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Abstract
Camera traps have become in-situ sensors for collecting information on animal abundance and occupancy estimates. When deployed over a large landscape, camera traps have become ideal for measuring the health of ecosystems, particularly in unstable habitats where it can be dangerous or even impossible to observe using conventional methods. However, manual processing of imagery is extremely time and labor intensive. Because of the associated expense, many studies have started to employ machine learning tools, such as convolutional neural networks (CNNs). One drawback is that for the majority of networks a large number of images (millions) are needed to devise an effective identification or classification model. This study examines specific factors pertinent to camera trap placement in the field that may influence the accuracy metrics of a deep learning model that has been trained with a small set of images. False negatives and false positives may occur due to a variety of environmental factors that make it difficult for even a human observer to classify, including local weather patterns and daylight. We transfer-trained a CNN to detect 16 different object classes (14 animal species, humans, and fires) across 9,576 images taken from camera traps placed in the Chernobyl Exclusion Zone. After analyzing wind speed, cloud cover, temperature, and image contrast, there was a significant positive association between CNN success and temperature. Furthermore, we found that the model was more successful when images were taken during the day as well as when precipitation was not present. We show that external variables at camera trap locations have a noticeable effect on CNN accuracy. Qualitative site-specific factors can confuse quantitative classification algorithms such as CNNs. This study suggests that further exploration into the causes of error in classification modeling is necessary given the unique challenges posed by the analysis of camera trap imagery.
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Introduction
Although camera traps (i.e. motion activated cameras) have been used for decades as a means of observing animal species in a wide variety of habitats while causing minimal disturbance (O’Connell et al., 2011), it is only recently that they have become cost effective for widespread deployment in the field. Camera traps have been widely used to observe various aspects of populations such as animal density and abundance (O’Brien et al., 2003; Rowcliffe et al., 2008). Arguably, camera trap studies have become the most appropriate means of obtaining occupancy and abundance data in most environments, even in difficult terrain or habitats with restricted human access (Karanth, 1995; Schlichting et al., 2020). Furthermore, camera trap observations of flagship species can serve as a basis for estimating the overall ecological health of an ecosystem (Karanth, 1995).

However, in order to most effectively estimate animal distribution and abundance, numerous camera traps must be deployed with a high sampling effort (Di Bitetti et al., 2006). As a consequence of a large number of camera traps in a singular or multiple studies, an expansive number of images need to be filtered and labeled. Conventionally, this requires a huge amount of human labor to classify species within each image, often through the use of citizen scientists (Swanson et al., 2015; Willi et al., 2019). Furthermore, outdoor meteorology has been shown to influence camera trap effectiveness, such as detection distance shortening during rainy weather because of moisture reducing the contrast between an animal and its background (Kays et al., 2010).

Due to the considerable time and effort expended by researchers when classifying camera trap images, many studies have deployed the use of machine learning to rapidly classify animal species and anthropogenic objects, including humans and vehicles (Tabak et al., 2019; Duggan et al. 2021). In fact, some studies have even found that machine learning models can sometimes outperform the average citizen scientist with regard to accuracy (Whytock et al., 2021). One of the most popular machine learning architectures are CNNs, which are deep-learning algorithms that have a variety of branching methodologies in their construction, such as recurrent convolutional neural networks, to suit a variety of problems within the scope of ecology (O’Shea and Nash, 2015). Overall, CNNs are now widely used in camera trap studies for the purposes of image recognition and classification (Gomez Villa et al., 2017). Furthermore, CNNs have the potential to save researchers a huge amount of time and labor, and thus human labor can be redirected toward other scientific purposes (Norouzzadeh et al., 2018; Swanson et al., 2015). 

In fact, recent studies have explored minimizing effort in training an effective model as a method to reduce the intense labor that goes into sorting the millions of images often associated with a camera trap based study. Transfer learning, a strategy in training machine learning with a new dataset based on an old dataset, enables researchers to use a relatively small training image set, yet still retain a high level of accuracy (Duggan et al., 2021; Hu et al., 2015; Schneider et al., 2020; Shao et al., 2015). Through the use of transfer learning, CNN performance can be fine-tuned and improved for more specific classes or objects of interest (Yosinski et al., 2014).

While transfer learning and other methods, such as data augmentation, are showing promise in reducing the effort to train models for animal occupancy models, these models can be improved by adding a wider array of images. A wide variety of unique images are necessary to train these models due to external factors at camera sites. Seasonal variation and the ambient climatic environment influence the performance of camera traps, with camera traps often exhibiting a shorter detection distance during wet seasons (Rowcliffe et al., 2011). Multiple environmental factors, such as vegetation density and background temperature, have also been shown to influence camera trap detection rates due to effects on passive infrared (PIR) sensor functionality (Hofmeester et al., 2019; Nagy-Reis et al., 2017). High false positive rates have also been reported due to dynamic images with background clutter, or variations, such as shadows and swaying vegetation due to wind (Newey et al., 2015; Zhang et al., 2016). False positives due to the ambient environment can occur due to thermal heterogeneity, in which surrounding vegetation triggers camera traps due to it being a different temperature than the background (Welbourne et al., 2016). With external variables, such as degree of light, affecting aspects of image quality and object contours, CNN accuracy is in turn affected as the model has difficulty in distinguishing animal species from the background in which they inhabit. Here we examine the effects of meteorological conditions and day-light levels on CNN accuracy and provide recommendations for building the training data set used by a CNN for evaluating a uniquely trained model for the classification of terrestrial animals.

Methods
Study site
The nuclear accident at Chernobyl, Ukraine (51.2763°N, 30.2219°E) occurred in 1986 and released around 1 x 1019 Bq of radioactivity that was transported over long distances across the northern hemisphere but especially throughout eastern Europe and Scandinavia (Evangeliou et al., 2016). The highest levels of contamination are found within the Chernobyl Exclusion Zone (CEZ) of Ukraine, which consists of 2,600 square kilometers surrounding the plant. The local habitat consists of thick forests and fallow agricultural lands which have been closed to the public due to high levels of radiation. Thus, Chernobyl offers the unique opportunity to explore the ecological effects of radiation, as well as terrestrial wildlife without human interference (Mousseau and Møller, 2014; Mousseau, 2021). Due to restricted human access, dangerous levels of radiation, and now a war-stricken environment caused by Russian aggression, camera traps are ideal for observing animal species in Chernobyl safely (Schlichting et al., 2020).

Camera trap sampling design
We observed 14 animal species in camera trap images taken from 45 locations across the CEZ We used relatively inexpensive consumer grade Browning Recon Force FHD trail cameras for this study. Trail cameras were placed about 1.22 meters above the ground and were generally oriented toward the north so as to avoid glare (see Appendix 2 SI Figure 2.2). These cameras use passive infrared detectors (PIR) to sense motion and a series of eight still images were recorded when an animal was detected. Because of their sensitivity, the traps are generally nondiscriminatory with respect to the species they capture - from moose that have a height up to three meters to weasels that only weigh a few ounces. These cameras have a detection distance of 16.76 meters, a trigger speed of 0.67 seconds. They were programmed to capture images at a 10 MP resolution. Representative images are shown in Figure 1. Camera trap images used to train and validate the model were taken between the months of November 2019 and May 2020. The traps were placed throughout the CEZ in a variety of locations, including wooded areas and fields (see Fig. 2). Camera traps were deployed within an approximately 1500 square kilometer area in the CEZ at elevation ranges from 300-500 feet. This area consists of a humid continental climate with warm summers and snowy, cold winters.

Before classification, all images were resized to 1920 x 1080 pixels that is typical of camera trap studies so as to increase processing speed and improve efficiency of limited computational resources. Using the widely accepted 90/10 split (Fink et al., 2019), 90% of images were divided into a training subset and 10% were divided into a testing subset. Only images that displayed a unique perspective of each species were included in the training dataset so as to enhance model training. In total, 4022 images acquired from 45 cameras placed across the CEZ were classified, with 3,620 images in the training dataset and 402 images in the testing dataset. 

Convolutional neural network development
Following an application of Duggan et al. (2021) for our Chernobyl study site, we explored the consequences of utilizing fewer images and the factors necessary to consider when implementing CNN architectures in field camera trap imagery. A premade extension of the CNN, Faster-RCNN, was trained with this relatively small image set in order to reduce the running time of the model and to enhance computational efficiency (Ren et al., 2017; Schneider et al., 2018). Emphasis was placed on including images in the training dataset that showed animals in a wide variety of positions and motions so as to give the model multiple perspectives of a species. Using the graphical image annotation tool LabelImg (Tzutalin, 2015), we drew bounding boxes with a label around each species to establish ground truths, which consisted of the correct, or real, classification of each object (see Fig. 3). These bounding boxes distinguish the object from background noise. The defining bounding box was transferred to a CSV format with the training processes utilized in the Tensorflow training framework (Abadi et al., 2016). After training, the CNN’s predicted values and ground truths were summarized in a confusion matrix (see Appendix 1). Based on the number of false positives, false negatives, true positives, and true negatives the following metrics outlining model performance were calculated: accuracy = 81.31, precision = 97.93, recall = 78.56, and F-1 = 87.18. These metrics were calculated at a confidence threshold of 0.9.

Model validation
A validation subset was created by classifying images from five cameras with high species diversity from throughout the study site. A total of 8,135 images were used in this subset, including 2,610 true negatives. Images from this set were also labeled with LabelImg to evaluate model performance metrics. We ran the trained model at a confidence threshold of 0.9 on these images to evaluate model performance. Validation metrics were compared to the train/test metrics to ensure that the model was not overfitted.

Case Study
Once the model was effectively trained and validated, it was applied to 9,576 images from 12 randomly selected cameras within the Chernobyl Exclusion Zone (see Fig. 4). These 12 cameras contained images not included in the 45-camera training/testing set because of the chance of labeled data interfering with the unsupervised images. In order to determine how the model would perform on a random selection of data we chose separate camera traps from our training camera traps. These cameras were all generally placed in clearings within wooded areas with little variation in the surrounding habitats, with the exception of an occasional dirt road (CH16B’s site) or abandoned structures (sites from CH20 and CH21B). These 12 cameras contained images from November 2016 to March 2017. Images showing the site-specific factors of each of the camera traps can be found in Appendix 2. Data from the nine most common classes (denoted by an asterisk in Table 1) were selected for analysis. A total of 114 unique animal classifications, defined as events, were contained within the 9,576 images taken. Unique animal classifications consisted of photographs of an animal, or a group of animals, captured by the camera traps. Therefore, there were 114 events consisting of 182 unique animals. Furthermore, if consecutive images contained members of the same species taken less than one hour apart, these were classified as a single event. We assumed that camera events only contained one type of species. In more than two million images of Chernobyl, only two instances occurred in which multiple different species were present in an image at the same time. Since the Browning trail cameras automatically took eight images each time motion was detected, the CNN made at least eight predictions for each event. Therefore, images were clarified to one species with the species occurring most often as the correct classification. For example, if the CNN classified seven of the eight images as a red deer and the last as a roe deer, the event was clarified to consist of a red deer. 

The predicted counts made by the convolutional neural network were compared to the actual counts made by human observers. The actual counts were reassessed by a second observer to ensure accuracy. CNNs can be defined by varying levels of success: at the lowest level a success consists of merely separating an animal (no matter the species or count) from vegetation. At a slightly more demanding level, a success can be defined as not only detecting an animal but detecting the correct species. Finally, at the most exacting level, a success can be defined as detecting both the right species and number of animals present in a given image. For the purposes of this research, we chose to use the most stringent parameters for success: events in which the model correctly identified the species and number of animals present in each image were labeled as successes, and all other events were labeled as failures. Due to this definition, the “success rate” of 50.88% is different from the aforementioned accuracy rate of 81.31. Failures consisted of false positives, false negatives, and misclassifications. Our main objective was to attribute failures to a variety of variables, including but not limited to cloud cover, wind speed, temperature, precipitation, and amount of daylight. 

Statistical Analysis
After generating the case study data, we ran a generalized linear mixed model (GLMM) on R version 4.2.2 to tease apart the effects of low light/day, precipitation/no, cloud cover, temperature, wind speed, and image contrast on CNN success. We chose to run a GLMM due to their ability to estimate fixed and random effects (Bono et al., 2021). Low light/day and precipitation/no were dummy variables - we were unable to make these variables continuous due to the difficulty involved in quantifying amount of light; quantifying precipitation was also not reliable because historical weather data do not take snowfall into account. The presence or absence of precipitation in each image was noted visually (see Fig. 5), and amount of daylight (low light vs. day) was determined based on whether or not the camera trap deployed the use of infrared LEDs, signifying low light levels, i.e. night (see Fig. 6). Cloud cover, temperature, wind speed, and contrast were continuous variables. These meterological data were obtained either from World Weather Online or the image itself, as in the case of temperature (World Weather Online, 2022; each camera recorded ambient temperature along with date and time of day). Overall image contrast was determined by running the case study images through the R package imagefluency. 

Results
We observed 14 animal species in our camera trap images taken from 45 locations across the CEZ (refer to Table 1). 

CNN Case Study

A total of 114 events were classified across 12 different cameras. Seven cameras were at least 50% successful (Figure 7). The total count predicted by the CNN exceeded the count identified by humans, delineating a significant number of false positives (Table 2).

Continuous Variables
The GLMM analyzed the fixed effects of the continuous variables of image contrast, ambient temperature, wind speed, and cloud cover. Only temperature was shown to be statistically significant (p = 0.03; Table 3). The parameters are indicative of the correlation between each variable and its effects; contrast, temperature, and wind speed showed a positive association with CNN success. Cloud cover, on the other hand, was negatively associated with CNN success; as cloud cover increased CNN success rates decreased.

Light Level and Precipitation
Low light/day and the presence/absence of precipitation were both random variables with covariance parameters of 0.0006 and 0.0043, respectively, as determined by the GLMM. After counting successes and failures in the presence or absence of precipitation, the CNN performed better when precipitation was not present; the success rate in clear weather was 21.99% higher than the success rate when it was raining or snowing (Table 4). Furthermore, after assessing successes and failures in low light/daytime conditions, the CNN was 13.11% more successful during the day than during low light conditions (Table 5).

Discussion
Environmental factors at camera trap locations were found to influence CNN accuracy when processing camera trap imagery. Higher temperatures were significantly associated with CNN success rate. This is likely because temperatures below freezing are associated with frozen precipitation, especially snowfall. Precipitation was also shown to negatively affect CNN success (see Table 4) and low light levels were also associated with CNN failure (see Table 5). In the presence of frozen precipitation and in the absence of sufficient light, CNNs may be less successful at image classification due to low levels of contrast between the object and its background (Tao et al., 2017) which would create a relatively blurred object contour. One way to mitigate this issue would be to train the model with a larger number of images taken when temperatures were below freezing, which improve the model for classifying cold-weather images.

We expected that image contrast would play a major role in CNN accuracy. High contrast levels are necessary for effective image classification because the CNN is expected to be better able to distinguish indistinct targets from cluttered backgrounds (Fan et al., 2018). However, we found that the overall contrast of our images did not have an effect on CNN success, which suggests that the issue is not necessarily contrast as a whole on a given image but rather could be attributed to the definition of object contours. 

While not of statistical significance, the slight positive relationship between wind speed and CNN success is interesting as we expected that high winds would negatively impact CNN success rates on account of moving vegetation triggering the camera (Glen et al., 2013; Zhang et al., 2016). Certainly, it has been frequently observed that wind effects on vegetation can produce massive increases in the generation of images not containing any animal targets. And vegetation triggering can be problematic for CNNs in that the model has to sort a large number of true negatives that may be incorrectly classified as false positives thus reducing overall accuracy. 

There was a negative, although not statistically significant, association between cloud cover and CNN success. That is to say, as cloud cover increased, CNN success decreased. Higher cloud cover is often associated with precipitation, lower light levels, and lower image contrast, and thus negative effects on CNN performance.

This study suggests that ambient meteorological conditions should be included when performing camera trap studies. For example, CNN classification will be less accurate during periods of winter weather. The simplest solution for improving CNN performance is to include a large and dynamic image training set. The training set should include each target species in a variety of orientations and weather conditions. As a means to mitigate the effects of meteorology and its subsequent effects on image contrast, we suggest cropping the animal from its background to enhance image classification accuracy (Beery et al., 2019; Yu et al., 2013) although this adds to the manual labor required for the process.

Future camera trap studies may be further enhanced by performing preliminary pilot studies to determine which camera model best meets the requirements of the study (Newey et al., 2015). The optimal camera model can depend on a variety of variables, such as target species, site accessibility, habitat, and climate (Rovero et al., 2013). Also, there is tremendous variation among camera makes and models in their resolution, field of view and low-light capabilities.  Higher quality cameras may produce dramatically better images and be far more durable under field conditions than cheaper consumer grade cameras, but this comes at much greater cost which is an important consideration given the need for a large numbers of cameras (hundreds) for ecological studies. Consumer grade cameras offer the great advantage of being almost disposable. Camera model may be particularly important for night/low light conditions such as at dawn, dusk, or during daytime precipitation, (Rovero et al., 2013), especially given that many of the animal targets are particularly active at night. To our knowledge, there have been few comparative studies of camera performance under varying environmental conditions.

There were several limitations to the present study, most importantly the use of a relatively small sample size of 114 unique events for CNN training.  This constraint was dictated primarily by both human time and effort restrictions and the need for greater computational power.  Future studies should analyze a larger number of events, in addition to analyzing background clutter or object contours as variables that may influence CNN success. Although manpower will always be in short supply, desktop computational power continues to rise exponentially thus providing the opportunity for enhanced CNN development. Given the availability of greater computational power, contour labeling and background subtraction may prove an effective means of adjusting for blurred object contours. Also, although preliminary, our findings suggest that time of day and amount and type of precipitation should be included in any analysis of camera and CNN performance in ecological studies that use camera traps. 

Classification models that use CNNs are becoming increasingly useful for the processing of camera trap imagery (Norouzzadeh et al., 2018). While CNNs can be time and cost effective, it is difficult to achieve the accuracy levels provided by manual (i.e. human) analyses (Favorskaya and Pakhirka, 2019). However, characterization of the ecological and environmental characteristics of the study site and the use of a dynamic image training set, can likely greatly enhance the utility of artificial intelligence (AI) tools like CNNs.  
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Table 1: Image distribution for test and train subsets for 14 different classes within 4,022 images taken from 45 camera trap locations. The 9 most common classes are delineated by an asterisk.

	Class
	Train Images
	Test Images

	Badger
	157
	17

	Bird
	18
	2

	Boar*
	176
	19

	Cow
	83
	9

	Fox*
	270
	30

	Hare*
	471
	52

	Horse*
	320
	35

	Lynx
	62
	7

	Moose*
	475
	53

	Raccoon Dog*
	154
	17

	Red Deer*
	504
	56

	Roe Deer*
	458
	51

	Weasel
	51
	6

	Wolf*
	243
	27



Table 2: Number of each species identified by humans (actual) vs. number of each species the CNN identified (predicted) from images taken from 12 randomly selected cameras within the case study.

	Species
	Actual 
	Predicted 

	Boar
	7
	8

	Fox
	7
	3

	Hare
	15
	22

	Horse
	25
	25

	Moose
	25
	29

	Raccoon
	2
	2

	Red deer
	93
	128

	Roe deer
	7
	13

	Wolf
	1
	2

	Totals
	182
	232






Table 3: Linear regression coefficients calculated via generalized linear mixed model showing fixed effects of contrast, temperature, wind speed, and cloud cover.

	
	Continuous Variables
	
	
	

	
	Contrast
	Temperature
	Wind speed
	Cloud cover

	Parameter
	1.2832
	0.0496
	0.0261
	-0.6118

	Standard Deviation
	2.2001
	0.0232
	0.0254
	0.4554

	P value
	0.5597
	0.03253
	0.30410
	0.1792













Table 4: Number of successes and failures by the CNN (from 114 total events) was significantly affected by the presence or absence of precipitation (Chi2 = 4.2, d.f. = 1, 114, p < 0.04). An event occurred in the presence of precipitation if there was visual snowfall or rainfall noted, all other events occurred in the absence of precipitation.

	Precipitation
	Successes
	Failures
	Success Rate

	Present
	10
	19
	34.48%

	Not Present
	48
	37
	56.47%














Table 5: CNN success was considerably higher under daylight conditions, although this finding was not statistically significant (Chi2 = 1.9, d.f. = 1,114, p < 0.17) possibly due to sample size limitations. 

	Time of Day
	Successes
	Failures
	Success Rate

	Low Light
	31
	37
	45.59%

	Day
	27
	19
	58.70%

















Figure Legends
Figure 1: Sample photos taken from camera traps in Chernobyl. Starting from top left and proceeding clockwise, species are the following: grey wolf (Canis lupus), roe deer (Capreolus capreolus), red fox (Vulpes vulpes), moose (Alces alces), Przewalski’s horse (Equus ferus), and boar (Sus scrofa).
Figure 2: Map of 45 camera locations within the Chernobyl Exclusion Zone whose images were used to create the model. All cameras shown were part of the train/test set, with a validation subset shown in purple. Five cameras are labeled with an “A” to show that their location was also used in the case study but from a different time range.
Figure 3: Bounding boxes with confidence predictions around a target object. Computer-generated bounding boxes are shown on the left side and human-labeled bounding boxes are shown on the right side.
Figure 4: Map of 12 camera locations within CEZ that were used as part of the case study. Five cameras are labeled with a “B” to show that their location was also used in the train/test set but from a different time range.
Figure 5: Sample photo of precipitation taken from a camera trap in Chernobyl. Species shown are moose (Alces alces).
Figure 6: Sample photo of the camera traps deploying infrared LED technology, signifying low light levels. Species shown is a red deer (Cervus elaphus).
Figure 7: Number of CNN successes and failures per camera, which together constitute total events. Failures are shown in red and successes are shown in blue. See Appendix 3 SI Table 3.1 to view how camera numbers 1-12 correspond to camera names.
SI Figure 2.1: Images showing site-specific factors of the 12 case study camera traps. Images were taken on the day the cameras were set up. Reading left to right, row one: CH02B, CH11B, CH12; row two: CH13, CH15, CH16B; row three: CH17B, CH18, CH19; row four: CH20, CH21B, CH22. 
SI Figure 2.2: Image demonstrating general camera orientation and height at 1.22 meters above the ground.
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Appendix

Appendix 1

SI Table 1.1: Confusion matrix (CM) of ground truth vs. predicted values for 14 object classes at a confidence threshold of 0.9. The accuracy, precision, recall, and F1 scores (as determined by the true negatives, true positives, false positives, and false negatives shown in the CM) are 81, 98, 79, and 87, respectively. 
chernobyl confusion matrix
Appendix 2
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SI Figure 2.1: Images showing site-specific factors of the 12 case study camera traps. Images were taken on the day the cameras were set up. Reading left to right, row one: CH02B, CH11B, CH12; row two: CH13, CH15, CH16B; row three: CH17B, CH18, CH19; row four: CH20, CH21B, CH22. 
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SI Figure 2.2: Image demonstrating general camera orientation and height at 1.22 meters above the ground.





Appendix 3
SI Table 3.1: Camera names that correspond to each camera number.
	Camera Number
	Camera Name

	1
	CH02B

	2
	CH11B

	3
	CH12

	4
	CH13

	5
	CH15

	6
	CH16B

	7
	CH17B

	8
	CH18

	9
	CH19

	10
	CH20

	11
	CH21B

	12
	CH22
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Abstract
Camera traps have become in-situ sensors for collecting information on animal abundance and occupancy estimates. When deployed over a large landscape, camera traps have become ideal for measuring the health of ecosystems, particularly in unstable habitats where it can be dangerous or even impossible to observe using conventional methods. However, manual processing of imagery is extremely time and labor intensive. Because of the associated expense, many studies have started to employ machine learning tools, such as convolutional neural networks (CNNs). One drawback is that for the majority of networks a large number of images (millions) are needed to devise an effective identification or classification model. This study examines specific factors pertinent to camera trap placement in the field that may influence the accuracy metrics of a deep learning model that has been trained with a small set of images. False negatives and false positives may occur due to a variety of environmental factors that make it difficult for even a human observer to classify, including local weather patterns and daylight. We transfer-trained a CNN to detect 16 different object classes (14 animal species, humans, and fires) across 9,576 images taken from camera traps placed in the Chernobyl Exclusion Zone. After analyzing wind speed, cloud cover, temperature, and image contrast, there was a significant positive association between CNN success and temperature. Furthermore, we found that the model was more successful when images were taken during the day as well as when precipitation was not present. We show that external variables at camera trap locations have a noticeable effect on CNN accuracy. Qualitative site-specific factors can confuse quantitative classification algorithms such as CNNs. This study suggests that further exploration into the causes of error in classification modeling is necessary given the unique challenges posed by the analysis of camera trap imagery.
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Introduction
Although camera traps (i.e. motion activated cameras) have been used for decades as a means of observing animal species in a wide variety of habitats while causing minimal disturbance (O’Connell et al., 2011), it is only recently that they have become cost effective for widespread deployment in the field. Camera traps have been widely used to observe various aspects of populations such as animal density and abundance (O’Brien et al., 2003; Rowcliffe et al., 2008). Arguably, camera trap studies have become the most appropriate means of obtaining occupancy and abundance data in most environments, even in difficult terrain or habitats with restricted human access (Karanth, 1995; Schlichting et al., 2020). Furthermore, camera trap observations of flagship species can serve as a basis for estimating the overall ecological health of an ecosystem (Karanth, 1995).

However, in order to most effectively estimate animal distribution and abundance, numerous camera traps must be deployed with a high sampling effort (Di Bitetti et al., 2006). As a consequence of a large number of camera traps in a singular or multiple studies, an expansive number of images need to be filtered and labeled. Conventionally, this requires a huge amount of human labor to classify species within each image, often through the use of citizen scientists (Swanson et al., 2015; Willi et al., 2019). Furthermore, outdoor meteorology has been shown to influence camera trap effectiveness, such as detection distance shortening during rainy weather because of moisture reducing the contrast between an animal and its background (Kays et al., 2010).

Due to the considerable time and effort expended by researchers when classifying camera trap images, many studies have deployed the use of machine learning to rapidly classify animal species and anthropogenic objects, including humans and vehicles (Tabak et al., 2019; Duggan et al. 2021). In fact, some studies have even found that machine learning models can sometimes outperform the average citizen scientist with regard to accuracy (Whytock et al., 2021). One of the most popular machine learning architectures are CNNs, which are deep-learning algorithms that have a variety of branching methodologies in their construction, such as recurrent convolutional neural networks, to suit a variety of problems within the scope of ecology (O’Shea and Nash, 2015). Overall, CNNs are now widely used in camera trap studies for the purposes of image recognition and classification (Gomez Villa et al., 2017). Furthermore, CNNs have the potential to save researchers a huge amount of time and labor, and thus human labor can be redirected toward other scientific purposes (Norouzzadeh et al., 2018; Swanson et al., 2015). 

In fact, recent studies have explored minimizing effort in training an effective model as a method to reduce the intense labor that goes into sorting the millions of images often associated with a camera trap based study. Transfer learning, a strategy in training machine learning with a new dataset based on an old dataset, enables researchers to use a relatively small training image set, yet still retain a high level of accuracy (Duggan et al., 2021; Hu et al., 2015; Schneider et al., 2020; Shao et al., 2015). Through the use of transfer learning, CNN performance can be fine-tuned and improved for more specific classes or objects of interest (Yosinski et al., 2014).

While transfer learning and other methods, such as data augmentation, are showing promise in reducing the effort to train models for animal occupancy models, these models can be improved by adding a wider array of images. A wide variety of unique images are necessary to train these models due to external factors at camera sites. Seasonal variation and the ambient climatic environment influence the performance of camera traps, with camera traps often exhibiting a shorter detection distance during wet seasons (Rowcliffe et al., 2011). Multiple environmental factors, such as vegetation density and background temperature, have also been shown to influence camera trap detection rates due to  effects on passive infrared (PIR) sensor functionality (Hofmeester et al., 2019; Nagy-Reis et al., 2017). High false positive rates have also been reported due to dynamic images with background clutter, or variations, such as shadows and swaying vegetation due to wind (Newey et al., 2015; Zhang et al., 2016). False positives due to the ambient environment can occur due to thermal heterogeneity, in which surrounding vegetation triggers camera traps due to it being a different temperature than the background (Welbourne et al., 2016). With external variables, such as degree of light, affecting aspects of image quality and object contours, CNN accuracy is in turn affected as the model has difficulty in distinguishing animal species from the background in which they inhabit. Here we examine the effects of meteorological conditions and day-light levels on CNN accuracy and provide recommendations for building the training data set used by a CNN for evaluating a uniquely trained model for the classification of terrestrial animals.

Methods
Study site
The nuclear accident at Chernobyl, Ukraine (51.2763°N, 30.2219°E) occurred in 1986 and released around 1 x 1019 Bq of radioactivity that was transported over long distances across the northern hemisphere but especially throughout eastern Europe and Scandinavia (Evangeliou et al., 2016). The highest levels of contamination are found within the Chernobyl Exclusion Zone (CEZ) of Ukraine, which consists of 2,600 square kilometers surrounding the plant. The local habitat consists of thick forests and fallow agricultural lands which have been closed to the public due to high levels of radiation. Thus, Chernobyl offers the unique opportunity to explore the ecological effects of radiation, as well as terrestrial wildlife without human interference (Mousseau and Møller, 2014; Mousseau, 2021). Due to restricted human access, dangerous levels of radiation, and now a war-stricken environment caused by Russian aggression, camera traps are ideal for observing animal species in Chernobyl safely (Schlichting et al., 2020).

Camera trap sampling design
We observed 14 animal species in camera trap images taken from 45 locations across the CEZ We used relatively inexpensive consumer grade Browning Recon Force FHD trail cameras for this study. Trail cameras were placed about 1.22 meters above the ground and were generally oriented toward the north so as to avoid glare (see Appendix 2 SI Figure 2). These cameras use passive infrared detectors (PIR) to sense motion and a series of eight still images were recorded when an animal was detected. Because of their sensitivity, the traps are generally nondiscriminatory with respect to the species they capture - from moose that have a height up to three meters to weasels that only weigh a few ounces. These cameras have a detection distance of 16.76 meters, a trigger speed of 0.67 seconds. They were programmed to capture images at a 10 MP resolution. Representative images are shown in Figure 1. Camera trap images used to train and validate the model were taken between the months of November 2019 and May 2020. The traps were placed throughout the CEZ in a variety of locations, including wooded areas and fields (see Fig. 2). Camera traps were deployed within an approximately 1500 square kilometer area in the CEZ at elevation ranges from 300-500 feet. This area consists of a humid continental climate with warm summers and snowy, cold winters.

Before classification, all images were resized to 1920 x 1080 pixels that is typical of camera trap studies so as to increase processing speed and improve efficiency of limited computational resources. Using the widely accepted 90/10 split (Fink et al., 2019), 90% of images were divided into a training subset and 10% were divided into a testing subset. Only images that displayed a unique perspective of each species were included in the training dataset so as to enhance model training. In total, 4022 images acquired from 45 cameras placed across the CEZ were classified, with 3,620 images in the training dataset and 402 images in the testing dataset. 
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Figure 1: Sample photos taken from camera traps in Chernobyl. Starting from top left and proceeding clockwise, species are the following: grey wolf (Canis lupus), roe deer (Capreolus capreolus), red fox (Vulpes vulpes), moose (Alces alces), Przewalski’s horse (Equus ferus), and boar (Sus scrofa).
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Figure 2: Map of 45 camera locations within the Chernobyl Exclusion Zone whose images were used to create the model. All cameras shown were part of the train/test set, with a validation subset shown in purple. Five cameras are labeled with an “A” to show that their location was also used in the case study but from a different time range.

Convolutional neural network development
Following an application of Duggan et al. (2021) for our Chernobyl study site, we explored the consequences of utilizing fewer images and the factors necessary to consider when implementing CNN architectures in field camera trap imagery. A premade extension of the CNN, Faster-RCNN, was trained with this relatively small image set in order to reduce the running time of the model and to enhance computational efficiency (Ren et al., 2017; Schneider et al., 2018). Emphasis was placed on including images in the training dataset that showed animals in a wide variety of positions and motions so as to give the model multiple perspectives of a species. Using the graphical image annotation tool LabelImg (Tzutalin, 2015), we drew bounding boxes with a label around each species to establish ground truths, which consisted of the correct, or real, classification of each object (see Fig. 3). These bounding boxes distinguish the object from background noise. The defining bounding box was transferred to a CSV format with the training processes utilized in the Tensorflow training framework (Abadi et al., 2016). After training, the CNN’s predicted values and ground truths were summarized in a confusion matrix (see Appendix 1). Based on the number of false positives, false negatives, true positives, and true negatives the following metrics outlining model performance were calculated:  accuracy = 81.31, precision = 97.93, recall = 78.56, and F-1 = 87.18. These metrics were calculated at a confidence threshold of 0.9.
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Figure 3: Bounding boxes with confidence predictions around a target object. Computer-generated bounding boxes are shown on the left side and human-labeled bounding boxes are shown on the right side.

Model validation
A validation subset was created by classifying images from five cameras with high species diversity from throughout the study site. A total of 8,135 images were used in this subset, including 2,610 true negatives. Images from this set were also labeled with LabelImg to evaluate model performance metrics. We ran the trained model at a confidence threshold of 0.9 on these images to evaluate model performance. Validation metrics were compared to the train/test metrics to ensure that the model was not overfitted.

Case Study
Once the model was effectively trained and validated, it was applied to 9,576 images from 12 randomly selected cameras within the Chernobyl Exclusion Zone (see Fig. 4). These 12 cameras contained images not included in the 45-camera training/testing set because of the chance of labeled data interfering with the unsupervised images. In order to determine how the model would perform on a random selection of data we chose separate camera traps from our training camera traps. These cameras were all generally placed in clearings within wooded areas with little variation in the surrounding habitats, with the exception of an occasional dirt road (CH16B’s site) or abandoned structures (sites from CH20 and CH21B). These 12 cameras contained images from November 2016 to March 2017. Images showing the site-specific factors of each of the camera traps can be found in Appendix 2. Data from the nine most common classes (denoted by an asterisk in Table 1) were selected for analysis. A total of 114 unique animal classifications, defined as events, were contained within the 9,576 images taken. Unique animal classifications consisted of photographs of an animal, or a group of animals, captured by the camera traps. Therefore, there were 114 events consisting of 182 unique animals. Furthermore, if consecutive images contained members of the same species taken less than one hour apart, these were classified as a single event. We assumed that camera events only contained one type of species. In more than two million images of Chernobyl, only two instances occurred in which multiple different species were present in an image at the same time. Since the Browning trail cameras automatically took eight images each time motion was detected, the CNN made at least eight predictions for each event. Therefore, images were clarified to one species with the species occurring most often as the correct classification. For example, if the CNN classified seven of the eight images as a red deer and the last as a roe deer, the event was clarified to consist of a red deer. 
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Figure 4: Map of 12 camera locations within CEZ that were used as part of the case study. Five cameras are labeled with a “B” to show that their location was also used in the train/test set but from a different time range.

The predicted counts made by the convolutional neural network were compared to the actual counts made by human observers. The actual counts were reassessed by a second observer to ensure accuracy. CNNs can be defined by varying levels of success: at the lowest level a success consists of merely separating an animal (no matter the species or count) from vegetation. At a slightly more demanding level, a success can be defined as not only detecting an animal but detecting the correct species. Finally, at the most exacting level, a success can be defined as detecting both the right species and number of animals present in a given image. For the purposes of this research, we chose to use the most stringent parameters for success: events in which the model correctly identified the species and number of animals present in each image were labeled as successes, and all other events were labeled as failures. Due to this definition, the “success rate” of 50.88% is different from the aforementioned accuracy rate of 81.31. Failures consisted of false positives, false negatives, and misclassifications. Our main objective was to attribute failures to a variety of variables, including but not limited to cloud cover, wind speed, temperature, precipitation, and amount of daylight. 

Statistical Analysis
After generating the case study data, we ran a generalized linear mixed model (GLMM) on R version 4.2.2 to tease apart the effects of low light/day, precipitation/no, cloud cover, temperature, wind speed, and image contrast on CNN success. We chose to run a GLMM due to their ability to estimate fixed and random effects (Bono et al., 2021). Low light/day and precipitation/no were dummy variables - we were unable to make these variables continuous due to the difficulty involved in quantifying amount of light; quantifying precipitation was also not reliable because historical weather data do not take snowfall into account. The presence or absence of precipitation in each image was noted visually (see Fig. 5), and amount of daylight (low light vs. day) was determined based on whether or not the camera trap deployed the use of infrared LEDs, signifying low light levels, i.e. night (see Fig. 6). Cloud cover, temperature, wind speed, and contrast were continuous variables. These meterological data were obtained either from World Weather Online or the image itself, as in the case of temperature (World Weather Online, 2022; each camera recorded ambient temperature along with date and time of day). Overall image contrast was determined by running the case study images through the R package imagefluency. 
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Figure 5: Sample photo of precipitation taken from a camera trap in Chernobyl. Species shown are moose (Alces alces).
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Figure 6: Sample photo of the camera traps deploying infrared LED technology, signifying low light levels. Species shown is a red deer (Cervus elaphus).

Results
We observed 14 animal species in our camera trap images taken from 45 locations across the CEZ (refer to Table 1). 

Table 1: Image distribution for test and train subsets for 14 different classes within 4,022 images taken from 45 camera trap locations. The 9 most common classes are delineated by an asterisk.

	Class
	Train Images
	Test Images

	Badger
	157
	17

	Bird
	18
	2

	Boar*
	176
	19

	Cow
	83
	9

	Fox*
	270
	30

	Hare*
	471
	52

	Horse*
	320
	35

	Lynx
	62
	7

	Moose*
	475
	53

	Raccoon Dog*
	154
	17

	Red Deer*
	504
	56

	Roe Deer*
	458
	51

	Weasel
	51
	6

	Wolf*
	243
	27





CNN Case Study

A total of 114 events were classified across 12 different cameras. Seven cameras were at least 50% successful (Figure 7). The total count predicted by the CNN exceeded the count identified by humans, delineating a significant number of false positives (Table 2).
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Figure 7: Number of CNN successes and failures per camera, which together constitute total events. Failures are shown in red and successes are shown in blue. See Appendix 3 SI Table 2 to view how camera numbers 1-12 correspond to camera names.



Table 2: Number of each species identified by humans (actual) vs. number of each species the CNN identified (predicted) from images taken from 12 randomly selected cameras within the case study.

	Species
	Actual 
	Predicted 

	Boar
	7
	8

	Fox
	7
	3

	Hare
	15
	22

	Horse
	25
	25

	Moose
	25
	29

	Raccoon
	2
	2

	Red deer
	93
	128

	Roe deer
	7
	13

	Wolf
	1
	2

	Totals
	182
	232






Continuous Variables
The GLMM analyzed the fixed effects of the continuous variables of image contrast, ambient temperature, wind speed, and cloud cover. Only temperature was shown to be statistically significant (p = 0.03; Table 3). The parameters are indicative of the correlation between each variable and its effects; contrast, temperature, and wind speed showed a positive association with CNN success. Cloud cover, on the other hand, was negatively associated with CNN success; as cloud cover increased CNN success rates decreased.

Table 3: Linear regression coefficients calculated via generalized linear mixed model showing fixed effects of contrast, temperature, wind speed, and cloud cover.

	
	Continuous Variables
	
	
	

	
	Contrast
	Temperature
	Wind speed
	Cloud cover

	Parameter
	1.2832
	0.0496
	0.0261
	-0.6118

	Standard Deviation
	2.2001
	0.0232
	0.0254
	0.4554

	P value
	0.5597
	0.03253
	0.30410
	0.1792




Light Level and Precipitation
Low light/day and the presence/absence of precipitation were both random variables with covariance parameters of 0.0006 and 0.0043, respectively, as determined by the GLMM. After counting successes and failures in the presence or absence of precipitation, the CNN performed better when precipitation was not present; the success rate in clear weather was 21.99% higher than the success rate when it was raining or snowing (Table 4). Furthermore, after assessing successes and failures in low light and daytime conditions, the CNN was 13.11% more successful during the day than during low light conditions (Table 5).

Table 4: Number of successes and failures by the CNN (from 114 total events) was significantly affected by the presence or absence of precipitation (Chi2 = 4.2, d.f. = 1, 114, p < 0.04). An event occurred in the presence of precipitation if there was visual snowfall or rainfall noted, all other events occurred in the absence of precipitation.

	Precipitation
	Successes
	Failures
	Success Rate

	Present
	10
	19
	34.48%

	Not Present
	48
	37
	56.47%







Table 5: CNN success was considerably higher under daylight conditions, although this finding was not statistically significant  (Chi2 = 1.9, d.f. = 1,114, p < 0.17) possibly due to sample size limitations. 

	Time of Day
	Successes
	Failures
	Success Rate

	Low Light
	31
	37
	45.59%

	Day
	27
	19
	58.70%





Discussion
Environmental factors at camera trap locations were found to influence CNN accuracy when processing camera trap imagery. Higher temperatures were significantly associated with CNN success rate. This is likely because temperatures below freezing are associated with frozen precipitation, especially snowfall. Precipitation was also shown to negatively affect CNN success (see Table 4) and low light levels were also associated with CNN failure (see Table 5). In the presence of frozen precipitation and in the absence of sufficient light, CNNs may be less successful at image classification due to low levels of contrast between the object and its background (Tao et al., 2017) which would create a relatively blurred object contour. One way to mitigate this issue would be to train the model with a larger number of images taken when temperatures were below freezing, which improve the model for classifying cold-weather images.

We expected that image contrast would play a major role in CNN accuracy. High contrast levels are necessary for effective image classification because the CNN is expected to be better able to distinguish indistinct targets from cluttered backgrounds (Fan et al., 2018). However, we found that the overall contrast of our images did not have an effect on CNN success, which suggests that the issue is not necessarily contrast as a whole on a given image but rather could be attributed to the definition of object contours. 

While not of statistical significance, the slight positive relationship between wind speed and CNN success is interesting as we expected that high winds would negatively impact CNN success rates on account of moving vegetation triggering the camera (Glen et al., 2013; Zhang et al., 2016). Certainly, it has been frequently observed that wind effects on vegetation can produce massive increases in the generation of images not containing any animal targets. And vegetation triggering can be problematic for CNNs in that the model has to sort a large number of true negatives that may be incorrectly classified as false positives thus reducing overall accuracy. 

There was a negative, although not statistically significant, association between cloud cover and CNN success. That is to say, as cloud cover increased, CNN success decreased. Higher cloud cover is often associated with precipitation, lower light levels, and lower image contrast, and thus negative effects on CNN performance.

This study suggests that ambient meteorological conditions should be included when performing camera trap studies. For example, CNN classification will be less accurate during periods of winter weather. The simplest solution for improving CNN performance is to include a large and dynamic image training set. The training set should include each target species in a variety of orientations and weather conditions. As a means to mitigate the effects of meteorology and its subsequent effects on image contrast, we suggest cropping the animal from its background to enhance image classification accuracy (Beery et al., 2019; Yu et al., 2013) although this adds to the manual labor required for the process.

Future camera trap studies may be further enhanced by performing preliminary pilot studies to determine which camera model best meets the requirements of the study (Newey et al., 2015). The optimal camera model can depend on a variety of variables, such as target species, site accessibility, habitat, and climate (Rovero et al., 2013). Also, there is tremendous variation among camera makes and models in their resolution, field of view and low-light capabilities.  Higher quality cameras may produce dramatically better images and be far more durable under field conditions than cheaper consumer grade cameras, but this comes at much greater cost which is an important consideration given the need for a large numbers of cameras (hundreds) for ecological studies. Consumer grade cameras offer the great advantage of being almost disposable. Camera model may be particularly important for night/low light conditions such as at dawn, dusk, or during daytime precipitation, (Rovero et al., 2013), especially given that many of the animal targets are particularly active at night. To our knowledge, there have been few comparative studies of camera performance under varying environmental conditions.

There were several limitations to the present study, most importantly the use of a relatively small sample size of 114 unique events for CNN training.  This constraint was dictated primarily by both human time and effort restrictions and the need for greater computational power.  Future studies should analyze a larger number of events, in addition to analyzing background clutter or object contours as variables that may influence CNN success. Although manpower will always be in short supply, desktop computational power continues to rise exponentially thus providing the opportunity for enhanced CNN development. Given the availability of greater computaitonal power, contour labeling and background subtraction may prove an effective means of adjusting for blurred object contours. Also, although preliminary, our findings suggest that time of day and amount and type of precipitation should be included in any analysis of camera and CNN performance in ecological studies that use camera traps. 

Classification models that use CNNs are becoming increasingly useful for the processing of camera trap imagery (Norouzzadeh et al., 2018). While CNNs can be time and cost effective, it is difficult to achieve the accuracy levels provided by manual (i.e. human) analyses (Favorskaya and Pakhirka, 2019). However, characterization of the ecological and environmental characteristics of the study site and the use of a dynamic image training set, can likely greatly enhance the utility of artificial intelligence (AI) tools like CNNs.  
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Appendix

Appendix 1

SI Table 1.1: Confusion matrix (CM) of ground truth vs. predicted values for 14 object classes at a confidence threshold of 0.9. The accuracy, precision, recall, and F1 scores (as determined by the true negatives, true positives, false positives, and false negatives shown in the CM) are 81, 98, 79, and 87, respectively. 
chernobyl confusion matrix














Appendix 2
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SI Figure 2.1: Images showing site-specific factors of the 12 case study camera traps. Images were taken on the day the cameras were set up. Reading left to right, row one: CH02B, CH11B, CH12; row two: CH13, CH15, CH16B; row three: CH17B, CH18, CH19; row four: CH20, CH21B, CH22. 
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SI Figure 2.2: Image demonstrating general camera orientation and height at 1.22 meters above the ground.





Appendix 3
SI Table 3.1: Camera names that correspond to each camera number.
	Camera Number
	Camera Name

	1
	CH02B

	2
	CH11B

	3
	CH12

	4
	CH13

	5
	CH15

	6
	CH16B

	7
	CH17B

	8
	CH18

	9
	CH19

	10
	CH20

	11
	CH21B

	12
	CH22
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