
=

1

Γ(1− γ)

∫ x

0

(x− ξ)−γ ∂u(ξ, t)

∂ξ
dξ,

∂βt u(x, t) =
∂βu(x, t)

∂tβ
=

1

Γ(1− β)

∫ t

0

(t− ξ)−β ∂u(x, ξ)

∂ξ
dξ,

where Γ(·) is the Gamma function. We note that there is another kind of fractional
derivative that is used frequently called the Riemann-Lioville fractional derivative
defined by

R∂βt u(x, t) =
1

Γ(1− β)

∂

∂t

∫ t

0

(t− ξ)−βu(x, ξ)dξ.

These two fractional derivatives agree when the initial condition is zero. Kilbas
et al [11] and Podlubny [12] can be referred for further properties of the Caputo
and Riemann-Lioville fractional derivatives. Since the initial condition is zero in
our problem, any result found in the literature for one of these hold for the other one.

Then by putting the definitions of the Caputo derivatives in (1.5), we have:

(1.6)
∂u

∂t
=

∂

∂x

(
Df∂

1−β
t

∂γu

∂xγ

)
,

where γ and β are coupled such that < x2
0 >∼ t

2
2+θ

0 is satisfied. It can be shown

that the correlation t0 = x
1+γ
β

0 holds. Then we conclude that θ + 2 =
1 + γ

β
. By

applying the fractional integral operator to both sides of (1.6), we find the following
useful form:

(1.7)
∂βu

∂tβ
=

∂

∂x

(
Df

∂γu

∂xγ

)
.

This equation can be found in many papers on the diffusion phenomena in the
chaotic migration of the particles and anomalous contaminant diffusion from a
fracture into a porous rock matrix with an alteration zone bordering the fracture,
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see [13]-[17] and some of the references cited therein. Assuming the porous medium
has a comb-like structure of fractal geometry, γ = 1 case is also considered in the
mathematical literature, see [18, 19]. We refer the readers to [20] for more details
and motivation regarding the equation (1.7).

When a porous medium equation is considered, the pressure is taken to be a
monotone function of the concentration u. In this case, by using the correspond-
ing Darcy’s Law and the continuity equation, the following nonlinear equation is
obtained:

(1.8) ut +∇ · (d(u)∇u) = 0.

Equation (1.8) is also known as the Richards’ equation in the hydrology [21].

For the convenience of the reader, we present the main steps of the derivation of
the governing equation by following [22]. If the fluid particles are trapped in some
region for several periods of time s1, · · · , sn then the continuity equation becomes

(1.9) ut = −
n∑
i=1

wi∇ · q(x, t− si),

where wi are some weights. If we take wi = w(si)∆si with ∆si = si − si−1 for
some weight density w = w(s), and take limit as n → ∞, (1.9) becomes

(1.10) ut = −
∫ t

0

w(t− s)∇ · q(x, s) ds.

Equation (1.10) accounts for the fluid particles that can be trapped for any period
of time. The amount of flux of the particles that wait for the time equals w(s).
Using the choice of [22] for w, we arrive at

(1.11) ut = − 1

Γ(β)

∂

∂t

∫ t

0

(t− s)β−1∇ · q(x, s) ds = −R∂1−β
t ∇ · q.

If we apply the Riemann-Lioville fractional operator I1−β
t to both sides of (1.11)

and take into account the composition formula for the functions with vanishing
initial conditions we have:

(1.12)
∂β

∂tβ
u = ∇ · (d(u)∇u) .

Equation (1.12) is also called generalized Richards equation [23] and can be found
in may papers. In [23], (1.12) is solved numerically and fitted the solution to data
on horizontal water transport. The numerical solution is also studied by some au-
thors, see [24]-[27]. In [28], magnetic resonance imaging is employed to study water
ingress in fine zeolite powders compacted by high pressure. The measured mois-
ture profiles indicate sub-diffusive behavior with a spatio-temporal scaling variable

η =
x

tγ/2
. Equation (1.12) is used to analyze the data, and an expression that

yields the moisture dependence of the generalized diffusivity is derived and ap-
plied to their measured profiles. In [29], the authors use a time-fractional diffusion
equation for modeling the probability density function of displacements. In [30],
the author describes a method of approximating equations with the Erdelyi-Kober
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fractional operator which arise in mathematical descriptions of anomalous diffusion.
A theorem is also proved on the exact form of the approximating series and provide
an illustration by considering the fractional porous-medium equation used to model
moisture diffusion in building materials. The authors look for self-similar solutions
for the equation (1.12) in [31]. The resulting similarity equations are of nonlinear
integro-differential type. They approximate these equations by an expansion of the
integral operator and by looking for solutions in a power function form. Several
applications of the equation (1.12) are presented in [32]. Recently, there has been
a growing interest in inverse problems with fractional derivatives. These problems
are physically and practically very important. We list some of the important ref-
erences, [33]-[46]. In the current paper, we study an inverse coefficient problem for
the nonlinear time-fractional diffusion equation (1.12). The difference of the cur-
rent study from the references [33]-[46] is that the unknown of the inverse problem
is non-linear, i.e depends on the solution u. This is a relatively new topic and there
are only few works, see [47]-[49]. In [47], the unknown coefficient depends on the
gradient of the solution and belongs to a set of admissible coefficients. The au-
thors prove that the direct problem has a unique solution and show the continuous
dependence of the solution of the corresponding direct problem on the unkown coef-
ficient. Then, existence of a quasi-solution of the inverse problem is obtained in the
appropriate class of admissible coefficients. In [48], the authors study the numeri-
cal solutions of the direct and the inverse problems in [47] and mention about an
application of the governing equation in the materials sciences. An inverse problem
for the nonlinear time-fractional diffusion equation (1.12) is studied in [49]. In this
paper, the authors prove that the direct problem has a unique solution. Existence
of a quasi-solution is also proved. However neither the uniqueness of the solution is
proved nor the direct and the inverse problems solved numerically. In this context,
this study can be regarded as continuation of the series of work in [49] and the
works mentioned above on fractional inverse problems. It is also worth mentioning
that some inverse problems are studied for β = 1 in (1.12). For example; in [50], the
determination of the unknown coefficient d(u) from over-specified data measured
at the boundary is studied. The inverse problem is reformulated as an auxiliary
inverse problem and it is shown that this auxiliary problem has at least one solution
in a specified admissible class. Finally, the auxiliary problem is approximated by
an associated identification problem and some numerical results are presented. In
[51], an operator approach is improved by an input-output mapping and it is shown
that the mapping is isotonic. This result is used to derive a uniqueness result for
the inverse problem.

This paper is organized as follows: In the next section, we formulate the direct
and the inverse problems. Existence and uniqueness for the direct and the inverse
problems are discussed in Section 3. The numerical solutions of the direct and
the inverse problems are studied in Section 4 and in Section 5, respectively. The
conclusions and possible directions on the problem are given in Section 6.
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2. Formulation of the direct and the inverse problems

In this section, we formulate the direct and the inverse problems. First, we
consider the following problem:

(2.1)



∂βu

∂tβ
= ∇ · (d(u)∇u) + f(x, y, t), (x, y, t) ∈ ΩT ,

u(x, y, t) = 0, (x, y, t) ∈ Γ3T ∪ ∈ Γ4T ,
d(u)uy(x, y, t) = g1(x, t), (x, y, t) ∈ Γ1T ,
d(u)ux(x, y, t) = g2(y, t), (x, y, t) ∈ Γ2T ,
u(x, y, 0) = 0, (x, y) ∈ Ω̄,

where β is the order of the Caputo fractional time derivative,Ω := (0, 1) × (0, 1),
ΩT := Ω × (0, T ), ΓiT := Γi × (0, T ), i = 1, 2, 3, 4 and T > 0 is a final time. We
assume that Ω is a bounded simply connected domain with a piece-wise smooth
boundary ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, Γi ∩ Γj = ∅, i 6= j. We define Γi, i = 1, 2, 3, 4 as
follows:

Γ1 := (0, 1)× {1}, Γ2 := {1} × (0, 1),

Γ3 := (0, 1)× {0}, Γ4 := {0} × (0, 1).

For given inputs β, d(u), f(x, y, t), g1(x, t) and g2(y, t), the problem (2.1) is
called the direct problem. Next, we define the class of admissible coefficients and
the weak solution of the problem (2.1). We note that, throughout the paper while,
‖ · ‖ and

〈
,
〉

denote the usual L2(Ω) norm and inner product respectively, ‖ · ‖X
denotes the norm in a Hilbert space X. C(l) denotes the set of continuous functions
defined on l.

Definition 2.1. Let l be a closed interval. A set D satisfying the following condi-
tions is called the class of admissible coefficients for the problem (2.1) :

(2.2) d ∈ C(l), c0 ≤ d(s) ≤ c1, ∀ s ∈ l,

(2.3)
(
d(u1)∇u1 − d(u2)∇u2

)
· ∇(u1 − u2) ≥ c2||∇(u1 − u2)||2, ∀u1, u2 ∈ H1

0 (Ω),

where c0, c1, c2 are positive constants.

Definition 2.2. A weak solution of the problem (2.1) is a function u ∈ Sβ(ΩT ) :=

L2
(
0, T ;H1

0 (Ω)
)
∩ W β

2

(
0, T ;L2(Ω)

)
such that the following integral identity holds

for a.e. t ∈ [0, T ] :∫
Ω

∂βu

∂tβ
v dx dy +

∫
Ω

d (u)∇u · ∇v dx dy

=

∫
Ω

f v dx dy +

∫
Ω3

g1 v dx dy +

∫
Ω4

g2 v dx dy,

(2.4)

for each v ∈ Sβ(ΩT ), where

W β
2 (0, T ) :=

{
u ∈ L2[0, T ] :

∂βu

∂tβ
∈ L2[0, T ] andu(0) = 0

}
,
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is the fractional Sobolev space of order β. We note that Sβ(ΩT ) is a Banach space
with the norm :

‖u‖Sβ(ΩT ) =

(
‖u‖2

Wβ
2 (0,T ;L2(Ω))

+ ‖u‖2
L2(0,T ;H1

0 (Ω))

) 1
2

.

We regard u(x, y, t) as a mapping from t ∈ (0, T ) to L2(Ω) and write u(t) =
u(·, ·, t).

A weak solution of the problem (2.1) is also defined as a solution of the following
abstract operator equation

(2.5) Lu+Au = F,

where Lu :=
〈
L̂u, v

〉
, L̂u :=

∂βu

∂tβ
, L̂ : D(L̂) ⊂ V → V ∗ with the domain D(L̂) ={

u ∈ V :
∂βu

∂tβ
∈ V ∗

}
, V := L2

(
0, T ;H1

0 (Ω)
)
, the nonlinear operator A : V → V ∗

is defined by

(2.6)
〈
Au, v

〉
:=

∫
Ω

∂βu

∂tβ
v dx dy +

∫
Ω

d (u)∇u · ∇v dx dy,

and F on V is defined by

(2.7)
〈
F, v

〉
:=

∫
Ω

f v dx dy +

∫
Ω3

g1 v dx dy +

∫
Ω4

g2 v dx dy.

The inverse problem here consists of determining the pair of functions {u(x, y, t), d(u)}
from the problem (2.1) by means of the additional data u(x, y, t) = ĝ1(x, t), (x, y, t) ∈
Γ1T and u(x, y, t) = ĝ2(y, t), (x, y, t) ∈ Γ2T . For the consistency of the additional
data with the data of (2.1) on Γ1T and Γ2T , it is assumed that d(ĝ1(x, t))(ĝ1)y(x, y, t) =

g1(x, t) on Γ1T and d(ĝ2(x, t))(ĝ2)y(x, y, t) = g1(x, t) on Γ2T .

We denote the solution of the direct problem (2.1) for a given function d ∈ D by
u(x, y, t; d). If the function u(x, y, t; d) also satisfies the additional data above, it
is called a strict solution of the inverse problem. Now, we reformulate the inverse
problem. For this purpose, we introduce the input-output map :

(2.8) Φ(d) := u(x, y, t; d)|Γ3T×Γ4T
:=

(
u(x, y, t; d)|Γ3T

, u(x, y, t; d)|Γ4T

)
,

where Φ : L2(ΩT )→ L2(Γ3T )× L2(Γ4T ). Then the inverse problem is defined as a
solution of the following operator equation :

(2.9) Φ(d) = g, g = (ĝ1(x, t), ĝ2(y, t)) ∈ L2(Γ3T )× L2(Γ4T ).

However, due to measurement errors in practice exact equality in (2.9) is usually not
achieved. Hence, one needs to introduce the following auxiliary (cost) functional :
(2.10)

I(d) :=

∫ T

0

∫
Γ3

∣∣∣∣u(x, y, t; d)− ĝ1(x, t)

∣∣∣∣2 dx dt+

∫ T

0

∫
Γ4

∣∣∣∣u(x, y, t; d)− ĝ2(y, t)

∣∣∣∣2 dy dt,
and consider the following minimization problem

(2.11) I(d̂) = min
d∈D

I(d).
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A solution of the minimization problem (2.11) is called a quasi-solution (or approxi-

mate solution) of the inverse problem . Evidently, if I(d̂) = 0 then the quasi-solution

d̂ is also a strict solution of the inverse problem. Analyses of the direct and inverse
problems are given in the following section.

3. Analysis of the direct and the inverse problems

In this section, we analyze both the direct and the inverse problems. The the-
oretical aspect of the direct problem (2.1) is studied in [49]. In this study, the
authors prove that the direct problem (2.1) is well-posed in the sense of Hadamard.
For the sake of the reader we provide some relevant results from [49]. The following
theorems state that the direct problem (2.1) has a unique weak solution and the
solution depends continuously on the coefficient d(u). We refer the readers to [49]
for detailed proofs.

Theorem 3.1. Let d ∈ D. Then the direct problem ( 2.1) has a unique weak solution
u ∈ Sβ(ΩT ). Moreover, for a.e t ∈ [0, T ] there exist some constants c, C > 0 such
that

∂β‖u‖2

∂tβ
+ c ‖u‖2H1

0 (Ω) ≤ C
[
‖f‖2 + ‖g1‖2L2(Γ1) + ‖g2‖2L2(Γ2)

]
.

Theorem 3.2. Suppose that a sequence of coefficients {dm} ⊂ D converges point-
wise in [0,∞) to a function d ∈ D. Then, the sequence of solutions um :=
u(x, y, t; dm) converges to the solution u := u(x, y, t; d) ∈ Sβ(ΩT ), where u :=
u(x, y, t; d) denotes the solution of the direct problem ( 2.1) for a given coefficient
d ∈ D.

Next, we prove an existence theorem for a solution to the inverse problem. There
are two methods in the literature to prove existence of the solution of inverse prob-
lems. The first method is called the monotonicity method based on the continuity
and the monotonicity of the input-output mapping. The second method is called
quasi-solution method based on minimizing an error functional between the output
data and the additional data. We adopt the quasi-solution approach to the inverse
problem under consideration. For this purpose, we show that the cost functional
defined by (2.10) is continuous and we construct a compact subset of the class of
the admissible coefficients.

Theorem 3.3. Assume that a sequence of coefficients {dm} ⊂ D converges point-

wise in [0,∞) to a function d ∈ D. Then

∣∣∣∣I(dm)− I(d)

∣∣∣∣→ 0 as n→∞.

Proof. Let {dm} ⊂ D be a sequence of coefficients that converges pointwise in [0,∞)
to a function d ∈ D, um := u(x, y, t; dm) and u := u(x, y, t; d). Then we have

∣∣∣∣I(dm)− I(d)

∣∣∣∣ =

∣∣∣∣ ∫ T

0

∫
Γ3

∣∣um − ĝ1(x, t)
∣∣2 dx dt− ∫ T

0

∫
Γ3

∣∣u− ĝ1(x, t)
∣∣2 dx dt

+

∫ T

0

∫
Γ4

∣∣um − ĝ2(y, t)
∣∣2 dy dt− ∫ T

0

∫
Γ4

∣∣u− ĝ2(y, t)
∣∣2 dy dt∣∣∣∣.

(3.1)

For the first two terms in (3.1), by using
∣∣‖a‖ − ‖b‖∣∣ ≤ ‖a− b‖ , we have :
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∣∣∣∣ ∫ T

0

∫
Γ3

∣∣∣∣um − ĝ1(x, t)

∣∣∣∣2 dx dt− ∫ T

0

∫
Γ3

∣∣∣∣u− ĝ1(x, t)

∣∣∣∣2 dx dt∣∣∣∣
=

∣∣∣∣∥∥∥∥um − ĝ1(x, t)

∥∥∥∥2

L2(Γ3T )

−
∥∥∥∥u− ĝ1(x, t)

∥∥∥∥2

L2(Γ3T )

∣∣∣∣
≤
∥∥∥∥um − u∥∥∥∥

L2(Γ3T )

×
(∥∥∥∥um − ĝ1(x, t)

∥∥∥∥
L2(Γ3T )

+

∥∥∥∥u− ĝ1(x, t)

∥∥∥∥
L2(Γ3T )

)
≤
∥∥∥∥um − u∥∥∥∥

L2(∂Ω×(0,T ))

×
(∥∥∥∥um − ĝ1(x, t)

∥∥∥∥
L2(Γ3T )

+

∥∥∥∥u− ĝ1(x, t)

∥∥∥∥
L2(Γ3T )

)
≤ C

∥∥∥∥um − u∥∥∥∥
L2(ΩT )

×
(∥∥∥∥um − ĝ1(x, t)

∥∥∥∥
L2(Γ3T )

+

∥∥∥∥u− ĝ1(x, t)

∥∥∥∥
L2(Γ3T )

)
≤ C̃

∥∥∥∥um − u∥∥∥∥
Sβ(ΩT )

×
(∥∥∥∥um − ĝ1(x, t)

∥∥∥∥
L2(Γ3T )

+

∥∥∥∥u− ĝ1(x, t)

∥∥∥∥
L2(Γ3T )

)
,

(3.2)

where we used the Trace and Sobolev embedding theorems, and C, C̃ > 0 are
constants. We conclude that the first two terms in (3.1) tend to zero as n → ∞.
Similarly, we can prove that the last two terms in (3.1) go to zero as n→∞. This
completes the proof.

�

The conditions (2.2) and (2.3) arise in the solvability of the direct problem (2.1)
and can be found in some papers, for example see the condition H3 in [52]. In
virtue of Theorem 3.3, it is natural to construct a compact set of admissible co-
efficients in C(I). For this reason, in addition to assumptions (2.2) and (2.3) we
assume that there is a subset Dc of D which is equicontinuous, i.e. Dc ⊂ D and for
every ε > 0 there exists a δ > 0 such that if d ∈ Dc, s1, s2 ∈ l and |s1 − s2| < δ,
then |d(s1) − d(s2)| < ε. By following Theorem 3 in [53] it can be proved that Dc
is compact. Then, we prove the following existence theorem by using compactness
of Dc and Theorem 3.3 :

Theorem 3.4. The inverse problem has at least one quasi-solution in the set of
admissible coefficients Dc.

The following theorem shows that the input-output operator defined by (2.8) is
a compact operator.
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Theorem 3.5. [49] Let the conditions (2.2) and (2.3) hold. Then the input-output
operator defined by (2.8) is a compact operator.

Since nonlinear equations with compact operators are ill-posed [54], the in-
verse problem under consideration is an ill-posed problem. The following example
shows that there exists a sequence {dn} such that u(x, y, t; dn), (x, y, t) ∈ Γ1T and
u(x, y, t; dn), (x, y, t) ∈ Γ2T converges to zero as n→∞, but dn →∞ as n→∞.

Example: For dn(u) = n2, β = 1/2 and fn(x, t) =
8x3y2t3/2

3
√
πn5

− 2xt2

n3
(3y2 + x2),

the inverse problem (2.1) becomes

(3.3)

∂βu

∂tβ
= (n2ux)x + (n2uy)y +

8x3y2t3/2

3
√
πn5

− 2xt2

n3
(3y2 + x2), (x, y, t) ∈ ΩT ,

u(x, y, t) = 0, (x, y, t) ∈ Γ3T ∪ ∈ Γ4T ,

−n2uy(x, y, t) = − 2

n3
x3t2, (x, y, t) ∈ Γ1T ,

−n2ux(x, y, t) = − 3

n3
y2t2, (x, y, t) ∈ Γ2T ,

u(x, y, 0) = 0, (x, y) ∈ Ω̄.

It can easily be verified that the function un(x, y, t; dn) =
x3y2

n5
t2 is the solution

of the corresponding direct problem. Obviously, un(x, 1, t; dn) and un(1, y, t; dn)
converge to zero as n→∞, but dn(u)→∞ as n→∞.

4. Numerical solution of the direct problem

In this section, we introduce the methodology used for solving the direct problem
numerically. The main idea is to convert the fractional partial differential equation
into a system of fractional ordinary differential equations using the method of lines
and vectorization and solve the resulting system of fractional ordinary differential
equations. In addition to using the classical method of lines, we adopt the operator
approach to approximate derivatives, which reduces computational and memory
demand of the algorithm. We first illustrate the methodology over a one dimensional
heat equation. For this purpose, we consider the following one dimensional problem:

∂u

∂t
= k

∂2u

∂x2
, x ∈ (0, 1), t ∈ (0, 1),

u(x, 0) = h(x), x ∈ (0, 1),
u(0, t) = f(t), u(1, t) = g(t), t ∈ (0, 1).

For a given positive integer M , let xi = i∆x for i = 0, 1, 2, · · · ,M with ∆x =
1/M . Also let ui(t) denote the approximation of the solution at the node (xi, t)
for i = 0, 1, 2, · · · ,M , where u0(t) = f(t) and uM (t) = g(t). We approximate the
given equation by the following system of ordinary differential equations for ui’s:

(4.1)


dui
dt

= k
ui+1 − 2ui + ui−1

∆x2 , t ∈ (0, 1), i = 1, · · · ,M − 1,

ui(0) = h(xi), i = 1, · · · ,M − 1.



10 M. ZEKI, R. TINAZTEPE, S. TATAR, AND S. ULUSOY

Given the vector of approximate solutions at each node without boundaries,
[ui] = [u1, u2, · · · , uM−1], we define the left and right shift operators as

LS([ui]) = [ui+1] and RS([ui]) = [ui−1], i = 0, 1, 2, · · · ,M − 1.(4.2)

Then, the system of ordinary differential equations given in equation (4.1) can be
written in the following form :[

dui
dt

]
=
LS([ui])− 2[ui] +RS([ui])

∆x2 ,(4.3)

with

[
dui
dt

]
=

[
du1

dt
,
du2

dt
, · · · , duM−1

dt

]
is being the vector of time derivatives at

the discretized nodes. To illustrate how we generalize the shift-operator approach
to higher dimensional partial differential equations, we consider the following two
dimensional problem:

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
+ f(x, y, t), (x, y, t) ∈ ΩT ,

u(x, y, 0) = h(x, y), (x, y) ∈ Ω,
u(x, y, t) = g(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0, 1).

(4.4)

Let xi = i∆x, i = 0, · · · ,M and yj = j∆y, j = 0, 1, 2, · · · , N with ∆x = 1/M
and ∆y = 1/N . Also, let uij(t) denotes the solution at point (xi, yj) at a time t ∈
(0, 1), where u0j = g(0, yj , t), uMj = g(1, yj , t), ui0 = g(xi, 0, t), uiN = g(xi, 1, t).
Then, the centered difference approximation of the time derivative at point (xi, yj)
would be

duij
dt

=
ui+1j − 2uij + ui−1j

∆x2
+
uij+1 − 2uij + uij−1

∆y2
+ f(xi, yj , t),

with i = 1, · · · ,M − 1 and j = 1, · · · , N − 1. This approximation can be vectorized
by first defining the solution matrix at the interior points [uij ] = u(xi, yj) with
i = 1, · · · ,M − 1 and j = 1, · · · , N − 1. We define the left and right shift operators
on the matrix [uij ] of solution approximations at the interior points as follows:

LS([uij ]) = [ui+1j ] and RS([uij ]) = [ui−1j ],

with i = 1, · · · ,M − 1 and j = 1, · · · , N − 1. Then the matrices of the centered
difference approximations to the first order derivatives can be expressed as follows:

[uxij ] =
LS([uij ])−RS([uij)]

2∆x
,(4.5)

[uyij ] =
LS([uij ]

′)−RS([uij ]
′)

2∆y
,(4.6)

where [aij ]
′ denotes the transpose of the matrix [aij ]. The matrices of the cen-

tered difference approximations to the second order derivatives, [uxxij ], [uyyij ],
and [uxyij ] can be obtained by applying LS and RS operators to the matrices of
the first order derivative approximations given in (4.5) and (4.6). Then, (4.4) can
be expressed in matrix form as follows:[

duij
dt

]
= [uxxij ] + [uyyij ] + [f(xi, yj , t)],(4.7)

with initial condition matrix [uij(0)] = [h(xi, yj)] of size M − 1×N − 1.
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Next, we consider the following time-fractional problem:

(4.8)


∂βu

∂tβ
= f(x, y, t, u, ux, uy, uxx, uyy, uxy), (x, y, t) ∈ ΩT ,

u(x, y, 0) = h(x, y) (x, y) ∈ Ω,
u(x, y, t) = g(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0, 1).

Then, vectorized method of line approach described in examples above results
in the following difference approximation:

(4.9)

[
∂βuij
∂tβ

]
= f([xij ], [yij ], t, [uij ], [uxij ], [uyij ], [uxxij ], [uyyij ], [uxyij ])],

with [uij(0)] = [h(xi, yj)] [xij ] = [xi]1×M−1 ⊗ [1]N−1×1 and [yij ] = [yj ]N−1×1 ⊗
[1]M−1×1, where ⊗ denotes the Kronecker matrix product. This is a system of
nonlinear fractional ordinary differential equations which we solve using a Mat-
lab implementation of the Adam-Bashfort-Moulton(ABM) type predictor-corrector
method given in the work [60]. Detailed convergence and stability analysis are con-
sidered both in their subsequent work [61] and in the work [62]. In [61], the authors
conclude that if the solution under consideration is sufficiently smooth, the method
has uniform convergence of order h2 for β > 1, and of order h1+β for β < 1, respec-
tively. It is further shown by numerical examples that, these bounds are strict and
can not be improved. The ABM is a Predict-Evaluate-Correct-Evaluate(PECE)
type method. That is, for the approximation at the time nodes tk, and correspond-
ing approximations, yj ∼= y(tk) at each kth step, there are two approximations
computed for the next node, namely, predictor, yp(tk+1), and using the predic-
tor, the corrector approximation yc(tk+1) is obtained and used in the calculation.
The error is obtained by finding the difference of predictor and corrector approx-
imations. There are two main advantages of using PECE type compared to the
classical equivalent-order explicit methods. First benefit in using a PECE type
algorithm is the increased accuracy and stability, see [55, 58, 62] and [59, Ch. 6].
For fractional ordinary differential equations, it was shown that the stability and
accuracy remains high compared to equivalent-order numerical methods, see [60]-
[62]. The second advantage of using the PECE type numerical approximation is
the fact that, this method can assume variable time steps that reduces the compu-
tational cost of the approximation. The method can control the time steps by using
the difference between the corrector and the predictor approximations. When the
difference is smaller than the desired level of accuracy with the current time step,
this is used as an indication that the solver is in a non-stiff area, and time steps
are increased in an adaptive manner. The idea of combining the Method of Lines
approach to reduce the given fractional partial differential equation to a system of
fractional ordinary differential equations and using shift operators in the evaluation
of the right-hand side of the PDE can prove to be useful in terms of memory and
computation compared to similar operator approaches such as that of Podlubny’s
intuitive matrix operator approach, see [56, 57], depending on the problem under
consideration. In terms of memory, the Method of Lines approach uses matrices of
size M×N . Whereas in Podlubny’s Matrix Operator approach, the matrices under
consideration are of size M × N ×K where K is the number of mesh points in t
direction used in the calculation. So the Method of Lines approach improves the
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Table 1. Absolute error between unum and uexact for β = 0.7

M(=N) Absolute Error CPU Time (Seconds)

20 0.2347 17.22
10 0.0847 8.49
5 0.021 6.14

Table 2. Absolute error between unum and uexact for β = 0.6

M(=N) Absolute Error CPU Time (Seconds)

20 0.3135 23.139
10 0.0949 8.397
5 0.0232 6.12

memory demand of the calculations. But this improvement in the memory comes at
the cost of calculation of the right-hand side function at each time step. However,
Podlubny’s matrix operator approach can also face the computational challenges
depending on the complexity of the fractional partial differential equation. This is
because, the method requires solving nonlinear algebraic matrix equation of very
high dimensions. Hence, the very nature of the question under consideration is the
sole factor in choosing the numerical method to apply.

The first series of the numerical simulations is related to numerical solution of
the direct problem. For this purpose, the function u(x, y, t) = tx2y2 is taken to

be the analytic solution of the equation
∂βu

∂tβ
= (d(u)ux)x + (d(u)uy)y + f(x, y, t),

with the function d(u) = 1 + u and appropriately chosen source function f(x, y, t).
The boundary conditions are found from the trace of the function u(x, y, t) = tx2y2

on Ω. First, we check the difference between the numerical solution unum and the
exact solution uexact = u(x, y, t) = tx2y2. The absolute error between unum and
uexact is defined by ‖unum−uexact‖∞ , where ‖ ·‖∞ denotes the sup norm, which
is taken over all x, y, t where x ∈ [0, 1], y ∈ [0, 1] and t ∈ [0, 0.3]. The software is
simulated for different values of the system parameters to see their effect on the
absolute error and the simulation time. Time step is taken ∆t = 10−5. We note
that decreasing the time step increases the simulation time and has almost no effect
in the computations. However, there is a subtle relation the number of time nodes
and x , y nodes. Increasing ∆t = 10−5 when t ∈ [0, 0.3] affects the stability of the
simulation when higher number of x, y nodes is desired. We simulated the solution
for M = N = 5, M = N = 10 and M = N = 20 for β = 0.6 and β = 0.7. We
see the results with computation times in Table 1 and Table 2. We observe that
M = N = 5 serves the best time and the least absolute error. Also, it appears
that as β increases towards 1, the absolute error decreases. Hence, the time step
and number of discretization nodes for the remaining simulations are chosen to be
seemingly optimal values of 10−5 and M = N = 5.

Next, we consider the ill-posedness of the inverse problem. A problem is called
to be well-posed in the Hadamard sense if the solution exists, unique and depends
continuously on the input data. Failure to comply any of the mentioned proper-
ties makes the given problem ill-posed. To show that the inverse problem under
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Figure 1. Ill-posedness of the inverse problem: the graph of
the difference between the numerical solutions corresponding to
a1(u) = u+ 1 and a2(u) = u+ 3.

consideration is ill-posed, we simulate the direct problem for a1(u) = 1 + u and
a2(u) = 3+u. The functions u1(x, y, 1) and u2(x, y, 1) are found from the numerical
solution. Figure 1 shows that the graph of the difference abs(u1(x, y, 1)−u2(x, y, 1))
where we see the solutions on both Γ3T and Γ4T are very close to each other with
an absolute difference less than 0.02.

5. Numerical solution of the inverse problem

We assume that for a fixed β, the following problem has the solution ũ(x, y, t)

for the specific functions d̃, f(x, y, t), g1(x, t) and g2(y, t). In the inverse problem,

our goal is to try to find the function d̃ when only ũ(x, 1, t) and ũ(1, y, t) are known
about the solution ũ while the boundary conditions and f(x, y, t) are known and
fixed. The boundaries are same as in (2.1). In our experiments, first we fix our
solution ũ(x, y, t) as tx2y2 and the specific function d(u) beforehand. By using them
we find g1(x, t), g2(x, t) exactly and f(x, y, t) numerically. Now g1(x, t), g2(x, t)
and f(x, y, t) at hand, we take ũ(1, y, t) = ty2 and ũ(x, 1, t) = tx2 as additional
conditions for the inverse problem and we try to find d(u). When doing this, we
set up the following error functional for each function d as in (2.11):

I(d) :=

∫ T

0

∫ 1

0

∣∣∣∣u(x, y, t; d)− ũ(x, 1, t)

∣∣∣∣2 dx dt
+

∫ T

0

∫ 1

0

∣∣∣∣u(x, y, t; d)− ũ(1, y, t)

∣∣∣∣2 dy dt,
where u(x, y, t; d) denotes the solution of the direct problem for the function d. It

is clear that I(d̃) = 0. Thus, we expect to find d̃(u) as the minimizer of the error
function. We carry out the experiment for noise-free data and noisy data. For noisy
data, we add the noise 0.1φ1(x, t) and 0.1φ2(x, t) to g1(x, t) and g2(x, t) respectively
where φ1(x, t) and φ2(x, t) take values in the form of 0.1 ×m(x, t) where m takes
random values from [−1, 1]. We will use polynomials to approximate the minimum
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d̃ in the light of Theorem 3.2. For n > 0, we assume d(u) = dnu
n + · · · + d0.

Thus, I(d) is a function of the vectors (d, d0) ∈ Rn+1 where d = d = (dn, · · · d1).
We apply the BGFS Method, a Quasi-Newton Method, to minimize the function
which will require computing the gradient of the function I(d). The BGFS method
approximates the Hessian of the error function with a cubic line search procedure
in each step. For further reading, see [26]. We choose the stopping criteria for
the algorithm as ||∇I(d)|| < 10−6. The integration in I(d) is calculated by the
trapezoid rule.

In the experiments, in accordance with observations in Section 4, we take β = 0.7
for the order of fractional time derivative, M = N = 5 are used to make a meshgrid
for x and y on [0, 1] × [0, 1] and time step is taken as 4t = 10−5 and T = 0.3.
Also we take the variable d(u) as a third degree polynomial. Hence, I(d) is treated
as a function of three variables. In the tables, the initial points denoted by dfinal
are chosen to be close to the coefficients of the second degree Taylor polynomial of
d̃(u), a random number between 0 and 1 is added or subtract to each component.
In the tables, we provide the value of I(d) for the final d, i.e., dfinal the algorithm
reached and the relative error between the solution of the direct problem, i.e, ufinal
for the dfinal and u = tx2y2 is given by

Relative Error :=
||ufinal(x, y, t)− tx

2y2||∞
||tx2y2||∞

,

where || · ||∞ is estimated by the maximum value of the function on the meshgrid
on [0, 1]× [0, 1]× [0, 0.3].

The inverse problem is an ill posed problem and it is sensitive to the noise
dramatically. To deal with the noisy data, we use Tikhonov regularization in the
error functional and define it as :

I(d) :=

∫ T

0

∫ 1

0

∣∣∣∣u(x, y, t; d)− ũ(x, 1, t)

∣∣∣∣2 dx dt
+

∫ T

0

∫ 1

0

∣∣∣∣u(x, y, t; d)− ũ(1, y, t)

∣∣∣∣2 dy dt+ λ||d||2e,
(5.1)

where ||·||e is the Euclidean norm. We run the algorithm for different regularization
parameter λ with the same initial values and present the best results according to
the relative error.

Experiment 1. The correct d(·) is d̃(u) = 2 sin(u) + cos(u), whose second
degree Taylor polynomial is −0.5u2 +2u+1. Table 3 and 4 show the results for the
noise-free and noisy data, respectively. Table 5 shows the best results for different
values of the regularization parameter λ.

Experiment 2. The correct d(·) is d̃(u) = u2 + u+ 1. Table 6 and 7 show the
results for the noise-free and noisy data respectively. Table 8 shows the best results
for different values of the regularization parameter λ.

Experiment 3. The correct d(·) is d̃(u) = eu whose second degree Taylor
polynomial is 0.5u2 + u+ 1. Table 9 and 10 show the results for the noise-free and
noisy data respectively. Table 11 shows the best results for different values of the
regularization parameter λ.
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Table 3. Results for noise-free data for d̃(u) = 2 sin(u) + cos(u)

dinitial dfinal I(dfinal) Relative Error
-0.27408 2.0855 1.0987 -0.30691 1.9416 1.0172 6.5695e-08 0.0053729
-0.32929 2.2625 0.73813 -0.41756 1.9666 1.0105 2.3175e-08 0.0032792
-1.4234 2.7303 0.27877 -0.56634 2.0006 1.0014 3.0948e-10 0.00055506
-0.93021 1.5114 1.1068 -0.79997 2.0539 0.98705 4.4387e-08 0.0039033
-0.68482 1.4215 0.34624 -0.60656 2.0101 0.99864 9.2876e-10 0.00053536
0.40488 2.2373 1.4942 -0.58484 2.0048 1.0003 2.2985e-10 0.00029774
0.47975 2.4588 0.22095 -0.58776 2.0056 0.99998 2.7193e-10 0.00034198
-0.06113 1.0369 1.715 -0.58706 2.0054 1.0001 2.6604e-10 0.00034775
-0.38888 1.4532 0.096279 -0.35227 1.9509 1.0152 4.5877e-08 0.0044349
-0.75806 2.5211 1.8909 -0.79146 2.0521 0.9875 4.1074e-08 0.0037083
-0.76221 1.3759 0.80219 -0.63609 2.0172 0.99653 3.2795e-09 0.0008257
-0.27825 1.6326 1.5 -0.19536 1.9171 1.0234 1.3041e-07 0.0076122
-0.79668 2.0377 1.9047 -0.74601 2.0417 0.99027 2.5509e-08 0.0028553
-0.92417 1.0867 1.6177 -0.68659 2.0283 0.99378 1.0782e-08 0.0017539

Table 4. Results for noisy data for d̃(u) = 2 sin(u) + cos(u)

dinitial dfinal I(dfinal) Relative Error
-0.27408 2.0855 1.0987 -0.3141 1.9232 1.0344 0.0020018 0.0052846
-0.32929 2.2625 0.73813 -0.42473 1.9484 1.0275 0.0020017 0.0032272
-1.4234 2.7303 0.27877 -0.67733 2.0063 1.0119 0.0020016 0.0021874
-0.93021 1.5114 1.1068 -0.80617 2.0373 1.0027 0.0020016 0.0037943
-0.68482 1.4215 0.34624 -0.61309 1.9932 1.0148 0.0020016 0.0021119
0.40488 2.2373 1.4942 -0.69746 2.0106 1.0109 0.0020016 0.0022959
0.47975 2.4588 0.22095 -0.70218 2.012 1.0104 0.0020016 0.0023236
-0.06113 1.0369 1.715 -0.70344 2.0122 1.0104 0.0020016 0.0023527
-0.38888 1.4532 0.096279 -0.35922 1.9326 1.0323 0.0020017 0.0043445
-0.75806 2.5211 1.8909 -0.79917 2.0341 1.0044 0.0020016 0.0037813
-0.76221 1.3759 0.80219 -0.64273 1.9991 1.0135 0.0020016 0.002096
-0.27825 1.6326 1.5 -0.20201 1.899 1.0403 0.0020018 0.0075475
-0.79668 2.0377 1.9047 -0.75291 2.0236 1.0072 0.0020016 0.0029034
-0.92417 1.0867 1.6177 -0.69291 2.0101 1.0107 0.0020016 0.0022322

Table 5. Results for noisy data for d̃(u) = 2 sin(u) + cos(u) with
regularization parameter

dinitial dfinal I(dfinal) Relative Error λ

-0.32929 2.2625 0.73813 -0.41297 1.936 1.0355 0.0020067 0.0037234 10−6

0.40488 2.2373 1.4942 0.229 1.7102 1.1339 0.0020458 0.021791 10−5

-0.68482 1.4215 0.34624 0.22395 1.4118 1.3433 0.0024042 0.083568 10−4

-0.92417 1.0867 1.6177 0.16702 1.1677 1.3914 0.0055819 0.31648 10−3
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Table 6. Results for noise-free data for d̃(u) = u2 + u+ 1

dinitial dfinal I(dfinal) Relative Error
1.8143 1.5688 1.1067 0.98685 1.0027 0.99947 1.8662e-10 0.00021487
1.2435 1.4694 0.038102 1.0944 0.981 1.0043 8.5119e-09 0.0014074
1.9293 0.9881 1.0046 0.98892 1.0026 0.9992 1.3021e-10 0.00018254
0.8034 1.1622 1.8173 0.81833 1.0366 0.99164 3.1636e-08 0.0027013
1.3517 1.1656 1.2599 1.3088 0.9365 1.0151 9.1374e-08 0.0046914
1.8308 1.602 0.19993 0.98007 1.0051 0.99838 5.4332e-10 0.00039664
1.5853 0.73703 1.4314 0.9837 1.0037 0.99902 3.2042e-10 0.00029842

0.082806 1.6892 1.1818 1.0041 0.99907 1.0003 1.7019e-11 6.6238e-05
0.2428 0.54946 1.1455 1.0075 0.99842 1.0004 5.5279e-11 0.00011151
0.24627 0.91618 0.86393 1.0279 0.99108 1.0038 1.5989e-09 0.00061966
1.0759 0.84762 1.5499 1.1222 0.97718 1.0042 1.438e-08 0.0017248
1.054 0.17418 0.85505 1.1964 0.96141 1.0082 3.6805e-08 0.0028801

0.22083 1.9961 0.37794 1.0108 0.99797 1.0004 1.1477e-10 0.00014608
0.065989 0.92182 1.351 1.0119 0.9973 1.0008 1.4633e-10 0.00018962

Table 7. Results for noisy data for d̃(u) = u2 + u+ 1

dinitial dfinal I(dfinal) Relative Error
1.8143 1.5688 1.1067 0.87821 1.0042 1.0132 0.0020016 0.0015718
1.2435 1.4694 0.038102 1.0871 0.96223 1.0227 0.0020017 0.0023355
1.9293 0.9881 1.0046 0.86725 1.0068 1.0123 0.0020016 0.00169
0.8034 1.1622 1.8173 0.81146 1.0196 1.0086 0.0020016 0.002464
1.3517 1.1656 1.2599 1.3018 0.9178 1.0335 0.0020018 0.0050523
1.8308 1.602 0.19993 0.86061 1.0086 1.0118 0.0020016 0.0018171
1.5853 0.73703 1.4314 0.87637 1.0045 1.0131 0.0020016 0.001589

0.082806 1.6892 1.1818 0.88511 1.0027 1.0136 0.0020016 0.001566
0.2428 0.54946 1.1455 0.37128 1.1072 0.98935 0.0020019 0.0089087
0.24627 0.91618 0.86393 0.89739 0.99902 1.0151 0.0020016 0.0016656
1.0759 0.84762 1.5499 1.1151 0.95842 1.0225 0.0020017 0.0023623
1.054 0.17418 0.85505 1.1896 0.94251 1.0266 0.0020017 0.0032631

0.22083 1.9961 0.37794 0.89089 1.0018 1.0136 0.0020016 0.0015688
0.065989 0.92182 1.351 0.91539 0.99126 1.0192 0.0020016 0.0019827

Table 8. Results for noisy data for d̃(u) = u2 + u+ 1 with regu-
larization parameter

dinitial dfinal I(dfinal) Relative Error λ

0.8034 1.1622 1.8173 0.79386 1.0152 1.0136 0.0020043 0.0023183 10−6

1.3517 1.1656 1.2599 0.23178 1.0905 1.0144 0.0020249 0.0095046 10−5

0.22083 1.9961 0.37794 0.15297 0.96968 1.0883 0.0022225 0.025866 10−4

1.3517 1.1656 1.2599 0.11759 0.81796 1.0163 0.0039331 0.1176 10−3
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Table 9. Results for noise-free data for d̃(u) = eu

dinitial dfinal I(dfinal) Relative Error
0.90181 1.5752 1.4868 0.79218 0.94905 1.0105 5.6575e-08 0.0046883
0.57597 1.0598 0.56414 0.54444 0.99668 1.0006 1.4739e-10 0.000262
0.73992 0.76522 1.4468 0.78835 0.95044 1.0099 5.4814e-08 0.0047249
0.62332 0.64684 0.69365 0.67086 0.97351 1.0048 1.5113e-08 0.0024087
0.26005 1.0154 0.48923 0.25222 1.0548 0.98759 7.5481e-08 0.0059219
0.45035 0.83101 0.20517 0.45166 1.0131 0.99813 7.8171e-09 0.0022299
1.4027 1.6491 1.6443 0.53726 0.99922 0.99945 6.6822e-11 0.00026575
1.4448 1.7317 0.62139 0.51571 1.0057 0.99697 1.064e-09 0.00053638

-0.40005 1.2963 0.060998 0.5487 0.99689 1 9.9924e-11 0.00019071
0.13075 0.25531 1.8759 0.32007 1.0428 0.98936 4.4431e-08 0.0045091
0.88974 1.1835 0.41296 0.81012 0.94438 1.0121 6.5201e-08 0.0048764
0.40355 1.7802 1.4709 0.28431 1.0486 0.98887 5.966e-08 0.0052538
-0.44205 0.070614 1.8443 0.55639 0.99609 0.99981 2.7998e-10 0.00020745
-0.45613 0.22429 0.80524 0.55508 0.99551 1.0004 2.3236e-10 0.00026031

Table 10. Results for noisy data for d̃(u) = eu

dinitial dfinal I(dfinal) Relative Error
0.90181 1.5752 1.4868 0.78517 0.93079 1.0288 0.0020018 0.0050131
0.57597 1.0598 0.56414 0.53751 0.97834 1.019 0.0020016 0.0022175
0.73992 0.76522 1.4468 0.78169 0.93207 1.0283 0.0020018 0.0051061
0.62332 0.64684 0.69365 0.66409 0.9552 1.0231 0.0020017 0.0028501
0.26005 1.0154 0.48923 0.24532 1.0365 1.0059 0.0020017 0.0055843
0.45035 0.83101 0.20517 0.44478 0.99464 1.0166 0.0020016 0.0023482
1.4027 1.6491 1.6443 0.40493 1.0054 1.0124 0.0020016 0.0024947
1.4448 1.7317 0.62139 0.41451 1.0035 1.013 0.0020016 0.0022539

-0.40005 1.2963 0.060998 0.42752 1.001 1.0135 0.0020016 0.0021903
0.13075 0.25531 1.8759 0.3134 1.0244 1.0078 0.0020016 0.0041734
0.88974 1.1835 0.41296 0.80315 0.92604 1.0305 0.0020018 0.0051862
0.40355 1.7802 1.4709 0.27712 1.0303 1.0072 0.0020017 0.0049314
-0.44205 0.070614 1.8443 0.43707 0.99816 1.0147 0.0020016 0.0022583
-0.45613 0.22429 0.80524 0.43069 1.0003 1.0138 0.0020016 0.002201

Table 11. Results for noisy data for d̃(u) = eu with regularization parameters

dinitial dfinal I(dfinal) Relative Error λ

0.57597 1.0598 0.56414 0.52797 0.97607 1.0214 0.0020039 0.0023258 10−6

0.26005 1.0154 0.48923 0.22214 1.0051 1.0289 0.002023 0.012937 10−5

0.98925 0.54908 0.46717 0.13735 0.92151 1.0695 0.002208 0.051983 10−4

0.36803 1.0811 0.76951 0.10825 0.7698 0.96251 0.003772 0.27405 10−3

Since the algorithm is based on approaching d(u) with polynomials and the error
function is a function of three variables, the third degree Taylor polynomials of the
correct d(u)’s are expected to be attained by the algorithm for each initial point.
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In all experiments with noise-free data, we observe that the algorithm finds the
linear coefficients of the target Taylor polynomial for almost all initial points, while
it mostly fails to reach the nonlinear coefficient, i.e., the coefficient of u2 of the
target Taylor polynomial for most of the initial points. However, the coefficients of
the final d(u)’s with the least relative errors almost matches the coefficient of u2 of
the target Taylor polynomial. The relative error for the solution u corresponding to
each final polynomial d(u) in all of the experiments is observed to fluctuate between
0.0001 and 0.007 roughly. Another observation for noise-free experiments is that
the more I(d) is, the more the relative error for the corresponding u naturally.

In all experiments that are carried out with noisy data, there is a significant
behavior in the error function: I(dfinal) stays around 0.002 for almost all initial
points. The relative error for all initial points and experiments fluctuate between
0.001 and 0.009. So the relative error increases up to 10 times. One observation
about the experiments with noisy data is that even though the linear coefficients
of dfinal are more distanced from the linear coefficients of expected Taylor polyno-
mials, they still seem to accumulate around the expected linear coefficients. The
nonlinear coefficients look far from the expected.

The experiments show that the linear part of the d(u) behaves robust against
the noise. This is most probably due to the constraints imposed by the method
used in the solution of the direct problem. Note that we have a stable solution for
t in [0, 0.3] with 4 = 10−5.

For the noisy data, we apply the Tikhonov regularization. The regularization
parameters are very close to zero, i.e. 10−7 and less seem to work well. Also, it
has been observed that the linearization of d(u) is robust against the noise. It
appears that the robustness of the linear part increases as β approaches to 1. In
the experiments with β = 0.6, (not shown in this article) the results have shown
that the error increases more and final points are found to be further from the
expected. So, we can conclude that the problem becomes more ill-posed as β
decreases. We also note that one can use also trust region methods to minimize
the error functional. Indeed, some tests have been carried out with trust region
method and the BGFS method. A significant difference in the computation time
has been observed between two optimization methods. For this reason, the BGFS
method has been chosen.

6. Concluding Remarks

In the solution of the direct problem, we observe that as the order of fractional
time derivative approaches to 1, the numerical solution approximates the exact
solution better. Also, it appears that there is a subtle relation between the size
interval and time step. We observe that M = N = 5 serves the best time and the
least absolute error. The numerical results of the experiments show that solving
the inverse problem stated in this article using the error functional with the help
of polynomials and solving the direct problem with line search method works well.
However, the computational constraints resulting from the discussion of the solution
of the direct problem makes the problem a bit restrictive on the mesh-grid and time
interval. The experiments with noise-free data verifies the theoretical results, i.e.,
the existence of a quasi-solution.The experiments with noisy data show that the
linear part of the d(u) behaves robust against the noise. Also, as β gets far from 1,
the problem tends to be more ill-posed.
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