
Dynamic analysis of New Two Dimensional
Fractional-order Discrete Chaotic Map and Its

application in Cryptosystem

Ze-Yu Liu

College of Science

Northwest A&F University, Yangling District, 712100, Shaanxi P. R. China.

Tie-Cheng Xia

College of Science
Shanghai University, Shanghai, 200444, Shanghai, P. R. China

Ye Hu

Department of mathematics
Lvliang University, Lvliang , 033000, Shanxi, P. R. China

Abstract

A new fractional difference equation 2D-TFCDM based on Caputo derivative is

proposed. Using the bifurcation diagram, the maximum Lyapunov exponent and

the phase diagram, the numerical solutions of the fractional difference equations
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1. Introduction

Chaos is a complex dynamical behavior produced by nonlinear systems,

which can produce pseudo-random chaotic sequences, and a chaotic encryp-

tion method is proposed based on this property of chaotic systems. Chaos

encryption is a popular encryption method today, thanks to the randomness5

and sensitivity of chaotic encryption.The main principle of chaotic encryption

is to use the pseudo-random chaotic sequence generated by the chaotic system,

as the encryption sequence of information encryption.Whether enough chaotic

pseudo-random sequence is the key to whether chaotic encryption is difficult to

reconstruct, analyze and predict. So far, multiple algorithms have been imple-10

mented for chaos-based information encryption.

During the past decades, the discrete dynamic behaviors of fractional dif-

ference equations and its applications in information security has been paid a

lot of attention[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Numerous results have been gotten

for discrete fractional calculus. Fractional discrete Rossler system studied by15

Azil [11], Khennaoui studied the attractor of three-dimensional fractional Henon

mapping [14], and Ouannas studied the dynamics, control and synchronization

of fractional Ikeda system and the discrete fractional duffing system [12, 13] and

discrete fractional order Duffing systems. He studied the chaotic dynamic be-

havior of fractional discrete time SIR epidemic model with inoculation [16]. Zhu20

constructs an image encryption scheme using a newly designed two-dimensional

discrete fractional chaotic map[17]. Shi studied the chaotic dynamical behavior

of fractional order delay financial systems[24]. Ma modified the complex net-

works into fractional order one and observe its dynamic behaviours[18]. Chen

studied the fractional order discrete improved Henon map [19] and applied it25

into image encryption. Xu studied the fractional-order chaos system of Hopfield

neural network [20].

Compared with the fruitful achievements of continuous fractional calculus,

there are few researches on fractional difference equations and its applications.

More recently, Wu and Baleanu contributed to the theoretical development of30
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Caputo fractional difference equations and their application.

Menezes-vanstone Elliptic Curve cryptosystem (MVECC) is fast and effec-

tive algorithm to encrypt keys, and it achieve the same level of security with

smaller key sizes and higher computational efficiency [37].

Fiaz studied the generalization of synchronization of three-dimensional frac-35

tional chaotic systems [22]. Barba-franco studied the dynamical behavior of a

system consisting of three fractional Duffing oscillators coupled together[23]. Im-

age encryption with fractional calculus is booming nowadays, such as fractional-

order one dimensional logistic map [25], fractional-order laser high dimensional

system [27] and fractional one dimensional chaotic map [31]. All of the system40

mentioned above took use of continuous fractional calculus.

In [33], discrete fractional calculus is proposed for image encryption utilizing

fractional chaotic time series. Afterwards, many information security methods

are proposed within fractional difference equation[28, 29, 31, 30, 32]. However,

there are few 2-dimensional chaotic map based on fractional-order difference at45

present.

On this basis, our main purpose is to introduce a new fractional map with

its chaotic behavior detected. Then, new cryptosystem is proposed with key

generated by MVECC. The content of this paper is arranged as follows: In the

second part, we review the definition and properties of discrete fractional differ-50

ence. Then, in the third part, we give the introduction of MVECC. In Section

IV, we formulate the fractional 2D-TFCDM and observe the bifurcation with

diagrams, maximal Lyapunov exponent (MLE) diagrams and phase diagrams

with varying orders, coefficients and initial values. Section V introduces the

application of information security in image encryption. In the sixth part, the55

image encryption results of the fifth part are analyzed. Finally, some conclusions

are given.

2. Propaedeutic knowledge
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In this section, we will introduce the definition of fractional difference. In60

discrete fractional difference, f(n) is the discrete form of f(i). Nb = {b, b+1, b+

2, . . .} (b ∈ R fixed) said the isolation time scale. ∆f(i) = f(i+ 1)− f(i) is the

difference operator defined by

Definition 2.1 [3] Assuming α > 0 and w : Nb → R. Let the fractional

sum of order α be65

∆−γ
b w(i) :=

1

Γ(γ)

i−γ∑
s=b

(i− δ(s))(γ−1)w(s), i ∈ Nb+γ , (1)

where b is the starting point, δ(s) = s+1 and i(γ) is the falling function defined

as

i(γ) =
Γ(i+ 1)

Γ(i+ 1− γ)
. (2)

The Gamma function is denoted by Γ(·) and is defined as

Γ(i) =

∫ +∞

0

e−xxi−1dx, i > 0. (3)

Definition 2.2 [4] Let Caputo fractional difference with α order be defined

as70

C∆γ
bw(i) : = ∆

−(m−γ)
b ∆mw(i)

=
1

Γ(m− γ)

i−(m−γ)∑
s=b

(i− δ(s))(m−γ−1)w(s),

i ∈ Nb+m−γ ,m = [γ] + 1,

(4)

where 1 > α > 0, α /∈ N and w(i) ∈ Nb0 .

Theorem 2.1 [5]the equivalent discrete integral formula of (5)

C∆γ
bw(i) = f(i+ γ − 1, w(i+ γ − 1)),

∆kw(b) = wk,m = [γ] + 1, k = 0, . . . ,m− 1
(5)

can be obtained as

w(n) =w0(i) +
1

Γ(γ)

i−γ∑
s=b+m−γ

(i− δ(s))(γ−1)

× f(s+ γ − 1, w(s+ γ − 1)), i ∈ Nb+m,

(6)
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the starting value in (6) reads

w0(i) =

m−1∑
j=0

(i− b)(j)

j!
∆jw(b). (7)

From formula (4) to (6), w(i) is a preserve function in the isolated definition75

on time scale Nb while a domain change from Nb+m−γ to Nb+m.

3. Elliptic Curve Cryptosystem (ECC)

3.1 Definition of Elliptic Curve(EC) An EC E defined over the prime

field Fp is the set of (x, y) satisfying the equation:80

E : y2 ≡ x3 + dx+ f( mod p). (8)

More precisely, it is the set of such solutions together with a infinity point O,

where d, f ∈ Fp, p ̸= 2, 3 and fit with the condition 4d3 + 27f2 ̸= 0. [38].

3.2 EC Operations

Let R = (a1, b1), then −R = S = (a1,−b1) is defined with R+ S = O[38].

If points R = (a1, b1) and S = (a2, b2) lie on an EC E defined by Equation85

(8), then R+ S = T is computed in (9) and also lies on E[38]:

R+ S =

 T = (a3, b3), R ̸= −T,

O, a1 = a2( mod p), b1 + b2 = 0( mod p).
(9)

where

a3 ≡ (ξ2 − 2a1)( mod p),

b3 ≡ (ξ(a1 − a3)− b1)( mod p).
(10)

and

ξ =


(b2−b1)
(a2−a1)

, P ̸= Q,

3a2
1+d
2b1

, P = Q.
(11)

The scalar multiplication can be defined by
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kR =R+R+ · · ·+R︸ ︷︷ ︸,
k − times

(12)

where k ∈ Z.90

Definition 3.3 The order of EC is denoted by #E and is defined as the

number of points on the curve.[38]

Definition 3.4 ord(P ) refer to the smallest n ∈ Z+ such that nP = O.

Definition 3.5 P ∈ E(Fp) is called a generation point if ord(P ) = #E.

Definition 3.6: MVECC95

MVECC is a public key cryptosystem with two users Arnold and Blain[37].

When Arnold want to send a message M = (m1,m2) ∈ Z∗
p × Z∗

p to Blain,

they do the setups as follows:

1.Arnold makes an agreement with Blain about the base point β and the EC

E(Fp).100

2.Blain chooses a private key SB with nobody knows and computes PB =

SB · β (0 5 SB < ord(β)) as his public key.

3.Arnold first chooses the private key SA randomly (0 5 SA < ord(β)), and

computes his public key PA = SA · β. Secondly, Arnold computes (s1 · s2) as

the secret key by formula (13)105

(s1 · s2) = SA · PB = SA · SB · β (13)

Then Arnold calculate the ciphered message by

c1 = m1 ∗ s1 mod p

c2 = m2 ∗ s2 mod p
(14)

4.The ciphertext {PA, (c1, c2)} is sent to Blain. Blain firstly get the secret

key by (s1, s2) = SB · PA, then he computes (15)

m1 = c1 ∗ s−1
1 mod p

m2 = c2 ∗ s−1
2 mod p

(15)
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to get the plaintext M = (m1,m2)[37].

Any adversary who only knows the public key PA and PB but don’t know the110

private keys SA and SB is very difficult to get the message M . Moreover, if #E

is a prime number, it will be more difficult to break up the cryptosystem[38].

Therefore, MVECC is an efficient and secure technique for secret message en-

cryption.

4. Fractional 2D-TFCDM and its Dynamical Characteristics115

In the recent paper [39], the first 2D-TFCDM is introduced below,

 un+1 = l1sin(wn), l1 = 10,

wn+1 = l2unsin(wn)− l3uncos(wn), l2 = 1.7, l3 = 0.556.
(16)

Consider the Caputo-like delta difference equation modified by the 1st 2D-

TFCDM: C∆γ
bu(i) = l1sin(w(i+ γ − 1))− u(i+ γ − 1), 0 < γ < 1, i ∈ Nb+1−γ ,

w(n) = l2u(n− 1)sin(w(n− 1))− l3u(n− 1)cos(w(n− 1)), l2 = 1.7, l3 = 0.556.
(17)

According to Theorem 2.1, with 0 < γ < 1, the equivalent discrete numerical120

formula for 1 is as follows, u(n) = u(0) + 1
Γ(γ)

∑n
j=1

Γ(n−j+γ)
Γ(n−j+1) [l1sin(w(j − 1))− u(j − 1)],

w(n) = l2u(n− 1)sin(w(n− 1))− l3u(n− 1)cos(w(n− 1)), l2 = 1.7, l3 = 0.556.
(18)

Compared with integer-order maps, the dynamical behaviors of Caputo frac-

tional chaotic map is more complex, and the value of u(n) is strongly dependent125

on that of u(0), ..., u(n − 1). By utilizing (16), we draw the bifurcation graphs

1 and 5 with the step size 0.005. Similarly, by (18), we draw the bifurcation

graphs 2 and 6. Through the analysis of the bifurcation graph, we can obtain

the interval where chaos occurs, that is, in this region, the sequence generated

by the numerical formula is well chaotic. When we change the value of the130
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Figure 1: Bifurcation graph for the 1st 2D-TFCDM map with l1 versus u(n).

difference order, the chaotic zone also changes somewhat. The variation in the

bifurcation graph 1,2,5 and 6 illustrates and explains this. In this way, we can

generate a chaotic sequence for image encryption.

Set γ = 1, u(0) = 0.19,W (0) = 0.06, N = 200, the bifurcation graph is

plotted in Figure 1 with the step size equal to 0.01. Figure 2 is an similar135

bifurcation graph with the different order γ = 0.8. As the figure shows, the

chaotic region depends on the varying order γ clearly.

In Figure 3, for γ = 1, we use the Jacobian algorithm to obtain the MLE.

The MLE is positive somewhere, which is corresponding to the chaotic region

in Figure 1.140

Similarly, another fractional difference equation is obtained:
C∆a

βw(i) = l2u(i+ γ − 1)sin(w(i+ γ − 1))− l3u(i+ γ − 1)cos(w(i+ γ − 1))

−w(i+ γ − 1), 0 < γ < 1, i ∈ Nb+1−γ ,

u(n) = l1sin(w(n− 1)), l1 = 10, l3 = 0.556.

(19)

And the following fractional discrete numerical formula for parameters l3 is

also got:
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Figure 2: Bifurcation graph for the 1st 2D-TFCDM map with l1 versus u(n), γ=0.8.
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w(n) = w(0) + 1

Γ(γ)

∑n
j=1

Γ(n−j+γ)
Γ(n−j+1) [l2u(j − 1)sin(w(j − 1))− l3u(j − 1)cos(w(j − 1))

−w(j − 1)], l1 = 10, l3 = 0.556,

u(n) = l1sin(w(n− 1)).

(20)

We can also get the bifurcation graph, the MLE for formula (20).145

With 301 different initial values set, we draw the phase portrait of formula

(16).Then we consider the cases of fractional difference γ=0.9 and γ=0.8 in

figure 10,11 respectively.

5. Applications

150

Now we apply the fractionalized map in information security fields. Consider

(18) as an algorithm, u0, w0, γ, l1, l2, l3 are set as keys for encryption. The

encryption algorithm is designed into 3 parts in this paper.

5.1. Keys delivery with MVECC

Suppose that we have E be an EC define over F100357 with d = 1, f = 6 and155

p = 100357 in (8). After calculation, #E = 100169 and it is a prime number,

therefore E is a safe EC.
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Figure 7: MLE for the 1st 2D-TFCDM map with l3.
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Figure 9: The phase space of the 1st TFCDM map for l1 = 6, l2 = 0.3, l3 = 0.6 and γ=1.
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Figure 10: The phase space of the 1st TFCDM map for l1 = 6, l2 = 0.3, l3 = 0.6 and γ=0.9.
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Figure 11: The phase space of the 1st TFCDM map for l1 = 6, l2 = 0.3, l3 = 0.6 and γ=0.8.

Set M = (m1,m2) = (7123, 45600), namely, γ = 0.7123456, β = (2, 4).

Arnold keep the secret key SA = 9768, then he calculate his public key PA =

SAβ = (43113, 45139). Blain Select SB = 1024, then he get PB = SBβ =160

(8482, 90068). Before the key delivery, (s1, s2) = SBPA = (16723, 84616) =

SAPB .

c1 = m1 ∗ s1 mod p = 7123 · 16723 mod p = 94527 mod p,

c2 = m2 ∗ s2 mod p = 45600 · 84616 mod p = 64021 mod p.
(21)

Then, the ciphertext is ((8482, 90068), 94527, 64021) that is sent to Blain.

After Blain get the message, he first calculate the secret key: (s1, s2) =

SBPA = (16723, 84616)165

m1 = c1 ∗ s−1
1 mod p = 94527 · 68665 mod p = 7123 mod p,

m2 = c2 ∗ s−1
2 mod p = 64021 · 26248 mod p = 45600 mod p.

(22)

and get the correct keys. Similarly, we can encrypt other parameters and send

it to Blain.
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5.2. Scrambling process

Assume E refer to the image to be encrypted, take use of (18), the

scrambling process can be divided into 4 steps:170

1.Assign u0 to u(1), iterate (18) for CD − 1 times, (C ×D refer to the size

of E), and get u(i), i = 1, 2, · · · , CD.

2.According to the bubble sort, we reorder the u(i) then get u′(i). At the

same time, the change of subscript of u(i) is recorded as z(i).

3.Reconstruct C ×D image E into 1× CD sequence q(i), rank the element175

of q(i) according to z(i) and get q′(i).

4.Rechange q′(i) into C × D image denoted by E′, which is the permuted

image we needed.

The above process is reversible, the permutation can be removed then the

plaintext is got.180

5.3. Diffusion

1.Do operations described in Section 5.2 and get E′. Change C ×D image

E′ into 1× CD sequence q′(i), satisfying i = B(c− 1) + d, (c = 1, 2 · · · , C, d =

1, 2 · · · , D). Another C × D image is utilized as a cover image or key image.185

Change the key image to 1× CD sequence k(i) by the same way.

2.Set i = 0.

3.Round down u(i)× 104 as u1(i), do modular arithmetic between u1(i)and

256 then get

u2(i) ≡ mod (u1(i), 256). (23)

4.Take the following calculation and get the encrypted pixel value q′′(i) by190

24:

q′′(i) = q′(i)
⊕

mod (k(i) + u2(i), 256), (24)

here
⊕

refer to the Xor operation.
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The inverse operation of (24) is

q′(i) = q′′(i)
⊕

mod (k(i) + u2(i), 256). (25)

5.Calculate the number g by:

g(i) = 1 + mod (q′′(i), 256). (26)

Then, iterate (18) g(i) times to get u(i+ 1).195

6.Repeat the operations from Step 3 to Step 5 until i = CD. Changing

q′′(i)to C timesDgraph E′′, E′′is the encrypted graph we eventually need.

The decryption process can be divided into the following parts:

1.Perform the same steps in the diffusion section, except that (24) is changed

to (25).200

2.Do inverse operation of Section 5.2 to eliminate the scrambling effect.

Figure 12 and 13 show the process of the algorithm and the S-box, respec-

tively.

The original, encrypted and decrypted images are shown from Figure 14

to Figure20. The algorithm can encrypt all size of rectangular images. The205

National Institute of Standards and Technology (NIST) test is currently the

most popular test for identifying randomness in chaotic sequences.In NIST test,

15 random test methods are used to test the randomness of fractional time series

generated by 2D-TFCDM. If P value > 0.0001, the sequence can be considered

as a chaotic sequence. Table 1 lists the NIST test results for fractional 2D-210

TFCDM.

6. Algorithm Analysis

6.1. Key space

In the proposed algorithm, (u0, w0, γ, l1, l2, l3) are used as the key, so215

there are six keys.
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Figure 12: Encryption process.

Figure 13: S Box.
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Table 1: The NIST test for the chaotic bit Streams

Test P-VALUE Pass or not

Frequency 0.739918
√

Block Frequency 0.534146
√

Cumulative Sums forward 0.122325
√

Cumulative Sums reverse 0.739918
√

Runs 0.739918
√

Longest Run 0.213309
√

Rank 0.350485
√

FFT 0.534146
√

Overlapping Template 0.350485
√

Approximate Entropy 0.534146
√

Serial 0.739918
√

Serial 0.534146
√

Linear Complexity 0.739918
√

(a) The plaintext (b) The ciphertext (c) The decrypted image

Figure 14: Sailboat

18



(a) The plaintext (b) The ciphertext (c) The decrypted image

Figure 15: Fruits

(a) The plaintext (b) The ciphertext (c) The decrypted image

Figure 16: Cornfield

(a) The plaintext (b) The ciphertext (c) The decrypted image

Figure 17: Yacht
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(a) The plaintext (b) The ciphertext (c) The decrypted image

Figure 18: Lena

(a) The plaintext (b) The ciphertext (c) The decrypted image

Figure 19: House

(a) The plaintext (b) The ciphertext (c) The decrypted image

Figure 20: Tiffany
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(a) The correct keys (b) u0 + 10−14 (c) w0 + 10−17 (d) γ + 10−16

(e) l1 + 10−16 (f) l2 + 10−16 (g) l3 + 10−15

Figure 21: The test of Key sensitivity

Table 2: Comparison of key spaces

Algorithm Ours [32](2020) [28](2020) [20](2022)

Key spaces ≥ 2.69× 10102(1.20× 2340) 1084 2128 > 2300

In the key space test, we add 10−14, 10−17, 10−16, 10−16, 10−16, 10−15 in

u0, w0, γ, l1, l2 respectively to recover the ciphertext and show it in Figure 21.

As Figure 21 shows, the secret key’s space ≥ 1014 × 1017 × 1016 × 1016 ×

1016 × 1015 = 1094 ≈ 1.20× 2312. If we choose 1024× 1024 plaintext, the cover220

image’s key space is 1024× 1024× 28 = 228.Therefore, the algorithm key space

is ≥ 1.20× 2340. Obviously, our key space is larger than other cases.

6.2. Statistics analysis

The statistical characteristics of ciphertexts are of great significance to ci-

phertexts. A well-designed encryption method should be able to withstand any225

statistical attack.

6.2.1. Correlation coefficients(CCs)

21



(a) The plaintext (b) The ciphertext

Figure 22: Correlation of the Sailboat (in X directions)

The correlation of image pixels is a key index to evaluate the quality of an

algorithm. A good encryption algorithm should make the correlation between230

adjacent pixel values as close to zero as possible.

In equation (27), the CCs are calculated in the vertical, Horizonal and Cater-

corner directions. The result is shown in Table 3. The correlation in X direction

of sailboat before and after the encryption are shown in Figure 22, respectively.

The result of other six cases is similar and omitted.235

ruw =
|cov(u,w)|√
D(u)

√
D(w)

(27)

cov(u,w) =
1

N

N∑
i=1

(ui − E(u))(wi − E(w)) (28)

E(u) =
1

N

N∑
i=1

ui (29)

D(u) =
1

N

N∑
i=1

(ui − E(u)))2 (30)

From Figure 22, the correlation of the plaintext is linear, while the correlation

of the ciphertext is random. The CCs of the ciphertext is close to 0 in Table 3.

The CCs of the plaintexts were all greater than 0.9, and some were close to 1.

As can be seen from the statistics in Table 4, most of the CCs of the ciphertext240

are closer to 0 than other works. Therefore, the proposed algorithm has more

advantages than other algorithms.
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Table 3: The results of CCs

Image
Lena Tiffany

R G B R G B

Plaintext

Horizonal 0.9734 0.9689 0.9391 −4 ∗ 10−5 -0.0353 0.0087

Catercorner 0.9635 0.9495 0.9169 0.0080 -0.0079 0.0073

Vertical 0.9864 0.9795 0.9568 -0.0266 -0.0046 -0.0061

Ciphertext

Horizonal 0.9505 0.9189 0.9184 0.0176 0.0155 0.0180

Catercorner 0.9069 0.8641 0.8701 -0.0072 0.0135 -0.0123

Vertical 0.9427 0.9510 0.9324 -0.0168 -0.0009 0.0090

Table 4: Comparison of CCs for image Lena

Algorithm
plaintext ciphertext

Horizonal Vertical Catercorner Horizonal Vertical Catercorner

Ours 0.9391 0.9568 0.9169 0.0087 -0.0061 0.0073

[17](2022) 0.9859 0.9741 0.9618 0.0052 0.0112 0.0034

[15](2021) 0.9775 -0.0379

[29](2020) 0.9696 0.9151 0.9413 -0.0061 0.0062 0.0014

[30](2020) 0.946 0.921 0.973 -0.0082 0.0007 -0.0059
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(b) The ciphertext
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(c) The recovered image

Figure 23: Sailboat

6.2.2. Histogram

The color distribution inside the image is represented with a histogram.

Because the unencrypted image has regular color distribution, the attacker can245

get useful information with the plaintext. Therefore, in a good image encryption

method, the ciphertexts should be evenly distributed. Figure 23 is the variation

of R,G and B channel in histogram of the Sailboat.

The ciphertext histogram is flat as the ground, while the plaintext is hilly.250

Obviously, the algorithm has good encryption effect. In the other six cases, the

changes could also be like sailboats while the results is omitted.

6.2.3. Information entropy (IE)

Information entropy (IE) is used to express the uncertainty degree of

the image. It is defined below:

H(m) =

2n−1∑
i=0

p(mi)log2
1

p(mi)
, (31)

with p(mi) represents the symbolmi probability, and n is the needed number

of bits to represent the symbol. For images with pixel values between 0 ∼ 255,255

the ideal IE of an ideal random image is 8 bits according to equation (31). The

ciphertext IE in Table 5 show that the ciphertext is very encrypted. According

to the Table 6, the proposed algorithm is better than other algorithms.
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Table 5: IE

Image Plaintext Ciphertext Image Plaintext Ciphertext

Sailboat

R 7.3124 7.9993

Fruits

R 7.5172 7.9992

G 7.6461 7.9992 G 7.3230 7.9993

B 7.2137 7.9993 B 6.7785 7.9993

Cornfield

R 7.3115 7.9992

Yacht

R 7.6071 7.9993

G 7.3550 7.9991 G 7.5386 7.9993

B 7.6922 7.9992 B 7.6122 7.9992

Lena

R 5.0465 7.9993

House

R 7.4156 7.9993

G 5.4576 7.9993 G 7.2295 7.9993

B 4.8001 7.9993 B 7.4354 7.9992

Tiffany

R 4.3374 7.9993

G 6.6900 7.9993

B 6.4289 7.9992

Table 6: Comparison of IE

Algorithm Image Plaintext Ciphertext

Ours Lena 5.0465 7.9993

[20](2022) Lena Undefined 7.99227

[15](2021) Lena 7.6501 7.0562

[17](2022) Lena 7.4464 7.9973

[19](2021) Lena 7.3147 7.9976
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6.3. Sensitivity

Number of Pixels Change Rate (NPCR) and Unified Average Change In-260

tensity (UACI) are defined to measure the different ranges between two images

(33-34):

E(i, j) =

 0, I1(i, j) = I2(i, j)

1, I1(i, j) ̸= I2(i, j).
(32)

NPCR =

∑Wt
i=1

∑Ht
j=1 E(i, j)

Wt×Ht
× 100% (33)

UACI =

∑Wt
i=1

∑Ht
j=1 |I1(i, j)− I2(i, j)|

255×Wt×Ht
× 100% (34)

Where Wt×Ht represent the size of the image, respectively. I1and I2represent265

the two images analyzed.

6.3.1. Key sensitivity

By use of the key u0 = 0.19, w0 = 0.06, γ = 0.7123456, l1 = 6 and l2 =2,

we encrypt the image. Figure 21(a) shows the image decrypted with the correct

key. Figure 21(b) shows that we decrypt the image with u0 + 10−14, but other270

keys unchanged. Also, the cases of γ + 10−16, l1 + 10−16, l2 + 10−16, w0 + 10−17

and l3+10−15 respectively with other keys unchanged to decrypt the ciphertext

are shown in Figure 21(c-g). Table 2 compare the key spaces between our

algorithm with other algorithms. On the other hand, the NPCR and UACI

between Figure 21(a) and Figure 21(b-g) are calculated in Table 7 respectively275

to reflect the difference between them.

The results show that the encryption algorithm is extremely sensitive to the

key.

6.3.2. Plaintext sensitivity

A well designed encryption algorithm should have strong plaintext sen-280

sitivity, namely it can mainly resist difference attrack. Figure 14(a)(x, y) repre-

sents the pixel is changed in Figure 14(a) in (x, y). We encrypt Figure 14(a)(x, y)
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Table 7: Key sensitivity

Calculation results between Figure 21(a) and Figure 21(b-g)

Figure NPCR(%) UACI(%)

Figure 21(b) 98.36 26.56

Figure 21(c) 99.62 31.85

Figure 21(d) 99.60 31.92

Figure 21(e) 99.61 32.00

Figure 21(f) 99.62 31.89

Figure 21(g) 99.63 31.97

Table 8: Sailboat

Plaintext sensitivity

Figure NPCR(1st) UACI(1st) NPCR(2nd) UACI(2nd)

Figure 14(a)(30,30) 95.42 32.11 99.60 33.49

Figure 14(a)(50,50) 94.60 31.78 99.59 33.48

Figure 14(a)(80,80) 96.86 32.57 99.59 33.42

Figure 14(a)(100,100) 99.50 33.44 99.60 33.46

and Figure 14(a) at the time, then the UACI and NPCR between the two ci-

phertexts are calculated and shown in Table 8.

From Table 15, the NPCR of our algorithm is closer to the ideal values285

99.61% and the UACI is closer to the ideal values 33.46% than other algorithms

[42].

6.4. Selected-plaintext and known-plaintext attacks analysis

From the diffusion in Section 5.3, the current iteration time is determined290

by the pixel of the ciphertext of the previous round. That is to say, produced by

fractional order 2D-TFCDM in (18), u2(i) depends on the number of iterations

g(i− 1), and determine the number of iterations g(i).

Therefore, when different plaintexts are encrypted, the corresponding key
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Table 9: Fruits

Plaintext sensitivity

Figure NPCR(1st) UACI(1st) NPCR(2nd) UACI(2nd)

Figure 15(a)(30,30) 97.22 32.73 99.61 33.49

Figure 15(a)(50,50) 94.23 31.69 99.60 33.41

Figure 15(a)(80,80) 4.67 1.57 99.61 33.48

Figure 15(a)(100,100) 93.64 31.50 99.61 33.45

Table 10: Cornfield

Plaintext sensitivity

Figure NPCR(1st) UACI(1st) NPCR(2nd) UACI(2nd)

Figure 16(a)(30,30) 97.23 32.66 99.61 33.50

Figure 16(a)(50,50) 94.24 31.66 99.60 33.43

Figure 16(a)(80,80) 5.17 1.73 99.61 33.43

Figure 16(a)(100,100) 93.66 31.48 99.60 33.44

Table 11: Yacht

Plaintext sensitivity

Figure NPCR(1st) UACI(1st) NPCR(2nd) UACI(2nd)

Figure 17(a)(30,30) 97.22 32.65 99.61 33.48

Figure 17(a)(50,50) 94.24 31.68 99.62 33.40

Figure 17(a)(80,80) 99.12 33.28 99.61 33.45

Figure 17(a)(100,100) 93.65 31.46 99.59 33.42

Table 12: Lena

Plaintext sensitivity

Figure NPCR(1st) UACI(1st) NPCR(2nd) UACI(2nd)

Figure 18(a)(30,30) 95.43 32.09 99.62 33.48

Figure 18(a)(50,50) 94.58 31.82 99.61 33.42

Figure 18(a)(80,80) 96.85 32.61 99.61 33.43

Figure 18(a)(100,100) 99.50 33.44 99.59 33.41
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Table 13: House

Plaintext sensitivity

Figure NPCR(1st) UACI(1st) NPCR(2nd) UACI(2nd)

Figure 19(a)(30,30) 95.43 32.12 99.60 33.43

Figure 19(a)(50,50) 94.58 31.81 99.61 33.47

Figure 19(a)(80,80) 96.87 32.57 99.61 33.47

Figure 19(a)(100,100) 99.51 33.43 99.61 33.51

Table 14: Tiffany

Plaintext sensitivity

Image NPCR(1st) UACI(1st) NPCR(2nd) UACI(2nd)

Figure 20(a)(30,30) 95.41 32.10 99.61 33.47

Figure 20(a)(50,50) 94.59 31.85 99.61 33.47

Figure 20(a)(80,80) 96.87 32.58 99.61 33.47

Figure 20(a)(100,100) 98.24 33.03 99.60 33.49

Table 15: Comparison for plaintext sensitivity with image Lena

Algorithm NPCR(%) UACI(%)

Ours 99.61 33.44

[17] (2022) 99.63 33.60

[19](2021) 99.630 33.473

[20](2022) 99.6182 33.4472
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Table 16: the NIST test

Test P-VALUE Pass or not

Frequency 0.350485
√

Block Frequency 0.911413
√

Cumulative Sums forward 0.350485
√

Cumulative Sums reverse 0.534146
√

Runs 0.213309
√

Longest Run 0.213309
√

Rank 0.991468
√

FFT 0.911413
√

Overlapping Template 0.066882
√

Approximate Entropy 0.534146
√

Serial 0.534146
√

Serial 0.213309
√

Linear Complexity 0.534146
√

streams are different. By Selected-plaintext and known-plaintext attacks, the295

attacker can’t break up the encryption algorithm because the generated pixel

value is related to the selected image. Therefore, the proposed attack [43, 44,

45, 46] have no effect on our algorithm.

6.5. Randomness test

Currently, the randomness of ciphertext is tested by NIST tests. We do 15300

NIST tests for the ciphered image and show the test results in Table 16. As a

conclusion, the ciphertext performs randomness well.

7. Conclusions

305
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Fractional discrete 2D-TFCDM is proposed by discrete fractional calculus.

Then, the dynamic behavior is discovered by the proposed map. In addition, the

map can also be used in information encryption algorithm. After comparison,

the proposed algorithm outperforms other algorithms in almost all aspects.To

the best of our knowledge, the proposed color image encryption method has310

never been reported.
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