References
[1] Monteverde F, Bellosi A, Luigi S. Processing and properties of ultra-high temperature ceramics for space applications. Mater Sci Eng 2008;485:415–21. [2] Levine SR, Opila EJ, Halbig MC, Kiser JD, Singh M, Salem JA. Evaluation of ultra-high temperature ceramics for aeropropulsion use. J Eur Ceram Soc 2002;22:2757–67. [3] Pastor M. Metallic borides: preparation of solid bodies, sintering methods and properties of solid bodies. In: Matkovich VI, editor. Boron and refractory borides. New York: Springer; 1977. p. 457–93. [4] Meeson GA, Gorbunow AF. Activated sintering of zirconium boride. Inorg Mater 1968;4:267–70. [5] Kinoshita M, Kose S, Hamanos Y. Hot-pressing of zirconium diboride–molybdenium disilicide mixtures. Yogyo-Kyokai-Shi 1970;78:32–41. [6] Guo SQ, Yang JM, Tanaka H, Kagawa Y. Effect of thermal exposure on strength of ZrB2- based composites with nano-sized SiC particles. Compos Sci Technol 2008;68:3033–40. [7] Niihara K, Nakahira A. In: Vincentini P, editor. Advanced structural inorganic composites.
[8] Mallik M, Roy S, Ray KK, Mitra R. Effect of SiC content, additives and process parameters on densification and structure–property relations of pressureless sintered ZrB2–SiC composites. Ceram Int 2013;39:2915–32. [9] Zhang SC, Hilmas GE, Fahrenholtz WG. Mechanical properties of sintered ZrB2–SiC ceramics. J Eur Ceram Soc 2011;31:893–901. [10] Liu Q, Han W, Zhang X, Wang S, Han J. Microstructure and mechanical properties of ZrB2–SiC composites. Mater Lett 2009;63:1323–5. [11] Ikegami M, Guo S, Kagawa Y. Densification behavior and microstructure of spark plasma sintered ZrB2-based composites with SiC particles. Ceram Int 2012;38:769–74. [12] Cao M, Wang S, Han W. Influence of nanosized SiC particle on the fracture toughness of ZrB2-based nanocomposite ceramic. Mater Sci Eng A 2010;527:2925–8. [13] Patel M, Singh V, Reddy JJ, Bhanu Prasad VV, Jayaram V. Densification mechanisms during hot pressing of ZrB2–20 vol% SiC composite. Scr Mater 2013;69:370–3. [14] Quo SQ. Densification of ZrB2-based composites and their mechanical and physical properties: a review. J Eur Ceram Soc 2009;29:995–1011. [15] Zhu M, Wang Y. Pressureless sintering ZrB2–SiC ceramics at low temperatures. Mater Lett 2009;63:2035–7. [16] Zhang X, Liu Q, Han W, Han J. Microstructure and mechanical properties of ZrB2–SiC nanocomposite ceramic. Scr Mater 2009;61(7):690–2. [17] Tripp WC, Davis HH, Graham HC. Effect of an SiC addition on the oxidation of ZrB2. Am Ceram Soc Bull 1973;52(8): 612–6. [18] Rezaie A, Fahrenholtz WG, Hilmas GE. Oxidation of zirconium diboride-silicon carbide at 1500 ◦C at a low partial pressure of oxygen. J Am Ceram Soc 2006;89(10): 3240–5. [19] Mashhadi M, Khaksari H, Safi S. Pressureless sintering behavior and mechanical properties of ZrB2–SiC composites: effect of SiC content and particle size. J Mater Res Technol 2015;4(4):416–22. [20] Sciti D, Guicciardi S, Bellosi A. Properties of a pressureless-sintered ZrB2–MoSi2 ceramic composite. J Am Ceram Soc 2006; 89(7):2320–2.
[21] Saha M, New frontiers in characterising ZrB2- MoSi2 ultra-high temperature ceramics, arXiv: 2202.11162.
[22] Saha M, Cyclic Oxidation behaviour of ZrB2-20 vol.% MoSi2 based ultra-high temperature ceramic matrix composite between 1100 C and 1300 C, engrxiv.org.
[23] Saha M, On the structure-property correlation in pressureless sintered porous ZrB2-20 vol.% MoSi2ultra-high temperature ceramic matrix composites, submitted for publication.