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Abstract 
Due to the complexity of biological transformations, developing model-based strategies to optimize and control bioprocesses is nontrivial. Hybrid models combining a mechanistic description of known influential factors with machine learning to infer the missing influential factors from data have been reported as powerful tools for bioprocesses applications. The artificial neural network is one of the most popular machine learning methods in this case. This paper presents a systematic literature review by computerized search across two databases: Scopus and Web of Science, and backward citation. The PRISMA method was applied to selecting the publications and 159 research articles were categorized as hybrid model applications to bioprocesses problems. It was found that hybrid models were mainly applied in upstream operation steps with a predominance of bioreaction steps. In downstream processing, chromatography appeared as a more recent research topic, with a relatively small number of publications. Furthermore, holistic hybrid modeling applications that integrate data and knowledge from several bioprocess steps will likely emerge in the future, enabling better optimization and control of the bioprocess’s platform. The combination of other machine learning methods with the hybrid neural network model is another opportunity that could improve the output of the model.
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1. Introduction
The application of mechanistic models in bioprocessing has a long history in academia and industry. As early as the mid-70s, Cooney et al. reported a computer-based bioprocess monitoring and control study that used elemental material balances, macroscopic material balances, and off-gas analysis [1]. Mechanistic models based on first principles have been the preferred paradigm in engineering. However, unfortunately, the development of such models in a bioprocessing context has been hindered by the lack of fundamental knowledge of biological mechanisms. With the emergence of systems biology in the early 2000s [2], several Genome-scale reconstructed Models (GEM) have been developed for industrially relevant cell factories. GEMs are significant progress in the mechanistic understanding of cell factories. Still, the highly complex regulatory processes, kinetic laws, and kinetic parameters are largely unknown. Due to the complexity or lack of mechanistic understanding, hybrid semiparametric modeling has emerged as a particularly suitable methodology for bioprocess applications [2]–[6]. Hybrid semiparametric models combine parametric and nonparametric functions in the same mathematical structure [7]. However, the parametric functions are exclusively derived from knowledge of well-established mechanisms, while the nonparametric functions are exclusively derived from process data without physical interpretation (Appendix 1). An example of the latter is artificial neural networks, which have the job of learning from data the unknown process mechanisms [3]. Hybrid modeling may thus be seen as a methodology to augment (existing but incomplete) mechanistic models with machine learning techniques. This approach is particularly attractive for complex processes lacking mechanistic understanding, which tends to be the case with bioprocesses.
Current challenges in applying hybrid modeling to bioprocesses lie in deploying hybrid models in multiple upstream/downstream operation steps and in integrating these models in a holistic systems approach for effective plant-wide optimization and control. This paper presents a systematic literature review guided by the following fundamental research questions:
Q1: In which biochemical processes has the hybrid artificial neural network been applied?
Q2: On which process steps of bioprocesses manufacturing could hybrid modeling be applied and what is the potential benefit?
Q3: What new concepts apply the hybrid neural network on bioprocesses?
To answer these questions, a systematic review analysis was performed, organized as follows: Section two presents the research method that maps keyword identification search, database, bibliometric analysis, and a network analysis tool. Section 3 presents the main results, namely the PRISMA flow diagram, characteristics of the articles, author co-authorship analysis, and keyword analysis. In Section 4, the content analysis, and research gaps are identified, and limitations are discussed. Finally, Section 5 outlines the main conclusions and future work.
2. Method
For this systematic literature review, the relevant articles were selected based on a computerized search, backward citation, and some well-known authors' works. This review focus on the application of hybrid artificial neural network models in bioprocesses and the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology were adopted [8]. For bibliometric analysis, the Mendeley application allowed the extraction of metadata and the elimination of duplicates. For network analysis, the VOSviewer software tool (V 1.6.18) has been applied to visualize the dataset's extracted information and obtain quantitative and qualitative outcomes.
 
2.1. Scopus database
The paper selection algorithm from the Scopus database started with keyword screening in the “title, abstract, and keywords” of documents. Firstly, the advanced search was performed by keywords, and in the next step, some records were excluded based on irrelevant subject areas. Afterward, some records were excluded based on the irrelevance of the keywords extracted automatically by Scopus. Then the documents were refined by the document´s type, and finally, by manually reviewing the abstracts and contents of eligible publications, relevant cases were obtained (appendix 2). 

2.2. Web of Science database 
The paper selection algorithm from the Web of Science database also started with keyword screening in the Topic (title, abstract, and keywords) of documents. Regarding the differences between Scopus and Web of Science, we refined the documents using Web of Science Categories. We excluded the irrelevant categories, and then the resulting documents were refined by the document type. Finally, relevant cases were obtained by manually reviewing the abstracts and contents of eligible publications (appendix 2). 
2.3. Authors’ work
We collected the documents of some well-known authors on this Topic and refined them by keyword screening in the “title, abstract, and keywords”. Then some documents were excluded because of the document type, and finally, by manually reviewing the abstracts and contents of eligible publications, relevant cases were obtained (appendix 2). 
2.4. Backward citation 
Regarding the articles cited by the authors, we reviewed those articles and chose those relevant to add to the final selected articles.
In the final step, papers from the computerized search, backward citation, and authors´ work were merged. This collection of documents belongs from 1992 until February 2022.
3. Results
3.1. PRISMA Flow Diagram
The data set was selected based on PRISMA flow diagram instructions [9] and divided into four categories:
- Scopus: The algorithm initially retrieved 368 publications from the Scopus database. The publications were screened based on the Subject area, which resulted in 56 excluded documents and 312 publications for further analysis. Afterward, keywords filtration was performed, and the outcome was 93 excluded documents and 219 eligible publications. In the next step, 17 documents were excluded because of the document type, and 202 papers were remaining articles. Finally, by reviewing the abstracts and contents of publications, 116 were excluded, and 86 papers were picked up from the Scopus database.
- Web of Science (WoS): The algorithm initially retrieved a total of 201 publications from the WoS database. The publications were screened based on the category, which resulted in 35 excluded documents and 166 publications for further analysis. In the next step, 5 documents were excluded because of the document type, and 161 papers remained. by reviewing the abstracts and contents of publications, 81 publications were excluded, and 80 papers were picked up from the WoS database.
- From the well-known authors’ works search, 685 publications were extracted. First, articles were filtered by main research keywords, and 135 were sought for retrieval. In the next step, 11 review papers, 12 book chapters, and one short survey were excluded, and 111 papers were remaining articles. Then We reviewed the abstracts and contents of articles, and 53 relevant cases were obtained.
- From the backward citation, 61 papers were obtained.
The results of merging the papers from computerized search, well-known authors’ work, and the backward citation were 280 publications. After omitting the duplicated papers, 159 papers were selected for this study (Figure 1). We put all articles in a list in Scopus to have the opportunity to use the analytical reports of Scopus.
3.2. Characteristics of the Articles
[bookmark: _Ref110169357][bookmark: _Ref110022997]Based on the results of this literature review, the first report on a hybrid model application in bioprocess was from 1992. We could find 159 journal and conference papers by the 18th of February 2022. There is a distinctive peak in 2004 (15 papers), and after that time, the number of papers grew up compared to before 2004 (Figure 2). 
The first ten document sources that have published the highest number of articles, their ranking, publisher, and H-Index are summarized in Table 1. Among the 159 papers, the ten most cited papers per year are listed in Table 2.
Based on Scopus analysis, the UCIBIO-REQUIMTE (Nova University of Lisbon), with 20 cases, is the most frequent affiliation. Regarding countries, Portugal, with 32 studies, is the most productive country in this research area (Figure 3).
It is also apparent in the subject area analytical report of Scopus that over the three decades, two subjects, “chemical engineering” and “Biochemistry, Genetics, and Molecular Biology”, stayed the most exciting subjects for the application of hybrid models in bioprocesses. In addition to the above “Energy” and “Environmental Science” are two subjects that have attracted more attention after 2000. As expected in the second decade (2001-2010), articles on computer science subjects have grown significantly to develop methods in this field (Figure 4).
3.3. Author Co-Authorship Analysis
Author occurrence analysis was performed by applying the VOSviewer research tool for network analysis. Choosing the full counting method and the minimum threshold of 2 resulted in 82 authors meeting the threshold (Figure 5). The top 5 leader authors were Oliveira, R. with 27 publications, Von Stosch, M. with 18 publications, Simutis, R. with 13 publications, Peres, J. with 11 publications, and Lübbert A. with 10 publications.
3.4. Keywords Analysis 
We analyzed the author´s keywords and indexed keywords extracted from articles. Then, we harmonized some similar keywords, and in the last step, we omitted some common keywords in this topic, such as hybrid model, artificial neural network, and modeling. Finally, the visualization was performed With the help of VOSviewer. The results are categorized into two sections.
3.4.1. Author´s Keywords
With the help of VOSviewer, keyword analysis was performed. First, we analyzed the co-occurrence of the authors´ keywords with the full counting method. The minimum occurrence of a keyword was 2, and we obtained 46 keywords. After replacing the similar keywords with a candidate and omitting some general keywords such as “Hybrid model” or “Bioprocess”,  we obtained 29 keywords (Figure 6) (Table 3).
The visualization showed that this journey started with applying a hybrid model in the production of antibiotics in the fermentation step and immobilized enzymes. Then, it was continued by wastewater treatment, ethanol production, design of experiment, process analytical technology, and quality by design. Recently some subjects such as biopharmaceuticals and big data were highlighted.
 The “E. coli”, “Bordetella pertussis”, and “Bacillus thuringiensis” are microorganisms that appeared in this analysis.
3.4.2. All Keywords Occurrence Over the Years
In this section, we analyzed the co-occurrence of all keywords (author´s keywords and indexed keywords) with the full counting method with the help of VOSviewer. The minimum occurrence of a keyword was 2, and we obtained 359 keywords. Due to a large number of keywords, we divided the period into three parts for a better analysis. 
3.4.2.1. Keywords occurrence from 1992 until 2000
In this period,157 keywords exist that we chose 2 times repeated, so we got 41 keywords, and after omitting some keywords, we reached 22. Based on the information output of keywords occurrence by year overlay visualization (Figure 7), the hybrid neural network model is mainly applied to fermentation and enzymatic reaction in this period. Antibiotics and ethanol were the most repeated keywords among products. Saccharomyces cerevisiae and Zymomonas mobilis were two microorganisms that appeared in this period. Computer simulation, Kalman filtering, functional link networks, and heuristic methods were combined with the hybrid neural network to control the process or optimize and estimate the process parameters.
3.4.2.2. Keywords occurrence from 2001 until 2010
In this period,728 keywords exist that we chose 2 times repeated keywords, so we got 126, and after omitting some keywords, we reached 63. Besides the subjects belonging to the last period, some keywords such as recombinant proteins, immunoglobulin g1, interlukin2, mammalian cell, CHO, cell culture, and system biology showed in this period the new application of the hybrid neural network in bioprocesses. Online monitoring also is one of the outputs of the application of the hybrid model, and it appears during this period. Wastewater is another keyword that appeared during this period (Figure 8). 
The “E. coli”, “Saccharomyces cerevisiae”, and “yeast” are microorganisms that appeared in this analysis.
3.4.2.3. Keywords occurrence from 2011 until 2021
In this period,935 keywords exist that we chose 2 times repeated, so we got 163 keywords, and after omitting some keywords, we reached 53. In addition to keywords of the two decades before, new keywords were added to this collection after 2011, such as the design of experiment, critical process parameters, process analytical technology, digital twins, and big data. These are now hot topics for the application of hybrid models on bioprocesses. On the other side, fuzzy neural network, genetic algorithm, deep neural network, intensified design of experiment, and feed-forward artificial neural network are keywords that appeared in this period, and it is a sign of the growing interlink between the areas of machine learning and hybrid modeling (Figure 9).
The “E. coli”, “Bordetella pertussis”, “yeast”, “microalgae”, and “Saccharomyces cerevisiae” are microorganisms that appeared in this analysis.
4. Content Analysis 
The first hybrid model application to bioprocesses was reported by Psichogios and Ungar in 1992 [3]. The authors compared hybrid mechanistic/neural network modeling with Kalman filtering, non-linear programming (NLP), and standalone neural networks for predictive modeling and state estimation in a fed-batch bioreactor case study. They concluded that extended Kalman filtering or NLP estimation is more advantageous than hybrid models when a detailed mechanistic model is available. If the mechanistic model is incomplete or unreliable, then the hybrid neural network approach performs better than Kalman filtering or NLP estimation. The key messages of this pioneering study were: 1) hybrid mechanistic/neural models are more flexible than standalone mechanistic models, 2) hybrid mechanistic/neural models have better generalization properties and are more reliable and easier to interpret than standalone neural network models. In 1994 the work of Thompson and Kramer by applying the hybrid model to a fed-batch penicillin fermentation also confirmed a better generalization, less data for parameter estimation, and a more accurate and consistent prediction of the hybrid mechanistic model in comparison to mechanistic or neural network models separately[6].
Schubert et al. (1994) studied the application of hybrid models for state and parameter estimation, feed rate optimization (open-loop control problem), and closed-loop control of a fed-batch baker's yeast process. They applied a hybrid model composed of a set of dynamical differential equations, an artificial neural network, and a fuzzy expert system to decide on which process conditions the neural network predictions are reliable. They concluded that process optimization and control based on predictive hybrid models are very effective tools for bioprocess improvement with a higher benefit/cost ratio than other methodologies [10], [11]. Many other dynamic optimization studies and closed loop control studies followed, which have explored the predictive power of hybrid models [12]–[22].
In 1996, Fu and Barford applied a hybrid neural network model to animal cells' monoclonal antibody production process. They predicted substrate consumption, toxic byproduct accumulation, cell growth, cell composition, and metabolic product formation. They reached a better result than separately applying the first principal or artificial neural network model [23]. The application of hybrid models to cell culture in bioreactors is widespread, with sustained growing interest[12], [24]–[30]. Enzyme immobilization and enzymatic reaction processes have also caught attention, with several reported hybrid modeling applications [31]–[33]. Within the bioprocess sector, applications of hybrid modeling to mammalian cell culture (upstream bioreaction step) are clearly predominant [34]–[36].
Meleiro et al., in 2000, applied a hybrid model as a soft sensor to an industrial-scale fermentation process to produce bioethanol. This software sensor technique provides online estimations of key process state variables and kinetic parameters based on reliable and easily accessible measurement devices. It enables comprehensive process monitoring and the implementation of efficient automatic control strategies [30]. Following this study, many other software sensors based on hybrid models were reported[12], [37], [38].
The application of hybrid neural network models to wastewater was started in 2001 by Choi et al.. They applied a hybrid model as a software sensor to overcome the lack of reliability of online sensors to measure water quality parameters. They developed a software sensor inferring wastewater quality parameters. This technique could extract information from noisy data and could describe the nonlinearity of complex wastewater treatment processes [39]. Following this research, some articles applied a hybrid neural network model to predict the COD [40], control the dissolved oxygen concentration in an activated sludge system [41], to describe the process dynamics [42]. Because of the intrinsic complexity of wastewater treatment plants, some researchers combined a hybrid artificial neural network with other methods or models to control or estimate or measure some process parameters. In 2011, Ma et al. made a hybrid model from an artificial hybrid model and genetic algorithm method to overcome complicated problems. The simulation of the process of removing chemical oxygen demand (COD) in an anoxic/oxic system was done in this research. The result showed a better performance for the ANN-GA model with less error than the ANN [43]. 
In the early years of the use of neural networks, the use of functional link networks was more common [32], [44]–[47] (Figure 7), and over time, neural networks with more layers [48]–[50], and feed-forward artificial neural networks [51], [52] were used. It is followed by deep neural networks [53]. Currently, there is research on combining neural networks with other machine learning methods to obtain better results. 
Combining hybrid neural networks with other machine learning methods to have better results is an issue in this field that has received attention in the second decade of 21 century. In 2011, an application of a hybrid artificial neural network - genetic algorithm model to simulate the biodegradation process of di- n-butyl phthalate in an anaerobic/anoxic/oxic (AAO) system was reported. It shows that the predicted values well fit measured concentrations [54]. There is another example of a framework consisting of Random Forest (RF) models and Deep Neural Network (DNN) models with mechanistic models to ensure the quality of the effluent in a wastewater treatment plant [53]. There are other examples of such a combination of models in recent years [55]–[57].
Clean energy is another interesting subject in bioprocesses. In 2001, Guo et al. applied the hybrid neural network to a biomass gasification process in a fluidized bed to obtain the gasification profile for each type of biomasses and to predict the gas production rates in the biomass gasification process [58]. Clean energy is an interesting subject in the last decade [51], [57], [59] (Figure 1)
Based on information extracted from Scopus analysis (Figure 2), there is a pick in 2004 for the number of publications. Before this date, the application of hybrid models was focused on the fed-batch fermentation and enzymatic synthesis of antibiotics [33], [45], [60]–[62] and ethanol [30], [32], [45], [46], [63]. In the following two decades, the application of the hybrid neural network model expanded and found more diverse uses, while combined methods were also added to this research field. The particle swarm optimization (PSO) is an example of an optimization method combined with the hybrid neural network model to optimize ethanol production by a flocculating yeast grown on cashew apple juice [22].
Biopolymers process optimization is another research area that benefits from the merit of Hybrid models. For example, the biopolymer process optimization was improved by hybrid models to overcome the low productivity of the process. In 2008, Patnaik demonstrated the superiority of the hybrid neural model (H-model) to the neural-cum-dispersion model (D model) and neural networks model (N-model) in the case of the Poly-β-hydroxybutyrate (PHB) production in fed-batch fermentation with Ralstonia eutropha [64]. Following this research, some works were done on this subject to optimize the production process to reduce the cost of biopolymer products to be competitive with synthetic polymers [65]–[68]. 
Application of the hybrid neural network model in biopharmaceuticals is Another topic of interest in the years after 2014 [6], [21], [36], [69]–[72].
Currently, the most significant number of applications of hybrid models to bioprocesses are in upstream unit operations, with only a few applications in downstream steps, e.g., separation, polishing, or drug formulation [73]. In downstream processing, separative chromatography seems to be getting attention. Nagrath et al., 2004, introduced hybrid models to represent complex preparative chromatographic systems, thereby significantly reducing the computational time required for simulation and optimization [18]. Other recent applications of hybrid models in chromatography are optimization, cleaning, and resin aging [21], [72], [74]. In 2021, Narayana et al. compared the output of the hybrid neural network model and the mechanistic Lumped kinetic model. They applied these models to in-silico data, and the results showed the advantages of the hybrid model. The most critical outputs are lower prediction error, higher accuracies, and more robustness in extrapolating across the process conditions [75].
Design of experiment is a methodology applied in industry sectors. It was merged with the hybrid neural network in some research to develop the process understanding and increase the prediction power of the model [6]. Intensified design of experiment, which is a combination of several DOEs, will reduce the number of experiments compared to traditional DOE [52], [71].
Process analytical technology (PAT) and quality by design (QbD) are relatively recent technologies that rely heavily on mathematical modeling, online sensors, and process control. The first article reporting the application of hybrid models for PAT was published in 2009 [34], and many others followed [37], [76], [77]. The first article reporting the application of the hybrid neural network model in the QbD was published in 2014 [69], followed by several other studies [6], [70], [78].  
Another achievement of the hybrid artificial neural network model is online measurement. This could result in an adaptive optimal control [44], online optimization [17], [79], online estimation [27], [80], online process analyzer in PAT application [76], and online prediction [55], [81], [82]. One of the methods that could be combined with the hybrid neural network is the Kalman filter method results in a reliable measurement in online monitoring and real-time control [36], [55], [83]. 
In recent years hybrid modeling has been penetrating other “hot” scientific areas. For example, industry 4.0 [77], big data [53], [77], and digital twin [72], [84] are recently added subjects, which introduce new concepts that challenge the use of hybrid modeling in the process digitalization and process scale-up.

  4.1. Research Gap
The systematic literature review presented in this study shows that the most significant number of applications of hybrid models are found in upstream operation steps. On the other hand, the application of hybrid models to downstream processes is almost exclusively in chromatographic processing steps. Therefore, there is a noticeable potential to apply hybrid models in the downstream formulation and filling in biomanufacturing. 
The literature review also shows that hybrid modeling applications are limited to relatively simple mechanistic models combined with machine learning techniques, noticeably neural networks. There seems to be a “model scale” research gap. Large-scale hybrid models embodying complex and highly dimensional mechanistic models seem to be missing in the literature. This methodological limitation could hinder the application of hybrid models to unit operations where a significant body of knowledge is already available. The penetration of systems biology techniques in routine bioprocess operations will likely challenge novel hybrid modeling methods and applications in the future. Genome-scale models (GEMs) of industrially relevant cell factories are continuously improving. Hybrid genome-scale models will likely fill this gap soon after overcoming the “model scale” limitation.
As we can see in this literature review, there are some examples, especially in the last decade, of a combination of different machine learning methods with the hybrid neural network model to have a better output. So it seems that there is still more potential in this case.
4.2. Study Limitation
The two databases (Scopus and Web of Science) were selected for the purpose of this work. Gathering data from more repositories for future research may strengthen the systematic review presented here.
It should also be mentioned that there are some articles that do not have the author´s keywords and it was categorized based on the indexed keywords by search engines in databases. The mechanism of choosing indexed keywords is automatic and it could have some bugs in categorization.


5. Conclusions
The systematic literature review based on the PRISMA methodology presented in this study shows a structured vision of the research developed on the application of hybrid neural network models in bioprocesses. The application of hybrid models in bioprocesses is about thirty years old. The research in this period focused on modeling, monitoring, optimization, and control, with 159 articles published. These main applications have been seen in different subject areas such as wastewater treatment, clean energy, biopharmaceutical manufacturing, Biopolymers production, and soft sensors. The output of this literature review also showed some hot topics, such as big data, industry 4.0, and digital twins, which facilitate the process digitalization and scale-up. Despite the significant progress, the research field focused mainly on bioreaction problems, such as fermentation, cell culture, and enzyme reactors. Only a few studies have been published on chromatography and maintenance of chromatographic columns.
All in all, this literature review shows a significant gap in the coverage of the different unit operations in bioprocesses. There is significant potential for research in applying hybrid models to downstream unit operations such as filtration, adsorption, chromatography, membrane separation, lyophilization, and many more. Furthermore, there is significant research potential for integrating different unit operations using hybrid models to monitor, optimize, and control platform processes. Improvement in the results of some articles that combined a machine learning method with the hybrid neural network model shows there is still more potential in this case.
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Apendices
Appendix 1 - Conceptual definitions of key terms
Parametric Models 
Parametric models are derived from fundamental process knowledge. They have a fixed structure and fixed number of parameters with physical meaning. The mechanistic and phenomenological models, typically derived from conservation laws (material, momentum, and energy), thermodynamic, kinetic, and/or transport laws, are examples of parametric models used in the biopharmaceutical sector. The general mathematical formulation of a parametric model is [7]:
	Y = f (X, Ω)
	(1)

	Y= parametric model output

	X= parametric model input

	f(.)= set of parametric functions (the structure of which is determined by prior knowledge)

	Ω = set of parameters with physical meaning





Some examples of parametric models are Material/energy/momentum laws, Thermodynamic laws, and Reaction kinetics. In these models, parameters have a physical meaning, and the models have good extrapolation properties, but the model development is laborious [69].
Nonparametric Models
Nonparametric models are flexible models derived almost exclusively from process data. They are thus experimental data intensive. They typically have a loose mathematical structure with a loose number of fitting parameters. The relationships and parameters do not have a physical meaning. These models infer the relationship between process inputs and outputs with minor prior knowledge requirements about the underlying mechanisms. Such models typically describe well the process outputs only inside the process data region and have poor generalization properties [92]. Kernels, splines, wavelets (flexible structure/parameters), artificial neural networks (ANNs), and partial least squares (PLS) are examples of nonparametric models. The general mathematical formulation of nonparametric models is [7]:
	Y = g (X, ω)
	(2)

	Y= nonparametric model output

	X= nonparametric model input

	g(.) = set of nonparametric functions 

	ω = set of parameters (called weights in the case of neural networks)








Hybrid (semi-parametric) Models 
Hybrid semiparametric models simultaneously use parametric and nonparametric functions in the same mathematical structure to solve complex problems. The main advantage of the semiparametric over the parametric or nonparametric approaches lies in broadening the knowledge to solve a particular problem. In complex biological engineering problems, it is unlikely that the system can be fully described in either a mechanistic (parametric) or statistic (nonparametric) approach. Opting for one or the other framework will invariably promote reductionism. On the contrary, the complementary use of both types of knowledge permits the system's expansion towards more global descriptions of the process at hand. Hybrid models improve the understanding of the process and need less data than nonparametric models. There are also several reports for excellent extrapolation properties [7]. The synergy of the parametric and nonparametric models results in more efficient model development and a better benefit/cost ratio when solving complex problems [69]. The general mathematical formulation of hybrid semiparametric models is [85]:
	Y = h (f (X, Ω), g (X, ω), θ)
	(3)

	f (X, Ω) = parametric model function

	g (X, ω) = nonparametric model function

	h (·) = functions that combine the nonparametric and parametric models

	θ = the parameters need to be estimated for h (·)



 







Appendix 2- Paper selection algorithm
For this systematic literature review, the relevant articles were selected based on a computerized search, backward citation, and some well-known authors' works.

2.1. Algorithm for selection of articles from Scopus database
The paper selection algorithm from the Scopus database started with keyword screening in the “title, abstract, and keywords” of documents. Firstly, the advanced search performed by keywords; ("gray-box model*" OR "hybrid neural model*" OR "hybrid semiparametric model*" OR "hybrid semi-parametric" OR "hybrid neural network*" OR "hybrid mechanistic model" OR "hybrid white box model" OR "hybrid black box model" OR "hybrid parametric model" OR "hybrid nonparametric model" OR "Hybrid Artificial Neural Network" OR "Hybrid Process Model") AND (bioproc* OR biopharma* OR biofuel OR bioreact* OR ferment* OR biologic* OR biopolym* OR bioseparation* OR wastewater OR cell OR microorganism OR yeast OR bacteria OR mammal* OR animal OR "systems biology" OR bioinformatics OR biotech* OR biomass OR "Escherichia Coli" OR "Recombinant Protein" OR "Recombinant Protein prod*" OR "e.coli" OR "microbial fuel" OR "biologic* wastewater treatment" OR bioethanol OR biodiesel)  
In the next step, some records were excluded based on the irrelevance of the subject areas (“Psychology”, “Economics, “Econometrics and Finance”, “Dentistry”, “Health Professions”, “Business, Management and Accounting”, “Social Sciences”, “Neuroscience”, “Physics and Astronomy”, “Earth and Planetary Sciences”).
Afterward, some records were excluded based on the irrelevance of the keywords (“Pattern Recognition”, “Blood”, “Photovoltaic Cells”, “Diagnosis”, “Sewage Pumping Plants”, “Nerve Cell Network”, “Neurons”, “Fuel Cells”, “Electrodes”, “Sewer”, “Forestry”, “Geometry”, "PID Controllers", "Paget Bone Disease", "Partial Discharges",  "Plasmid",  "Power Control", "Power Spectral Density",  "Pressure Effects",  "Pressure Filter",  "Pressure Filters",  "Program Processors", "Battery State Of Charge", "Behavior-finding", "Behavioral Research", "Behaviour", "Blood Glucose",  "Blood Pressure" , "Blood Pressure (BP)", "Blood Pressure Estimation", "Blood Pressure Measurement", "Blood Pressure Monitoring", "Bone". Then the resulted documents were refined by the document´s type (“Book chapter”, “Review paper”, “conference review paper”, and “Letter”). Finally, relevant cases were obtained by manually reviewing the abstracts and contents of eligible publications.
2.2. Algorithm for selection of articles from Web of Science database
The paper selection algorithm from the Web of Science database also started with keyword screening in the Topic (title, abstract, and keywords) of documents. Regarding the differences between Scopus and Web of Science, we refined the documents by the Web of Science Categories and excluded the irrelevant categories; “Telecommunication”,” Computer Science Hardware Architecture”, “Radiology Nuclear Medicine Medical Imaging”, “Transportation Science Technology”, “Oceanography”, “Cardiac Cardiovascular Systems”, “Engineering Civil”, “Information Science Library Science”, “Geography Physical”, “Physics-Condensed Matter”, “Optics”, “Imaging Science Photographic Technology”, “Forestry”, and “Robotics”.
Then the resulting documents were refined by the document´s type (“Review Articles”, “Meeting Abstracts”, and “Letter”). Finally, relevant cases were obtained by manually reviewing the abstracts and contents of eligible publications. Finally, relevant cases were obtained by manually reviewing the abstracts and contents of eligible publications.
2.3. Algorithm for selection of articles from Authors’ work
Authors whom we reviewed their works were “Carrondo, M.J.T.”, “Simutis, R.”, “Lübbert, A.”, “Oliveira, R.”, “Galvanauskas, V.”, “von Stosch, M”, “Teixeira, A.P.”, “Peres, J.”, “Gnoth, S.”, “Sokolov, M.”, “Feyo de Azevedo, S.”. The documents were refined by keywords screening ("hybrid model*", "hybrid neural*", "hybrid artificial neural*", "hybrid gray box*", "hybrid semi-parametric*", "hybrid mechanistic*", "hybrid black box*", "hybrid white box*", "hybrid parametric*", "hybrid nonparametric*") in “title, abstract and keywords”. Then some documents were excluded because of the document type (“Book chapter”, “Review paper”, and “Short Survey”). Finally, relevant cases were obtained by manually reviewing the abstracts and contents of eligible publications. 
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publications assessed for eligibility  

 (n =280) 

Identification of studies  via databases 

Identification of studies  via other methods  

Identification Screening  Included 

Studies included in  the research: 

(n =159) 

publications excluded:  

Duplicated (n =121) 

 

Publications identified from Scopus (n = 368) Publications excluded: irrelevant subject area (n = 56) Publications for further analysis:  (n = 312) Keyword’s filtration: excluded documents (n=93) Publications sought for retrieval: (n=219) Publications excluded:  book chapter, conference review, review paper, letter(n=17)  Publications reviewed by abstract: (n=202) Publications not retrieved: Abstract review  (n =116) Publications picked up from Scopus: (n =86) Publications identified from: Authors (n =685) Publications reviewed by abstract: (n=111) Publications excluded: review paper, book chapter, short survey  (n =24) Publications sought for retrieval: (n =135) Publications not retrieved:  Abstract review  (n =58) Publications excluded: Irrelevant research keywords (n = 550) Publications picked up from Backward Citation search:(n =53) Publications identified from WoS (n = 201) Publications excluded: irrelevant categories (n = 35) Publications for further analysis:  (n = 166) Publications excluded:  Meeting Abstracts, review article, letter (n=5)  Publications reviewed by abstract: (n=161) Publications not retrieved: Abstract review  (n =81) Publications picked up from WoS:  (n =80) 

Publications 

identified from: 

Backward citation  

(n =61) 


