References
[1] Monteverde F, Bellosi A, Luigi S. Processing and properties of
ultra-high temperature
ceramics for space applications. Mater Sci Eng 2008;485:415–21.
[2] Levine SR, Opila EJ, Halbig MC, Kiser JD, Singh M, Salem JA.
Evaluation of ultra-high
temperature ceramics for aeropropulsion use. J Eur Ceram Soc
2002;22:2757–67.
[3] Pastor M. Metallic borides: preparation of solid bodies,
sintering methods and properties
of solid bodies. In: Matkovich VI, editor. Boron and refractory borides.
New York: Springer;
1977. p. 457–93.
[4] Meeson GA, Gorbunow AF. Activated sintering of zirconium boride.
Inorg Mater
1968;4:267–70.
[5] Kinoshita M, Kose S, Hamanos Y. Hot-pressing of zirconium
diboride–molybdenium
disilicide mixtures. Yogyo-Kyokai-Shi 1970;78:32–41.
[6] Guo SQ, Yang JM, Tanaka H, Kagawa Y. Effect of thermal exposure
on strength of ZrB2-
based composites with nano-sized SiC particles. Compos Sci Technol
2008;68:3033–40.
[7] Niihara K, Nakahira A. In: Vincentini P, editor. Advanced
structural inorganic composites.
[8] Mallik M, Roy S, Ray KK, Mitra R. Effect of SiC content,
additives and process parameters
on densification and structure–property relations of pressureless
sintered ZrB2–SiC
composites. Ceram Int 2013;39:2915–32.
[9] Zhang SC, Hilmas GE, Fahrenholtz WG. Mechanical properties of
sintered ZrB2–SiC
ceramics. J Eur Ceram Soc 2011;31:893–901.
[10] Liu Q, Han W, Zhang X, Wang S, Han J. Microstructure and
mechanical properties of
ZrB2–SiC composites. Mater Lett 2009;63:1323–5.
[11] Ikegami M, Guo S, Kagawa Y. Densification behavior and
microstructure of spark plasma
sintered ZrB2-based composites with SiC particles. Ceram Int
2012;38:769–74.
[12] Cao M, Wang S, Han W. Influence of nanosized SiC particle on
the fracture toughness of
ZrB2-based nanocomposite ceramic. Mater Sci Eng A 2010;527:2925–8.
[13] Patel M, Singh V, Reddy JJ, Bhanu Prasad VV, Jayaram V.
Densification mechanisms
during hot pressing of ZrB2–20 vol% SiC composite. Scr Mater
2013;69:370–3.
[14] Quo SQ. Densification of ZrB2-based composites and their
mechanical and physical
properties: a review. J Eur Ceram Soc 2009;29:995–1011.
[15] Zhu M, Wang Y. Pressureless sintering ZrB2–SiC ceramics at low
temperatures. Mater
Lett 2009;63:2035–7.
[16] Zhang X, Liu Q, Han W, Han J. Microstructure and mechanical
properties of ZrB2–SiC
nanocomposite ceramic. Scr Mater 2009;61(7):690–2.
[17] Tripp WC, Davis HH, Graham HC. Effect of an SiC addition on the
oxidation of ZrB2.
Am Ceram Soc Bull 1973;52(8): 612–6.
[18] Rezaie A, Fahrenholtz WG, Hilmas GE. Oxidation of zirconium
diboride-silicon carbide
at 1500 ◦C at a low partial pressure of oxygen. J Am Ceram Soc
2006;89(10): 3240–5.
[19] Mashhadi M, Khaksari H, Safi S. Pressureless sintering behavior
and mechanical
properties of ZrB2–SiC composites: effect of SiC content and particle
size. J Mater Res Technol
2015;4(4):416–22.
[20] Sciti D, Guicciardi S, Bellosi A. Properties of a
pressureless-sintered ZrB2–MoSi2 ceramic
composite. J Am Ceram Soc 2006; 89(7):2320–2.
[21] Saha M, New frontiers in characterising ZrB2- MoSi2 ultra-high
temperature ceramics, arXiv: 2202.11162.
[22] Saha M,
Cyclic
Oxidation behaviour of ZrB2-20 vol.% MoSi2 based ultra-high temperature
ceramic matrix composite between 1100 C and 1300 C, engrxiv.org.
[23] Saha M, On the structure-property correlation in pressureless
sintered porous ZrB2-20 vol.% MoSi2ultra-high temperature ceramic matrix composites, submitted for
publication.